首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
西昆仑山前冲断带断裂特征及构造单元划分   总被引:3,自引:1,他引:2  
受新生代帕米尔构造结大幅度向北推移、旋转的影响,形成了弧形的西昆仑山前冲断带.本文主要通过野外地质调查、地震反射剖面的精细解释,对西昆仑山前冲断带最基本的组成部分-断裂进行系统研究.西昆仑山前冲断带内以发育与其弧形形态一致的逆冲断裂为主,但弧形冲断带中段的断裂具有挤压逆冲的同时兼有右行走滑性质.冲断带内还发育了NE 向和近EW向的走滑断裂,它们的发育时间和成因不尽相同,它们控制了冲断带内的变形,调节和改造了早期形成的构造.在对断裂系统研究的基础上,结合冲断带各个部位的结构特征和变形时间,将冲断带划分为9个次级构造单元.西昆仑山前冲断带开始发育于中新世中晚期,此后经历了上新世早期、上新世中晚期、早更新世早中期以及早更新世晚期四个演化阶段.  相似文献   

2.
The Kutai Basin formed in the middle Eocene as a result of extension linked to the opening of the Makassar Straits and Philippine Sea. Seismic profiles across the northern margin of the Kutai Basin show inverted middle Eocene half-graben oriented NNE–SSW and N–S. Field observations, geophysical data and computer modelling elucidate the evolution of one such inversion fold. NW–SE and NE–SW trending fractures and vein sets in the Cretaceous basement have been reactivated during the Tertiary. Offset of middle Eocene carbonate horizons and rapid syn-tectonic thickening of Upper Oligocene sediments on seismic sections indicate Late Oligocene extension on NW–SE trending en-echelon extensional faults. Early middle Miocene (N7–N8) inversion was concentrated on east-facing half-graben and asymmetric inversion anticlines are found on both northern and southern margins of the basin. Slicken-fibre measurements indicate a shortening direction oriented 290°–310°. NE–SW faults were reactivated with a dominantly dextral transpressional sense of displacement. Faults oriented NW–SE were reactivated with both sinistral and dextral senses of movement, leading to the offset of fold axes above basement faults. The presence of dominantly WNW vergent thrusts indicates likely compression from the ESE. Initial extension during the middle Eocene was accommodated on NNE–SSW, N–S and NE–SW trending faults. Renewed extension on NW–SE trending faults during the late Oligocene occurred under a different kinematic regime, indicating a rotation of the extension direction by between 45° and 90°. Miocene collisions with the margins of northern and eastern Sundaland triggered the punctuated inversion of the basin. Inversion was concentrated in the weak continental crust underlying both the Kutai Basin and various Tertiary basins in Sulawesi whereas the stronger oceanic crust, or attenuated continental crust, underlying the Makassar Straits, acted as a passive conduit for compressional stresses.  相似文献   

3.
青藏高原南北向地堑系的实验研究   总被引:8,自引:0,他引:8  
潘裕生  钟嘉猷  周勇 《地质科学》2003,38(2):172-178,213
青藏高原南北向正断层及与其伴生的地堑是当前的热门话题。对其成因的认识分歧颇大,它们与高原隆升的关系则还处于推论阶段。本文用模拟实验的方法检验了其中的主要观点,结果表明:南北向正断层及与其伴生的地堑是南北向挤压的结果,是在挤压中期横张裂隙的基础上发展起来的。因此,它不代表高原已抬升到了最大高度后的塌陷,而是伴随高原隆升过程中的产物。  相似文献   

