首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
PcP and PmKP travel times are computed for three simple or parametric Earth models, based on free-oscillation and travel-time data B1, PEM-A and HB1 and compared with PcP and PmKP travel times from different sources. This comparison is made only for the region above and below the core-mantle boundary and is of interest because of the current search for a standard Earth model. The comparison shows that only model B1 does not need a correction for its PcP travel times. For the PmKP travel times for the three models, corrections of the form Δt = a + bm were obtained. The models need the following corrections for b: ?1.3 for B1, 2.8 for HB1 and 0.6 for PEM-A. The corrections a are shown to be equal to the observed corrections for PcP at large epicentral distances. The inversions of free-oscillation data to obtain Earth models are most successful when body-wave phases that interact with the core are included.  相似文献   

2.
Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important for such studies where ultrasonic waves interact with small-scale random heterogeneities on a scale of micrometers, but often ignored as noises because of the contamination of boundary reflections from the side ends of a sample core. Numerical simulations with accurate absorbing boundary can provide insight into the effect of boundary reflections on coda waves in laboratory experiments. The simulation of wave propagation in digital and heterogeneous porous cores really challenges numerical techniques by digital image of poroelastic properties, numerical dispersion at high frequency and strong heterogeneity, and accurate absorbing boundary schemes at grazing incidence. To overcome these difficulties, we present a staggered-grid high-order finite-difference (FD) method of Biot’s poroelastic equations, with an arbitrary even-order (2L) accuracy to simulate ultrasonic wave propagation in digital porous cores with strong heterogeneity. An unsplit convolutional perfectly matched layer (CPML) absorbing boundary, which improves conventional PML methods at grazing incidence with less memory and better computational efficiency, is employed in the simulation to investigate the influence of boundary reflections on ultrasonic coda waves. Numerical experiments with saturated poroelastic media demonstrate that the 2L FD scheme with the CPML for ultrasonic wave propagation significantly improves stability conditions at strong heterogeneity and absorbing performance at grazing incidence. The boundary reflections from the artificial boundary surrounding the digital core decay fast with the increase of CPML thicknesses, almost disappearing at the CPML thickness of 15 grids. Comparisons of the resulting ultrasonic coda Q sc values between the numerical and experimental ultrasonic S waveforms for a cylindrical rock sample demonstrate that the boundary reflection may contribute around one-third of the ultrasonic coda attenuation observed in laboratory experiments.  相似文献   

3.
Quantifying the density contrasts of the Earth's inner core boundary(ICB) is crucial to understand core-mantle coupling and the generation of the geodynamo. The PKiKP/PcP amplitude ratio is commonly used to obtain the density contrast at the ICB, but its applications are limited by scattered observed data. In this study, we selected the PKiKP and PcP phases reflected at the same region of inner-core and core-mantle boundaries beneath Northeast Asia from different earthquakes for the first time, and the observations suggested that the PKiKP/PcP amplitude ratio is widely scattered. We also compared the PKiKP and PcP amplitudes, which demonstrated that the scatter cannot be attributed only to ICB anomalies but might also arise from raypath differences and heterogeneities throughout the crust and mantle. By fitting the observed PKiKP/PcP amplitude ratio, we obtained a density contrast of approximately 0.65 g cm~(-3) and a compressional velocity contrast of approximately 0.87 km s~(-1) at the ICB beneath Northeast Asia. The larger contrast values indicate the possible occurrence of local crystallization occurring at the inner core surface.  相似文献   

4.
We present Prognoz-8 observations of low-frequency plasma waves (2-105 Hz) associated with plasma fluxes near the outer boundary of the plasma sheet. These plasma fluxes were different from the regular plasma sheet boundary layer and consisted of tailward flowing warm proton and cold oxygen beams accompanied by rather cold electrons (T e less than 100 eV). Observed plasma characteristics were used in the numerical solution of the dispersion relation for the ion-beam acoustic instability. Detailed analysis shows that this instability can be a source of observed emissions at frequencies up to 25 Hz.  相似文献   

5.
In 1983, Lay and Helmberger [Geophys. J. R. Astron. Soc. 75 (1983) 799–837] reported the detection of a precursor to the seismic phase ScS. They attributed this precursor to a sharp seismic discontinuity located several hundred kilometers above the core–mantle boundary. Such a lowermost mantle discontinuity implies the existence of a sharp phase change or a chemical boundary. Precursors to ScS and, less frequently, PcP have since been observed in numerous locations, but are not a global phenomenon. Frequently, PcP precursors are weak or absent when ScS precursors are observed in the same location, and vice versa. There can be significant variations in the amplitude and arrival time of the precursor relative to the main phase. The presence or absence of these precursors has led to speculations about the nature of the lowermost mantle. Here we demonstrate that ScS or PcP precursors may be produced by gradients in seismic wave speed associated with large-scale lowermost mantle heterogeneity. Rather than a phase or chemical boundary with substantial topography, such gradients require lateral variations in temperature and, close to the core–mantle boundary, composition.  相似文献   

