首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
以南水北调中线工程水源区为研究流域,采用线性回归法、Mann-Kendall非参数检验等方法,分析了1961—2000年的水文气象要素变化特征;基于数字高程模型、土地利用和土壤类型等资料,研究了SWAT模型在研究流域的适用性;根据IPCC第四次评估报告多模式结果,分析了IPCC SRES A2和A1B情景下2011—2050年的降水、气温、径流的响应过程。结果表明:1961—2000年南水北调中线工程水源区降水量无显著变化趋势,气温呈缓慢上升趋势,径流量呈缓慢减少趋势。与基准期(1961—1990年)相比,未来40年A2和A1B两种气候情景下水源区降水量、气温和径流量都呈现出增加趋势,A2情景下增加趋势明显,但径流量增幅小于降水量的增幅,这可能与蒸发量的增加有关。未来气候变化对南水北调中线工程水源区径流变化影响不大,总体有利于南水北调中线工程的调水。  相似文献   

2.
利用Mann-Kendall突变检验法对延河流域1952—2008年降水量与甘谷驿站径流量进行分析,并以1952—1994年为基准期,定量分析1995—2008年降水变化和人类活动对径流的影响。结果表明:57年来延河流域正常降水发生概率达80.7%,径流年型以偏枯和枯水年为主;年降水量和径流量均呈减少趋势,突变分别发生在1995和2005年;与1952—1994年相比,1995—2008年的降水量和径流量较基准期分别减少11.1%和27.3%;降水变化和人类活动对径流减少的贡献率分别为46.2%和53.8%。  相似文献   

3.
气候变化情景下澜沧江流域极端洪水事件研究   总被引:1,自引:0,他引:1  
以澜沧江流域为研究对象,基于ISIMIP2b协议中提供的GFDL-ESM2M、HadGEM2-ES、IPSL-CM5A-LR、MIROC5这4种全球气候模式,通过4种模式的输出数据耦合VIC模型,分析4种模式在历史时期(1961—2005年)对洪峰洪量极值(年最大洪峰流量、3 d最大洪量)、极端洪水的模拟能力,比较RCR2.6和RCP6.0两种情景下未来时期(2021—2050年)年均径流量较基准期(1971—2000年)的变化情况,并结合P-III型分布曲线预估了澜沧江流域在两种情景下未来时期极端洪水的强度变化情况。结果表明:VIC模型在该流域能够较好地模拟极端洪水;HadGEM2-ES和MIROC5两种气候模式的输出数据在澜沧江流域有较好的径流模拟适用性;在RCP2.6情景下,澜沧江流域未来时期年均径流量没有明显变化,可能会有略微的增加,而在RCP6.0情景下,未来时期年均径流量有较大可能增加;澜沧江流域未来时期极端洪水较基准期,在RCP2.6情景下无明显变化,而在RCP6.0情景下,洪峰、洪量增加的可能性较大,极端洪水频率和强度也较大可能增加。  相似文献   

4.
气候变化条件下雅砻江流域未来径流变化趋势研究   总被引:1,自引:0,他引:1  
雅砻江为我国重要的水电基地,未来气候变化条件下流域径流变化将直接影响雅砻江梯级水库群运行安全和发电调度,因此研究气候变化对雅砻江流域径流的影响十分必要。首先建立了流域月尺度的SWAT模型,然后使用统计降尺度模型(SDSM)模拟未来2006—2100年流域内各站点的气象数据,最后使用流域SWAT模型对未来2006—2100年月径流进行模拟。结果表明,未来雅砻江流域径流呈上升趋势,且增幅随着辐射强迫的增加同步增大,RCP2.6、RCP4.5、RCP8.5这3种典型浓度路径下年平均径流增幅分别为8.9%、12.5%、16.7%,且2020S(2006—2035年)、2050S(2036—2065年)、2080S(2066—2100年)这3个时期年径流量呈现不同的变化趋势,其中RCP2.6浓度路径下为先逐步增加达到峰值后略有减少,RCP4.5浓度路径下为先逐步增加达到峰值后趋于稳定,RCP8.5浓度路径下为持续增加。流域径流年内分配方面,3种典型浓度路径下汛期径流占全年比例在2020S、2050S、2080S这3个时期均为先降后升趋势,整个预测期总体为降低趋势,RCP2.6、RCP4.5及RCP8.5这3种浓度路径下整个预测期的均值分别由基准期的75.9%降低为72.9%、72.0%、71.2%。径流增加会对流域洪水特性产生较大影响,为此应该修正流域设计洪水计算结果和调整防洪调度方案,以降低雅砻江流域梯级水库群因气候变化而产生的运行风险,并提高发电调度效率。  相似文献   