4.
《International Geology Review》2012,54(14):1803-1821
ABSTRACT

In the Central Anatolia, the style of neotectonic regime governing the region has been a controversial issue. A tectonic study was carried out in order to contribute to this issue and better understand the neotectonic stress distribution and style of deformation in the west-southwest of the Konya region. From Middle Miocene to Recent time, Konya region was part of the Central Anatolia extensional province. The present-day topography in the west-southwestern part of Konya is characterized by alternating elongate grabens and horsts trending E-W and NW-SE. The grabens were developed upon low-grade metamorphic rocks of Palaeozoic and Mesozoic ages and ophiolite slabs of possibly Late Cretaceous age. The evolutionary history of grabens is episodic as evidenced by two graben infills; older and younger graben infills separated by an angular unconformity. The older infill consists of fluviolacustrine sequence intercalated with calc-alkaline lavas and pyroclastic rocks. This infill is folded; thrust faulted and Middle Miocene-Early Pliocene in age. The younger and undeformed basin fill comprises mainly of Plio-Quaternary conglomerates, sandstone-mudstone alternations of alluvial fan and recent basin floor deposits. Three major tectonic phases were differentiated based on the detailed mapping, morphological features and kinematic analysis. Approximately N-S trending extension began in the Middle Miocene-Early Pliocene in the region with the formation of E-W and NW-SE-trending grabens. Following NE-SW-directed compression which deformed the older basin fill deposits by folding and thrusting, a second period of ENE-WSW-trending extension began in the late Pliocene and continued to the present. The west-southwestern margin of the Konya depression is bounded by the Konya Fault Zone. It is an oblique-slip normal fault with a minor dextral strike-slip component and exhibits well-preserved fault slickensides and slickenlines. Recent seismicity and fault-related morphological features reveal that the Konya Fault Zone is an active neotectonic structure.  相似文献   

5.
济阳坳陷构造演化及其大地构造意义   总被引:151,自引:4,他引:147  
济阳坳陷由负反转盆地、右旋扭张盆地及主动裂谷三个原型叠加而成,并在中、新生代经历了四个演化阶段,三叠纪为板内造山作用阶段,济阳坳陷曾为五条NW向的以逆冲断层为主的压性构造带占据,早-中侏罗世造山作用结束;晚侏罗世-早始新世为负反转盆地阶段,三叠纪NW向逆冲断层发生反向伸展;中始新世-渐新世为右旋扭张盆地阶段,NE,ENE向扭张断裂发育,并进而成盆接受沉积,NW和断裂反向伸展活动受到抑制而渐趋消亡;中新世-全新世为主动裂谷阶段,“拗陷运动”取代“断陷运动”。济阳坳陷构造演化的阶段特征表明了郯庐断裂中、新生代的剪切运动史,即三叠纪右旋剪切,晚侏罗世-早始新世左旋剪切.中始新世-渐新世右旋剪切,中新世-全新世作弱右旋压剪。  相似文献   

6.
The magnetic fabric of Late Miocene sediments from the southern Pannonian basin was studied on oriented samples collected from 19 geographically distributed localities. All of them are characterized by near-horizontal magnetic foliation plane after tilt correction, indicating weak deformation. Well-developed lineations were observed for 16 localities, which are interpreted as due to compressional/transpressional deformation, except from three localities, where the fabric must have been formed in an extensional setting. Comparison between the orientation of the map-scale folds and faults and magnetic lineation directions shows that magnetic lineation is either related to NNE-SSW directed compression, leading to the formation of folds or it can be connected to NW–SE or NNE-SSW trending dextral faults.  相似文献   

7.
詹润  朱光 《地质科学》2012,(4):1130-1150
青东凹陷东边界为郯庐断裂带在渤海海域内西支断裂所在,平面上由4条北北东向断裂呈左阶雁列式排列,剖面上以上盘下降为主,局部具有张扭性和压扭性花状构造现象。青东凹陷东界上的郯庐断裂新生代经历了古近纪右行平移正断层活动、古近纪末盆地挤压反转中的逆右行平移、新近纪的弱拉张活动和第四纪以来的逆右行平移4个演化阶段。古近纪断陷期,先存的郯庐断裂带由于具有较低的强度,在南北向伸展应力场作用下复活并表现为具有右行平移分量的斜向拉张活动,在浅部新生4条左阶雁列式断层,并与盆地内北西向基底断裂系统和东西向新生正断层共同控制了古近系的沉积格局。古近纪末发生了盆地反转,结束了断陷盆地发育阶段,在北东东-南西西向区域挤压应力作用下郯庐断裂表现为逆右行平移活动。新近纪坳陷阶段,盆地内构造活动较弱,主要受控于岩石圈热沉降作用,但郯庐断裂仍具有较弱的伸展活动。第四纪以来,郯庐断裂再次转变为逆右行平移活动。  相似文献   

8.
闹阳坪锌萤石矿床位于北大巴山逆冲推覆褶皱带平利隆起东侧,为该区首次发现的受构造裂隙控制的气水–热液型锌萤石矿床。本文从矿区断裂入手,通过对该区矿床地质、断裂特征、矿体特征的研究,总结了该区断裂的演化序列及其对成矿的控制机制与规律。认为NW-SE向断裂组是矿区的主要控矿构造,矿区断裂变形发育演化序列为晚印支–早燕山期形成近EW向断裂F1,早燕山期形成NW-SE向断裂F7和NE-SW向断裂F4,随后的右行走滑作用叠加有张扭性应力,形成有利于成矿热液运移充填成矿的张扭性右行走滑断裂。并明确了成矿期应变椭球体,恢复了成矿期主压应力方向为NNW向(340°~350°)。在此基础上,预测平面上闹阳坪矿区F7与F8断裂之间为下一步找矿重点地段,剖面上K3萤石矿体下伏北东方向可能存在隐伏矿体。  相似文献   