6.
Simultaneous estimation of effects of source, propagation path, and local site amplification was carried out using observed strong motion records in a frequency range from 0.8 to 20 Hz for the purpose of empirical evaluation of the local site effects in different geological conditions in the northwestern part of Turkey. The analyzed data are S-wave portions of 162 accelerograms from 39 shallow events observed at 14 sites of BYTNet array. A spectral separation method was applied to the observed S-wave spectra. The solutions for source spectra, inelasticity factor of propagation path for S-waves (Q s-value), and factor of site amplification at each site were obtained in a least squares sense. In the analysis, we assumed that the factor of the site amplification at a reference site is the same as that of theoretical amplification of S-waves to the soil model whose bottom layer has an S-wave velocity around 2.15 km/s. The estimated Q s-value of the propagation path is modeled as Q s(f)?=?87.4f0.78. The estimated site amplifications are characterized into three groups. The sites in the first group belong to rock site with no dominant peaks at a frequency range of 2 to 10 Hz. The second group of hard soil sites is characterized with moderately dominant peaks at a frequency of 5 Hz. The last group for soft soil sites has common peaks at a frequency of 4 Hz with larger amplitudes than those in the hard soil group. We, then, compare the amplifications with average S-wave velocity in top 30 m of the shallow S-wave profiles and proposed linear empirical formula between them at each frequency. We, furthermore, inverted the observed amplification factors into S-wave velocity and Q s-value profiles of the deep soil over the basement.  相似文献   

7.
The empirical equations for scaling Fourier amplitude spectra in the frequency band from ~0·1 to 25 Hz can be extrapolated to describe the long period strong motion amplitudes. The results of this extrapolation can agree with (1) the seismological and field estimates of permanent ground displacement (near field), and with (2) the independent estimates of seismic moment and the observed frequencies of far field Fourier spectrum amplitudes.  相似文献   

8.
It is shown how the empirical equations for scaling the Fourier amplitude spectra in the frequency band from ~0.1 to 25 Hz can be extended to describe the strong motion amplitudes in a much broader frequency range. At long periods, the proposed equations are in excellent agreement with (1) the seismological and field estimates of permanent ground displacement (near field) and (2) the independent estimates of seismic moment (far field). At high frequencies, f ≥ 25 Hz, the spectral amplitudes can be described by exp (? πkf), where k ranges from 0·02 (near source) to about 0·06 at an epicentral distance of about 200 km. It is also shown how amplification by local soil and geological site conditions can be defined to apply in the same broad frequency range.  相似文献   

9.
Precursor and coda portions of short-period PcP waves (reflected P wave from the core-mantle boundary, CMB) recorded at J-array stations in Japan were analyzed in order to extract weak scattered signals originating from small-scale heterogeneities in the lowermost mantle beneath northeastern China. Two nuclear explosions at Lop Nor in China detonated on 21 May 1992 (Mb=6.5) and 8 June 1996 (Mb=5.9) were used for our analysis.Three-dimensional grids above the CMB were defined in the area around the PcP bounce points beneath northeastern China to calculate theoretical travel times of scattered waves which propagate from the sources to each grid point and arrive at each station based on the IASP91 model. Subsequently the waveforms were aligned with respect to the theoretical travel times and the semblance (an amplitude dependent measure of coherency) was calculated for each grid point. In order to obtain a more accurate travel time correction, we applied a cross correlation method to PcP waveforms in order to reduce picking error of the PcP onset time. A cross convolution method was also applied so that the two events could be analyzed simultaneously without using unstable deconvolutions.We could identify regions with relative high semblance values in semblance contour maps at about 200 and 375 km above the CMB. Stacking waveforms with respect to the theoretical travel times for the grid points with relative high semblance values indicate coherent wavelets originating at those grid points, that is, they correspond to scattered waves originating from small-scale heterogeneities in the lowermost mantle. Our results indicate the existence of small-scale scattering objects in the D″ layer, especially in the depth range of 200 and 375 km above the CMB beneath northeastern China. Considering recent tomographic images of high velocity anomalies in this area, these scattering objects could be fragments of old oceanic crusts which have subducted through the lower mantle and have accumulated in the D″ layer beneath northeastern China.  相似文献   