5.
为研究澜沧江源区水文气候变化特征,采用线性回归拟合分析方法、M-K非参数检验法对1960—2010年间澜沧江源区的水文气候变化趋势进行分析,计算了各季节气温变化对年气温变化的贡献量,并基于Pearson相关分析法和贡献率的计算讨论了降水量和气温对径流量变化的影响。结果表明:澜沧江源区年平均气温和各季节平均气温均呈显著上升趋势,其中,冬季的增温对年平均气温增加贡献最大(38%)。澜沧江流域源区年降水量无明显增减趋势,但春季降水量显著增加。澜沧江流域源区年径流量未呈现显著变化趋势,冬季和春季径流量呈现出显著的增加趋势。年际尺度上,径流量的主控因素是降水量,降水量对径流量年内变化的影响主要发生在降水相对丰沛的6—10月份;冬季和初春季节气温上升对径流量的改变存在一定的影响,且气温的贡献率要比降水的贡献率大,原因是气温升高加剧研究区内冰雪的消融,进而导致澜沧江源区的径流增加。  相似文献   

6.
利用2000—2007年长江上游各分流域面雨量实测资料、雷达遥测面雨量资料以及各水文站的历史资料,对流域降水量、洪水传播时间、径流数据以及基流值进行了针对性处理;通过单日产流Pa+P—R(降水量加前期影响雨量—径流)分析和场次洪水总量Crr—P(a径流系数—前期影响雨量)分析,结合各分流域拟合效果及检验,研究了三峡库区降水—径流关系,证明采用雷达遥测的降水数据作为降水量输入来预报各分流域未来时段内产流量是最佳选择,由此建立了三峡库区径流量的预报模型。  相似文献   

7.
1961—2009年辽河流域水文气象要素变化特征   总被引:1,自引:0,他引:1  
依据1961—2009年辽河流域5个气象观测站点逐日降水和气温观测资料,运用非参数检验方法(Mann-Kendall法),对辽河流域降水和气温的变化趋势进行了分析。利用2006—2010年夏季共162d降水日的铁岭站日降水量与铁岭水文站径流量资料,探讨了日降水量与径流量之间的相关关系。结果表明:辽河流域年降水量减少趋势明显,降水量偏少年份明显增加,其主要原因为占全年降水量65%的夏季降水以7.4 mm/10 a的气候趋势倾向率递减,呈现出明显的减少趋势;辽河流域的年平均气温是在波动中逐渐上升的,且升温趋势明显,春季呈明显的升温趋势,夏季略有下降,秋季变化不大,冬季是气温上升最明显的季节;日降水量与径流量存在正相关关系,且日降水量与降水第二日的径流量相关显著。  相似文献   