9.
The Cuzco region, which is located above a change in subduction geometry, appears to be characterized by a variable Plio-Quaternary tectono-sedimentary evolution essentially located along the major fault system that separates the High Plateaux from the Eastern Cordillera. After the higher surface formation of the High Plateaux, a set of Neogene basins were filled by Miocene “ fluvio-torrential” series and by Plio-Pleistocene fluvio-lacustrine deposits. The Neogene series have been affected by compressional tectonic forces attributed to the Late Miocene. This compression is followed by roughly E-W trending syn-sedimentary extensional tectonics attributed to the Pliocene; it is related to reactivation of the pre-existing major faults, basin evolution, and volcanic activity concentrated along the faults. In the Early Pleistocene, fluvio-lacustrine deposits are affected by syn- and post-sedimentary compressional tectonism it is characterized by shortening that trends both N-S and E-W and produces folding and faulting of the sedimentary cover. Extensional tectonism trending roughly N-S has been taking place from the Middle Pleistocene to the Present; it is coeval with shoshonitic volcanic activity, and with sedimentation of fluvio-lacustrine terraces, torrential fans and moraines. Quaternary and active normal faults due to this tectonism, are located in a narrow zone more than 100 km-long between the High Plateaux and the Eastern Cordillera, and two 15 km-long fault sectors in the Eastern Cordillera. Characteristic Pleistocene scarps, 400 m or more high, are due to the cumulative normal offset, and there are also little scarps, with heights ranging between 2 and 20 m, which are related to Holocene fault reactivations. Recent fault reactivation on the Cuzco fault system, during the April 5, 1986 earthquake (mb = 5.3), is due to the N-S trending extension. This state of stress, located at a mean elevation of roughly 3730 m, is generally homogeneous to different scales. The active Cuzco normal faults may be a consequence of adjustment between the compensated Western Cordillera and the undercompensated Eastern Cordillera, this latter being uplifted higher than its isostatic equilibrium due to compression acting on its eastern edge. The variation of the state of stress, during the Plio-Quaternary is in agreement with the variations of the compressional boundary forces. It may be explained by variation of the convergence rate or by the variation of pull-slab forces.  相似文献   

10.
G. Musumeci 《Geodinamica Acta》2013,26(1-2):119-133
Abstract

The Monte Grighini Complex (Central-Western Sardinia) is a NW-SE trending metamorphic complex of Hereynian age made up of a medium grade Lower tectonic unit with mylonitie granitoids and a low grade Upper tectonic unit exposed in the westernmost and southernmost portions of this complex. The Lower Unit shows a prograde metamor phism from garnet to sillimanite zone and the transition from MP/MT to LP/HT metamorphism. The metamorphic climax was reached at the end of the main deformative phase 1)2 (600° C. 6 kbar). After the main tectonic and metamorphic phase. the Lower Unit was affected by a wide NW-SE trending ductile dextral wrench shear zone. Intrusive rocks emplaced within the shear zone yielded radiometric ages of 305-300 Ma. Shear deformation leads to low temperature C-S mylonites and retrograde phyllonitic rocks with subhorizontal NW-SE trending stretching lineations. Kinematic analysis of the shear zone points to a dextral sense of shear with an amount of ductile displacement of about 7 km. Later low angle N-S and E-W trending normal faults are associated with cataclastic zones separating the Lower Unit from the Upper one. These faults originated during a later evolutionary stage of the shear zone. This shows a progressive change of deformation regime from duetile wrenching to brittle normal faulting. The Monte Grighini Complex is a good example of ductile wrench tectonics. followed by uplift and extension in the Paleozoic basement of Sardinia.  相似文献   

11.
琼东南盆地西部环崖南凹陷的油气勘探亟需寻找接替领域.针对勘探研究中存在的3个地质问题,利用丰富的钻井和地震资料对红河断裂活动特征及其对环崖南凹陷构造-沉积-成藏的影响开展深入分析.认为红河断裂的走滑活动通过F1断层向琼东南盆地西部传递剪切应力,其演化与环崖南凹陷的构造-沉积作用具有良好的时空耦合关系,并控制了环崖南凹陷...  相似文献   