10.
Amplitude ratio of 30 short-period conspicuous P5KP and PKPab phases from five intermediate depth or deep events in Fiji-Tonga recorded at European stations around 150° distance shows a mean value two to three times the ratio of the synthetic amplitudes obtained by the normal-mode theory (and ak135 model) or by full-wave theory (and PREM). There is a large variance in the results, also observed in five amplitude ratios from one event in Argentina observed at temporary stations in China around 156°. Global recordings of three major deep earthquakes in Fiji, Bonin, and Western Brazil observed at ASAR, WRA, and ZRNK arrays, at 59 North America stations and at six South Pole stations displayed conspicuous P4KP and PcP (or ScP) phases. The amplitude ratio values of P4KP vs P(S)cP are sometimes almost one order of magnitude larger than the corresponding values of the synthetics. In both cases, arrival times and slowness values (corrected for ellipticity and station elevation) at the distances up to 23° beyond the A cutoff point predicted by ray theory match both the synthetics, suggesting the observations are the AB branch of PmKP (m?=?4, 5) around 1 Hz. In disagreement to ray theory, no reliable BC branch is observed neither on the recordings nor on the normal-mode synthetics. The high amplitude ratio values cannot be explained by realistic perturbations of the velocity or attenuation values of the global models in the proximity of the core-to-mantle boundary (CMB). We speculate that the focusing effects and/or strong scattering most likely associated to some anomalous velocity areas of the lowermost mantle are responsible for that. The results suggest limitations of the previous evaluations of the short-period attenuation in the outer core from PmKP amplitudes (m?≥?3), irrespective of the fact that they are obtained by using ray theory, normal-mode or full-wave synthetics. Attempts to use PmKP arrival times in order to refine velocity structure in the proximity of CMB should be also regarded with care if the propagation times have been computed with ray theory.  相似文献   

11.
We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was measured for frequencies in the range 0.2–5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios (HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock' classification) located on Frenchman Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and 2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the amplification shows a correlation with the average upper 30-meter shear velocities, V30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and 1.2 Hz with a low velocity near-surface layer with shear velocities 600–750 m/s and a thickness of 100–200 m. These modeling results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity structure.  相似文献   

12.
The attenuation of P- and S-waves in Southeastern Sicily was estimated by applying two different methods in time and frequency domains. We analyzed waveforms from about 290 local events (0.6≤ML≤4.6) recorded at a three-component digital network.By applying the pulse broadening method to the first P-wave pulse, we found an average Qp value of ca. 140. The application of the frequency decay method provided a Qp value of ca. 120, in the low-frequency band (3-9 Hz). Conversely, in the high frequency range (16-27 Hz) the average Qp is significantly larger (ca. 640). The frequency decay method was also applied to S-waves spectra. In the low frequency range (2-5 Hz) the estimated average Qs is ca. 190. As for Qp, also Qs, in the high frequency range (16-27 Hz), is larger (ca. 700). These results evidenced a frequency dependence of both the quality factors Qp and Qs, as commonly observed in tectonically active zones characterized by high degree of heterogeneity.  相似文献   

13.
Kolkata, one of the oldest cities of India, is situated over the thick alluvium of the Bengal Basin, where it lies at the boundary of the zone III and zone IV of the seismic zonation map of India. An example of the study of site effects of the metropolitan Kolkata is presented based on theoretical modeling. Full synthetic strong motion waveforms have been computed using a hybrid method that combines the modal summation and finite difference techniques. The 1964 Calcutta earthquake, which was located at the southern part of Kolkata, is taken as the source region, with the focal mechanism parameters of dip?=?32°, strike?=?232° and rake?=?56°. Four profiles are considered for the computation of the synthetic seismograms from which the maximum ground acceleration (A MAX) is obtained. Response spectra ratios (RSR) are then computed using a bedrock reference model to estimate local amplifications effects. The A MAX varies from 0.05 to 0.17?g and the comparison of the A MAX with the different intensity scales (MM, MSK, RF and MCS) shows that the expected intensity is in the range from VII to X (MCS) for an earthquake of magnitude 6.5 at an epicentral distance of about 100?km. This theoretical result matches with the empirical (historical and recent) intensity observations in Kolkata. The RSR, as a function of frequency, reaches the largest values (largest amplification) in the frequency range from 1.0 to 2.0?Hz. The largest site amplification is observed at the top of loose soil.  相似文献   