8.
研究秦淮河流域气象水文要素变化特征及径流变化归因对该流域水旱灾害防御工作具有重要指导意义。利用秦淮河流域气象水文观测数据和遥感资料,采用β-z-h三参数综合指示法、联合突变检测法等分析该流域气象水文序列时空变化趋势、变异点和变异度,采用弹性系数法定量评估气候变化和人类活动对径流变化的贡献率。结果表明:(1)秦淮河流域年平均气温和年径流深呈显著增加趋势,且未来仍将保持显著增长趋势;年降水量和参考作物蒸散量呈不显著增加趋势,且未来仍将维持微弱上升;年平均相对湿度呈显著减少趋势,且未来仍将维持显著减少。年降水量未发生变异,年平均相对湿度在2004年发生巨变异,年平均气温在1994年发生强变异,年参考作物蒸散量在2003年发生中变异,年径流深在2002年发生弱变异。(2)基准期(1981—2002年)和变化期(2003—2019年)秦淮河流域径流深与降水量呈显著正相关,与参考作物蒸散量、下垫面指数呈负相关;变化期较基准期参考作物蒸散量和下垫面指数弹性系数增大,而降水量弹性系数减小,下垫面指数的变化对径流增加贡献量较大(91.20%),表明人类活动引起的下垫面变化是径流增加的主要因素,起正贡献作...  相似文献   

9.
利用第五次国际耦合模式比较计划(CMIP5)中5个气候模式在3种典型浓度路径(RCPs)下的预估结果驱动SWAT水文模型,预估了21世纪气候变化对长江上游年径流量、季节分配以及极端径流的影响。结果表明:预估的长江上游平均气温呈显著上升趋势,21世纪末较当前(1986—2005年)升高1.5~5.5℃,降水总体呈增加趋势,在21世纪30年代后高于当前气候平均值,21世纪末相对于当前增加5%~15%。流域内气候变化存在明显空间差异,金沙江和岷沱江流域气温升高和降水增加幅度均大于流域平均值。预估的长江上游年径流量及各月平均径流均有增加趋势,在21世纪30年代后高于当前多年平均值,21世纪中期增加4%~8%,21世纪末增加10%~15%。预估的径流年内分布的均匀性有所增加,但年际变化明显增大,极端旱涝事件的频率和强度明显增加。预估的各子流域径流变化对气候变化的响应也存在差异,金沙江和岷沱江流域年径流量、年际变化和年内分布变化小,对气候变化的响应表现为低敏感;嘉陵江流域、乌江流域和长江上游干流径流增加幅度大,同时极端丰枯出现的频率和程度增加显著,是气候变化响应的敏感区域。  相似文献   

10.
依据呼图壁河青年干渠渠首水文站1979—2005年径流量资料和呼图壁县气象站同期历史气候资料,统计分析了27a来呼图壁河径流的年内分布特征、多年变化规律以及呼图壁河流域气候变化对河流径流的影响。结果表明:径流量年内分配极不均匀,11月—3月几乎无径流产生,而4月—10月径流十分集中,水热同期的气候特点是形成呼图壁河径流年内分配不均的根本原因;径流量的年际变化较稳定,变差系数仅0.14;27a来呼图壁河年径流量表现出较明显的递增趋势,平均增加倾向率为0.157×108m3.10a-1;降水是影响河川径流的主要气候因素,27a来降水量呈增多趋势是导致呼图壁河年径流量递增的主要原因。气温升高,加快了冰川、积雪融水的产生,对增加和稳定径流也具有重要作用。  相似文献   

11.
根据内蒙古黄河流域内72个国家气象站观测的1961—2005年和区域气候模式CCLM模拟的1961—2100年的气温和降水数据,采用BP人工神经网络模型,预估分析3种RCP情景下头道拐水文站2011—2100年流量变化,评估未来气候变化对流域水资源的可能影响。结果表明:①2011—2100年内蒙古黄河流域气温升高,降水变化不明显,年平均流量呈减少趋势,RCP2.6、RCP4.5和RCP8.5情景分别减少3.6%、2.7%和23.4%。②未来春季流量以增加为主;夏季在不同情景的变化趋势不一致;秋季在21世纪50年代前以增加为主,之后以减少为主;冬季则以减少为主。③未来流域可利用水资源呈减少趋势,尤其夏季水资源的供需矛盾加剧,以及径流季节分配发生变化,可能产生更大的春季径流。  相似文献   