12.
燕山式板内造山带基本特征与动力学探讨   总被引:68,自引:10,他引:58  
宋鸿林 《地学前缘》1999,6(4):309-316
板内造山带的基本特征是前期已经固结的岩石圈重新活化。前期地壳基底的复活对后期构造的控制和造山期新生的构造对前期地壳的改造是板内造山作用的两大特征。燕山地区元古宙东西向基底断裂带在中生代的复活控制了区域盖层的构造,表现为沿古断裂的斜滑作用形成的正花状和负花状构造对中生代盖层沉积盆地及其构造的控制,形成盆缘逆冲断层;在基底和盖层中形成羽列式断层及大型S C 式排列的褶皱和断裂组合。其中的逆冲推覆构造也与发育于板缘的不同,主要为基底卷入型。幔源热活动导致强烈的岩浆活动和地壳被加热、软化,从而诱发变形是造山期新生的特点。燕山的纬向构造被NNE向太行山构造带所叠加,以及许多以变质核杂岩和岩浆底辟为代表的垂向构造穿插其中,组成了燕山式板内造山带的主要构造格局。地球内部物质的垂向调整,幔源物质和热流的上升是板内造山带的主因。重力和地球自转引起的切向力是形成板内造山带表层构造的不可忽视的力源  相似文献   

13.
黔西北纳雍-水城一带位于扬子板块西南缘,区内断裂和褶皱极为发育。通过详细野外地质调查,并结合沉积地层接触关系,对区内构造行迹及其组合特征、构造变形期次和构造演化进行探讨。研究表明,震旦纪末至中侏罗世纳雍-水城一带经历了多次构造事件,特别是广西构造事件和印支期构造事件,导致明显的差异剥蚀,但均未造成地层褶皱变形,地层间表现为平行不整合接触。晚侏罗世以后的燕山构造期和喜山构造期才是区内发生构造变形的重要时期。纳雍-水城一带发育的NE-SW、NW-SE及近E-W向三组构造以及在NE-SW、NW-SE向两组构造交接转换部位发育的穹窿构造、构造盆地,均为侏罗纪晚期至早白垩世时期强烈构造事件的产物。其中NE-SW向褶皱及近E-W向断层先期形成,NW-SE向褶皱后期形成,并对先期形成的NE-SW向褶皱进行叠加改造。  相似文献   

14.
Since the middle Miocene, widely distributed N-S striking rifts or rift-depressions and NE-NW-striking strike-slip faults have developed as major structures in southern and south-central Tibet. Active structures, seismic mechanisms and directions and rates of movement determined from GPS data are different in south and south-central Tibetan Plateau. In southern Tibet, N-S striking normal faults and a few transtensional/transpressional faults are the main structures, but none of the GPS measurements show eastward movement. In south-central Tibet, NE- and NW-striking transpressional/transtensional faults and several large-scale E-W and WNW-striking dextral and sinistral strike-slip faults are the main structures, and are consistent with the movement direction indicated by the GPS data. On the other hand, the pattern of earthquake data from the south-central Tibetan Plateau, and especially from the eastern and western syntaxes, are very complicated. These structures may be produced by N-S contraction which has resulted in the N-S striking linear structures, parallel to the direction of maximum compressive stress, and conjugate NE- and NW-striking transpressional/transtensional faults on the southern side of the Qiangtang Block, and in the eastern and western syntaxes, but the deformation is not continuous from the south to the south-central Tibetan Plateau. Underthrusting of the Indian Plate under the southern Tibetan Plateau after the Middle Miocene may be the main cause of these structural features.  相似文献   

15.
在阿拉善地块东缘发现新生代中新世挤压构造,形成近SN或NE-SW走向的逆冲断层及卷入新生代地层的褶皱.其形成背景关系到阿拉善地块新生代的变形特征以及与青藏高原扩展的关系.为了进一步探讨阿拉善地块东缘的挤压构造是否受青藏高原扩展控制,为青藏高原北缘新生代扩展过程的研究提供资料,通过详细地质填图、区域地质调查与对比方法,确定了这些挤压构造的几何样式以及运动学特征,结合断层滑动矢量,恢复出变形时的古应力场.室内外的分析表明,形成这些挤压构造的最大主应力方位为NW-SE或近EW向,结合盆地地震反射资料、卷入构造的地层,推测变形的时代是中新世中晚期.这期变形的动力可能是阿拉善地块受到青藏高原北缘的挤压向东运动所致.同时在阿拉善地块向东运动的过程中,其内部发育的早期东西向构造带发生右行走滑,和阿拉善东缘的挤压构造一同调节地块的变形.晚中新世之后,高原东北缘最大主应力方位发生顺时针旋转,阿拉善东缘挤压构造被后期构造叠加.   相似文献   