14.
The Algiers–Boumerdes region has been struck by a destructive magnitude 6.8 (Mw) earthquake on May 21, 2003. The study presented in this paper is based on main shock strong motions from 13 stations of the Algerian accelerograph network. A maximum 0.58g peak ground acceleration (PGA) has been recorded at 20 km from the epicenter, only about 150 m away from a PGA of 0.34g, with both a central frequency around 5 Hz, explained by a strong very localized site effect, confirmed by receiver function technique results showing peaks at 5 Hz with amplitudes changing by a factor of 2. Soil amplifications are also evidenced at stations located in the quaternary Mitidja basin, explaining the higher PGA values recorded at these stations than at stations located on firm soil at similar distances from the epicenter. A fault-related directionality effect observed on the strong motion records and confirmed by the study of the seismic movement anisotropy, in agreement with the N65 fault plan direction, explains the SW–NE orientation of the main damage zone. In the near field, strong motions present a high-frequency content starting at 3 Hz with a central frequency around 8 Hz, while in the far field their central frequency is around 3 Hz, explaining the high level of damage in the 3- to 4-story buildings in the epicentral zone. The design spectra overestimate the recorded mean response spectra, and its high corner frequency is less than the recorded one, leading to a re-examination of the seismic design code that should definitively integrate site-related coefficient, to account for the up to now neglected site amplification, as well as a re-modeling of the actual design spectra. Finally, both the proposed Algerian attenuation law and the worldwide laws usually used in Algeria underestimate the recorded accelerations of the 6.8 (Mw) Boumerdes earthquake, clearly showing that it is not possible to extrapolate the proposed Algerian law to major earthquakes.  相似文献   

15.
利用多种地球物理观测资料直接反演地幔对流模型   总被引:4,自引:3,他引:4       下载免费PDF全文
假定地幔为一个均匀的、粘滞系数为常数、同时均匀分布放射性热源的流体球层,其内部存在的对流则由流体力学3个基本方程:运动方程、能量方程和连续性方程确定.如果假定地幔处于低瑞利数的状态(临界瑞利数1.5倍左右),那么上述方程中的非线性项可以忽略不计.作为一类可能的模型,本文计算一组用6个边界条件确定6个未知数的线性方程组.这些条件包括板块绝对运动极型场、地球大地水准面异常和地震层析结果提供的地幔密度分布横向不均匀相应的“刚性地球”水准面异常等.模型计算表明:1.地幔中流体运动格局不仅受地幔热动力学参数(瑞利数)控制,而且强烈地受边界条件的影响.2.若不限定下边界为等温边界,则上、下地幔之间并不呈现出活动性明显差异;但是在模型瑞利数加大到一定值时,核-幔边界附近将出现一些局部的小尺度对流环.3.当模型瑞利数从很小增加时,对流格局将发生变化,这些格局可能反应由地幔热动力学参数决定的地幔固有特性.4.当瑞利数为50000和80000时,核-幔边界形变与PcP波得到的结果吻合较好.  相似文献   

16.
根据台站场地条件进行地震动参数校正,有助于提高地震预警的有效性和准确性。针对我国地震预警台网中部分台址场地条件信息不完整及观测仪器的多样性,通过采用不同灵敏度的力平衡式加速度仪、速度仪和MEMS烈度仪,同时进行大量不同类别场地的地脉动观测,多角度对比分析时、频差别,探讨基于地震预警仪观测地脉动评价场地条件的可行性。结果表明,加速度仪灵敏度越高,H/V谱比卓越频率越易识别;速度仪与力平衡式加速度仪观测的地脉动,三分向傅氏谱和H/V谱比的谱形与卓越频率均一致;与TAG-33M强震仪相比,TMA-53烈度仪观测的地脉动整体幅值略高,波形较差,但随着振幅增大趋于一致;在近80%的场地上,TAG-33M强震仪与TMA-53烈度仪观测的地脉动傅氏谱卓越频率相差<0.5 Hz;当幅值均方根值>0.05 Gal时,TAG-33M强震仪与TMA-53烈度仪观测的地脉动竖向和水平向傅氏谱均趋于一致;当幅值均方根值为0.02 Gal~0.05 Gal时,TAG-33M强震仪与TMA-53烈度仪观测的地脉动竖向和水平向傅氏谱谱形均有较高的相似性;当幅值均方根值<0.02 Gal时,TAG-33M强震仪与TMA-53烈度仪观测的地脉动傅氏谱谱形相差较大,相似性低;依据TAG-33M强震仪观测地脉动H/V谱比的卓越频率判定场地类别,准确率达83.3%;TMA-53烈度仪观测地脉动的H/V谱比过于平坦,大多数场地上卓越频率识别困难。  相似文献   