12.
使用NASA/NCAR有限区域大气环流模型FvGCM结果驱动高分辨率区域气候模式RegCM3 (20 km),进行1961~1990年当代气候模拟(控制试验)和2071~2100年IPCC A2排放情景下未来气候模拟(A2情景模拟试验)。将RegCM3径流模拟结果同大尺度汇流模型LRM [分辨率0.25°(纬度)×0.25°(经度)]相连接,模拟预估未来气候变化对我国黄河流域水文过程的影响。结果表明:相对于当代气候,未来黄河流域呈现气温升高、降水增加(夏季7~8月降水减少)和蒸发增大的趋势,且空间分布极不均匀,造成河川径流在5~10月减少,加剧流域夏季的水资源短缺;未来气温升高使得融雪径流增加,可能导致更早和更大的春季径流,使径流过程发生季节性迁移,引起黄河流域水资源年内分配发生变化。  相似文献   

13.
气候变暖将导致高山区冰冻圈加剧融化,一方面融水资源时空分布的不确定性增大;另一方面,融水洪水灾害发生的频度和强度也将发生改变。基于气象、水文数据和MODIS积雪覆盖数据,利用融雪径流模型(SRM),对1990—2012年共23年祁连山黑河札马什克控制区融雪期径流进行模拟与验证。结果表明:SRM在该流域具有较高的模拟精度(纳什系数为0.91),可用于分析和预估控制区径流强度变化。为此,采用黑河流域气温、降水降尺度数据,预估了未来气候变化背景下积雪范围变化及不同重现期洪水变化趋势。结果显示,与基准期相比,在RCP2.6、RCP4.5和RCP8.5情景下,最大积雪范围可减小3%~7%,且随着海拔升高,变化愈剧烈。RCP2.6情景下因气温和降水变化幅度较小,到21世纪末各重现期洪水强度保持在10%以内波动;RCP4.5情景下,各重现期洪水强度最高增大约20%;在RCP8.5情景下,各重现期洪水强度最高可增大超30%。相关分析结果显示,不同重现期洪水径流与气温和降水均具有较强相关性:重现期越长,洪峰与气温的相关性越大;重现期越短,洪峰与降水的相关性越大。通过预估气候变化背景下的融雪性洪水事件强度及重现期变化,有助于有效开展区域洪水风险管理、提高洪水资源的利用价值。  相似文献   

14.
未来气候变化对淮河流域径流的可能影响   总被引:6,自引:3,他引:3       下载免费PDF全文
采用新安江月分布式水文模型, 结合1961—2000年历史月气候资料和4个CGCMs的3个SRES排放情景下 (B1, A 2, A 1B) 未来降水和气温情景模拟结果, 对过去淮河流域的径流进行模拟检验并对未来2011—2040年的径流影响进行评估, 为水资源管理和规划提供依据。结果表明:水文模型能较好地反映年、月流量以及多年平均值和季节的变化; 年流量模拟一般好于月流量, 淮河干流主要控制水文站如王家坝、鲁台子、蚌埠的年流量模型效率系数均在80%以上; 多年平均值模拟效果好, 平均绝对相对误差为10%。多数CGCMs不同排放情景下气候模拟结果表明:未来2011—2040年, 淮河流域气候将趋于暖湿, 但年径流量将可能以减少趋势为主。这对淮河地区水资源的可持续发展以及东线调水工程水资源统一调配和管理提出了较大的挑战。淮河流域大部分区域2011—2040年月径流量减少将主要发生在1月和7—12月, 变化趋势较为确定; 4—6月, 径流量将以增加趋势为主, 不确定性较大; 2—3月, 径流具有增加趋势的地区多分布在淮河以北地区, 具有减少趋势的地区则多分布在淮河干流及以南地区和洪泽湖、平原区, 这些地区增加或减少趋势的不确定性较大。  相似文献   