16.
The late Eocene to Neogene tectonic evolution of the Dinarides is characterised by shortening and orogen-parallel wrenching superposed on the late Cretaceous and Eocene double-vergent orogenic system. The Central Dinarides exposes NW-trending tectonic units, which were transported towards the Adria/Apulian microcontinent during late Cretaceous–Palaeogene times. These units were also affected by subsequent processes of late Palaeogene to Neogene shortening, Neogene extension and subsidence of intramontane sedimentary basins and Pliocene–Quaternary surface uplift and denudation. The intramontane basins likely relate to formation of the Pannonian basin. Major dextral SE-trending strike-slip faults are mostly parallel to boundaries of major tectonic units and suggest dextral orogen-parallel wrenching of the whole Central Dinarides during the Neogene indentation of the Apulian microplate into the Alps and back-arc type extension in the Pannonian basin. These fault systems have been evaluated with the standard palaeostress techniques. We report four palaeostress tensor groups, which are tentatively ordered in a succession from oldest to youngest: (1) Palaeostress tensor group 1 (D1) of likely late Eocene age indicates E–W shortening accommodated by reverse and strike-slip faults. (2) Palaeostress tensor group 2 (D2) comprises N/NW-trending dextral and W/WSW-trending sinistral strike-slip faults, as well as WNW-striking reverse faults. These indicate NE–SW contraction and subordinate NW–SE extension related to Oligocene to early Miocene shortening of the Dinaric orogenic wedge. (3) Palaeostress tensor group 3a (D3a) comprises mainly NW-trending normal faults, which indicate early/middle Miocene NE–SW extension related to syn-rift extension in the Pannonian basin. The subsequent palaeostress tensor group 3b (D3b) includes NE-trending, SE-dipping normal faults indicating NW–SE extension, which is likely related to further extension in the Pannonian basin. (4) Palaeostress tensor group 4 (D4) is characterised by mainly NW-trending dextral and NE-trending sinistral strike-slip faults. Together, with some E-trending reverse faults, they indicate roughly N–S shortening and dextral wrenching during late Miocene to Quaternary. This is partly consistent with the present-day kinematics, with motion of the Adriatic microplate constrained by GPS data and earthquake focal mechanisms. The north–north-westward motion and counterclockwise rotation of the Adriatic microplate significantly contribute the shortening and present-day wrenching in the Central Dinarides.  相似文献   

17.
A new 3D geological model and interpretation of structural evolution of the Rio Tinto world-class VMS deposit are presented in this work. The Rio Tinto volcanogenic massive sulfide (VMS) deposit is located in the Spanish segment of the Iberian Pyrite Belt and is hosted by felsic porphyritic volcanic rocks and tuffs. Computer generated 3D modeling of the different orebodies and host rocks has been carried out using data from around 3000 drill-core logs, allowing us to build 93 cross-sections and 6 plants (both 50 m spacing). This has enabled us to recognize the geometry and relationships between the mineralization and the earliest Carboniferous transtensional tectonics through the development of an extensional pull-apart basin with two sub-basins separated by the NW-SE trending Eduardo Fault. The sub-basins, Cerro Colorado and San Dionisio, were limited by two E-W strike-slip faults, the Northern and Southern faults, and bounded in the east and west by the NW-SE-trending Nerva and Western faults, respectively. The generated pull-apart basin was first filled by a basaltic magmatism of mantle origin and later, following the deposition of the intermediate complex sedimentary unit, by rhyodacitic volcanic rocks of crustal origin. The evolution of the subsiding basins caused the development of an E-W oriented rollover anticline that affected these filling rocks.As a result of a counterclockwise rotation of the stress axes, the primitive pull-apart basin evolved into a basin affected by E-W transtensional sinistral shearing. Its northern and southern limits were favorable areas for increased hydrothermal fluid flow, which gave way to the huge concentration of VMS mineralization located near the limits. The Northern and, to a lesser degree, the Southern extensional faults thus become channel areas for feeding and discharging of the VMS and stockwork ores. The main mineralizing period was related to this stage. Subsequently, during the Variscan transpressional phase, the E-W extensional faults were reactivated as inverse faults, affecting the volcanic sequence of mafic to felsic composition and the intermediate complex sedimentary unit. Fault propagation folds developed above these faults, affecting the massive sulfides, the transition series and the Culm flysch sediments, with buttressing playing a significant role in the geometry of tectonically inverted structures. The VMS mineralization and cupriferous stockworks were folded and dismembered from the original conduits in the volcanic series, and a dextral reactivation of the NW-SE trending faults also developed.Finally, it should be emphasized that this new 3D geological model is an approach to provide a better insight into the 3D structure of the world-class VMS Rio Tinto deposit and could be a key-point for further studies providing a new tool to increase knowledge of the VMS mineralizations and exploration guidelines elsewhere in the IPB.  相似文献   