17.
Regional seismograms were collected to image the lateral variations of L g coda Q at 1 Hz (Q 0 ) and its frequency dependence η across Burma and its neighboring regions. The data include 660 vertical-component traces recorded at 39 stations. The resulting image indicates that L g coda Q, at a frequency of 1 Hz, varies between 100 and 500. Lowest Q values (< 200) lie in the Three rivers (the Jinshajiang River, Nujiang River, and Lancangjiang River) area of Southwest China. Relatively low Q values (200–250) are found in the Himalayan region and the eastern Burma highland. Higher L g coda Q values (> 250) are found in the eastern Indian block. From the L g coda Q tomography, we found that (1) The Sagain fault acts as a rough boundary between the eastern Indian plate and the Three rivers area of the Eurasia plate; (2) near the eastern Himalayan syntaxis, higher Q value appears in the background of relatively low Q (which may be the consequence of the northward intrusion of the Assam block of the Indian plate into the southern Qinghai-Tibet plateau.  相似文献   

18.
High-quality three-component records of some very low-magnitude aftershocks (ML < 2) of the September 3, 1978 Swabian Jura earthquake have been used to estimate the crustal ratio QP/QS in this seismically active area. The slopes of the P and S spectra at high frequency (20–40 Hz) are the basic data used in this investigation. QP/QS ratios depend upon the area crossed by the corresponding ray path. In particular, small ratios are observed for rays crossing the Hohenzollerngraben. This result suggests that the crystalline basement has been tectonized under the graben structure and has experienced microcracking and/or grain size reduction.  相似文献   

19.
频率多尺度全波形速度反演   总被引:1,自引:1,他引:0       下载免费PDF全文
以二维声波方程为模型,在时间域深入研究了全波形速度反演.全波形反演要解一个非线性的最小二乘问题,是一个极小化模拟数据与已知数据之间残量的过程.针对全波形反演易陷入局部极值的困难,本文提出了基于不同尺度的频率数据的"逐级反演"策略,即先基于低频尺度的波场信息进行反演,得出一个合理的初始模型,然后再利用其他不同尺度频率的波场进行反演,并且用前一尺度的迭代反演结果作为下一尺度反演的初始模型,这样逐级进行反演.文中详细阐述和推导了理论方法及公式,包括有限差分正演模拟、速度模型修正、梯度计算和算法描述,并以Marmousi复杂构造模型为例,进行了MPI并行全波形反演数值计算,得到了较好的反演结果,验证了方法的有效性和稳健性.  相似文献   

20.
Deep earthquakes located in the Tonga-Kermadec region produce exceptionally clear and sharp short-period P, S, PcP, ScP, and ScS phases which are recorded at many stations at distances of less than 60°. The data used in this study are produced by short-period stations located in oceanic-type regions (Fiji and New Caledonia), a mobile continental region (eastern Australia) and a shield region (central Australia). Differential travel-time residuals of the above phases at these stations are investigated to determine the contribution to the differential residuals from: (1) the upper part of the mantle (S-P residuals); (2) the core-to-station portion of the mantle (ScS-ScP residuals); and (3) the hypocenter-to core portion of the mantle (ScP-PcP residuals). The use of differential travel-time residuals considerably reduces near-station effects and effects due to inaccurate determination of the source parameters, and hence the results can be interpreted as due to variations along the propagation paths. The results show that (S-P) residuals from phases traveling along event-to-station paths are about 7 s smaller at the shield station than at the oceanic stations. This correlation with surface tectonic environments is equally strong for the (ScS-ScP) residuals, with the shield/oceanic station difference being about 4 s. Moreover, the data suggest that this correlation between differential residuals and surface tectonic environments is caused by variations in shear velocity within the upper part of the mantle. However, the data cannot uniquely resolve the required depth of these variations within the mantle. For example, if the shear velocity variations extend to a depth of 400 km beneath the recording stations, then the average shear velocity difference between shield- and oceanic-type environments is about 4%. However, if the variations extend only to a depth of 200 km, this difference is more than 8%.(ScP-PcP) and (ScS-PcS) residuals vary from about +1 to about +4 s at the different stations, apparently because of compressional velocity variations in the mantle along the Pc path. If the variation in compressional velocity within the mantle below a depth of about 600 km is about 10% and occurs near the source region, these results suggest that, in the vicinity of deep earthquake zones, variations in compressional velocity extend to a depth of about 1000 km. However, these results can equally be explained by a 1% variation in compressional velocity, evenly distributed along the entire Pc path. An estimate of Q determined from the observed predominant frequency of ScS waves, as recorded at the shield station, suggests that the average 〈Qs〉 of the mantle beneath about 600 km is about 1050 at frequencies of about 1 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号