15.
通过对1961—2010年中国540个气象站逐日降水观测数据和高精度区域气候模式CCLM(COSMO model in climate mode)3839个格点模拟值的对比,检验CCLM模式对中国日降水的模拟能力,揭示了1961—2010年日降水分布格局的变化特征;同时利用CCLM模式对中国地区2011—2050年的日降水预估值(SRES-A1B情景),运用概率统计和极值理论方法,分析了2011—2050年日降水序列及其极值的可能变化趋势。结果表明:除华南和青藏高原西部存在着较大的偏差以外,模式和观测日降水序列的峰度和偏度的分布格局较一致,空间相关系数达到0.75以上,CCLM能够很好地模拟中国日降水的分布特征。2011—2050年,峰度和偏度在江淮部分地区、东北与内蒙中东部等地区呈显著增加趋势,降水极端事件将会增多;最大日降水量和汛期最多无降水日数在上述地区的增加,进一步反映干旱和洪涝出现概率将升高。  相似文献   

16.
The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water resource planners must increasingly make future risk assessments. Though hydrological predictions associated with the global climate change are already being performed, mainly through the use of GCMs, coarse spatial resolutions and uncertain physical processes limit the representation of terrestrial water/energy interactions and the variability in such systems as the Asian monsoon. Despite numerous studies, the regional responses of hydrologic changes resulting from climate change remains inconclusive. In this paper, an attempt at dynamical downsealing of future hydrologic projection under global climate change in Asia is addressed. The authors conducted present and future Asian regional climate simulations which were nested in the results of Atmospheric General Circulation Model (AGCM) experiments. The regional climate model could capture the general simulated features of the AGCM. Also, some regional phenomena such as orographic precipitation, which did not appear in the outcome of the AGCM simulation, were successfully produced. Under global warming, the increase of water vapor associated with the warmed air temperature was projected. It was projected to bring more abundant water vapor to the southern portions of India and the Bay of Bengal, and to enhance precipitation especially over the mountainous regions, the western part of India and the southern edge of the Tibetan Plateau. As a result of the changes in the synoptic flow patterns and precipitation under global warming, the increases of annual mean precipitation and surface runoff were projected in many regions of Asia. However, both the positive and negative changes of seasonal surface runoff were projected in some regions which will increase the flood risk and cause a mismatch between water demand and water availability in the agricul  相似文献   

17.
Streamflow trends and climate linkages in the Zagros Mountains,Iran   总被引:1,自引:0,他引:1  
This paper examines trends in streamflow and their links with local climate in the Karkheh River and its major tributaries, which originate from the Zagros Mountains, Iran. Streamflow records from five mainstream stations for the period 1961–2001 were used to examine trends in a number of streamflow variables. The studied variables were mean annual and monthly flows, 1 and 7 days maximum and minimum flows, timing of the 1-day maxima and minima, and the number and duration of high and low flow pulses. Similarly, the precipitation and temperature data from seven climate stations for the period from 1950s to 2003 were used to examine trends in climatic variables and their correlation with the streamflow. The Spearman Rank test was used for the detection of trends and the correlation analysis was based on the Pearson method. The results reveal a number of significant trends in streamflow variables both increasing (e.g. December flows) and decreasing (e.g. May flows) for all stations. However, some trends were not spatially uniform. For example, decline in low flow characteristics were more significant in the upper parts of the basin, whereas increasing trends in floods and winter flows were noteworthy in the middle parts of the basin. Most of these trends could be attributed to precipitation changes. The results show that the decline in April and May precipitation causes the decline in the low flows while the increase in winter (particularly March) precipitation coupled with temperature changes lead to increase in the flood regime. The observed trends at the Jelogir station on the Karkheh River reflect the combined effect of the upstream catchments. The significant trends observed in a number of streamflow variables at Jelogir, 1-day maximum, December flow and low pulse count and duration, point to the changes in hydrological regime of the entire Karkheh River system and are attributed to the changes in climatic variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号