18.
《Geodinamica Acta》2013,26(4):275-287
The Narcao and Cixerri basins in Southwestern Sardinia are east-west trending basins of Oligocene age. Recent geological mapping, combined with structural and stratigraphical analyses, support the proposed hypothesis that these basins were very open growth synclines confined within a structural high, delimited by northwest trending dextral strike slip faults. Previously the basins have been interpreted as fault-bounded grabens. The newer revised interpretation is consistent with the existence of NNW trending dextral strike-slip dynamic, related to a north-south shortening which has generated reverse faulting and tight folds in the underlying, pre-synclinal evolution, Eocene succession. This deformation, along with an interfering sub-orthogonal thrust and fold system which affects the Mesozoic sequence, was traditionally linked to the Pyrenean Orogenesis. The Oligocene–Aquitanian shortening, which resulted in the growth synclines and strike-slip faulting, is consistent with the structural development recognized in north-central Sardinia; there structures related to the collision between continental margins that resulted in the Northern Apennines are well documented. Therefore, the Oligocene tectonics of Southwestern Sardinia also must be related to the collision event between the Southern Europe margin (i.e. a crustal sector corresponding to the future Corsica-Sardinia block) and the Adria Plate, which generated the Northern Apennines. Conversely, the previous E-W shortening- related structures must be related to Pyrenean tectonics.  相似文献   

19.
通过对滇东南地区区域构造的研究,发现该地区矿床的形成主要受控于构造作用。以广南金矿矿区构造和矿石构造解析作为基础,结合对矿区动力学背景的分析,指出极其发育的NW向、NE向和EW向断裂构造是矿区构造发育的主要特点,而金矿床的就位主要受制于前期构造活动形成的断层及不整合面,右行压剪作用及后期的伸展作用确定了现今的矿体分布特征。矿区发育的角砾状、浸染状和脉状矿石揭示,断裂活动和热液蚀变在成矿过程中起重要作用。  相似文献   

20.
The central Wassuk Range is ideally located to investigate the interplay of Basin and Range extension and Walker Lane dextral deformation along the western Nevada margin of the Basin and Range province. To elucidate the Cenozoic evolution of the range, the author conducted geologic mapping, structural data collection and analysis, geochemical analysis of igneous lithologies, and geochronology. This research delineates a three-stage deformational history for the range. A pulse of ENE–WSW-directed extension at high strain rates (~8.7 mm/yr) was initiated immediately after the eruption of ~15 Ma andesite flows; strain was accommodated by high-angle, closely spaced (1–2 km), east-dipping normal faults which rotated and remained active to low angles as extension continued. A post-12 Ma period of extension at low strain rates produced a second generation of normal faults and two prominent dextral strike–slip faults which strike NW, subparallel to the dextral faults of the Walker Lane at this latitude. A new pulse of ongoing extension began at ~4 Ma and has been accomodated primarily by the east-dipping range-bounding normal fault system. The increase in the rate of fault displacement has resulted in impressive topographic relief on the east flank of the range, and kinematic indicators support a shift in extension direction from ENE–WSW during the highest rates of Miocene extension to WNW–ESE today. The total extension accommodated across the central Wassuk Range since the middle Miocene is >200%, with only a brief period of dextral fault activity during the late Miocene. Data presented here suggest a local geologic evolution intimately connected to regional tectonics, from intra-arc extension in the middle Miocene, to late Miocene dextral deformation associated with the northward growth of the San Andreas Fault, to a Pliocene pulse of extension and magmatism likely influenced by both the northward passage of the Mendocino triple junction and possible delamination of the southern Sierra Nevada crustal root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号