首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
位于帕米尔前缘逆冲推覆体(Pamir Front Thrust,PFT)东端的木什滑脱背斜,是帕米尔弧形推覆构造带最前缘和最新的变形带。对地形横剖面、纵剖面和水系发育特征的分析表明,木什背斜总体上具有由西向东扩展生长的特征。在背斜核部及北翼发育数级开阔平坦的沿轴向展布的河流阶地,阶地可划分为4期。利用阶地堆积细颗粒石英光释光测年获得阶地面T2a、T3和T4的形成年龄分别为(15.8±2.40)ka、(55.1±10.3)ka、(131.4±23.9)ka。伴随背斜的生长扩展,河流阶地面发生了横向和纵向掀斜,并形成断层陡坎和褶皱陡坎。木什背斜晚第四纪的缩短和隆升主要是通过褶皱翼旋转机制进行的,估算其最小缩短速率为(1.6±0.3)mm/a,最小隆升速率为(1.9±0.3)mm/a。与此同时,沿轴向背斜发生了向东的侧向迁移和旋转。根据背斜垂直隆升与侧向扩展之间的关系,估算背斜在131~16ka期间向东的侧向迁移扩展速率较快,为 (14.6±3.6)mm/a; 自16ka至今,侧向迁移扩展速率迅速减小至(1.7±0.3)mm/a,背斜向东的迁移扩展可能已基本停止,而以侧向旋转为主。  相似文献   

2.
焉耆盆地北缘和静逆断裂-褶皱带中晚第四纪变形速率   总被引:4,自引:4,他引:0  
焉耆盆地为南天山内部的一个山间盆地,盆地北缘发育1排第四纪新生褶皱带,即和静逆断裂-褶皱带。中晚第四纪以来,由于和静逆断裂-褶皱带的持续活动使得在褶皱生长过程中形成的多期洪积地貌面发生反向掀斜变形。利用高精度差分GPS,对褶皱带中部哈尔莫敦背斜区内的多期变形地貌面的地形形态进行了测绘,判定背斜的生长主要以翼旋转为主。利用背斜北翼不同地貌面的反向掀斜角度,分别计算了不同期次地貌面的隆升和缩短变形量。结合原地宇宙成因核素深度剖面法和光释光测年法,对背斜区内的F4,F3b,F2洪积台地面和T1阶地面的形成年龄进行了测定,发现背斜在距今约550ka、428.3+57.6-47.2ka和354.3+34.2-34.8ka不同时段的平均隆升速率从0.31±0.24mm/a下降至0.15±0.02mm/a,同时背斜北翼的翼旋转速度也呈逐渐减小的趋势。但背斜自起始变形开始,缩短速率却大致保持恒定为约0.3mm/a。而这一恒定的缩短速率与现今横跨和静逆断裂-褶皱带所观测的GPS速率具有很好的一致性,说明在天山内部的哈尔莫敦背斜区,短尺度的GPS速率可以代表长尺度的地壳应变速率,同时反映出山体内部一系列断层和褶皱构造在吸收和调节整体变形量时也起到一定的作用。  相似文献   

3.
祁连山作为青藏高原东北缘的重要造山带,是高原向NE方向扩展的最前缘,逆冲和褶皱作用是青藏高原向N扩展的重要构造变形方式。白杨河发育于祁连山内部,向N汇入前陆区酒西盆地。因此,可以通过白杨河阶地研究祁连山北缘的变形特征。通过对白杨河阶地的详细调查与测量,得到如下认识:1)白杨河阶地具有流域分段性,在地形陡变带及盆地内白杨河背斜区发育多级阶地。以阶地级数来说,以牛头山为界,上游发育2—3级阶地,下游发育4—5级阶地。2)从白杨河阶地纵剖面获得昌马断裂的垂直活动速率为(0.32±0.09)mm/a,地壳缩短速率为(0.12±0.09)mm/a;旱峡-大黄沟断裂T5形成以来(约13ka)没有垂直活动;老君庙背斜区T5阶地(约9ka)褶皱变形隆升量为(6.55±0.5)m,缩短量为(3.47±0.5)m,隆升速率为(1.23±0.81)mm/a,缩短速率为(0.67±0.44)mm/a;白杨河背斜开始活动时期约为300kaBP,其170ka以来的平均隆升速率约(0.21±0.02)mm/a,缩短速率为(0.14±0.03)mm/a;3)北祁连山地区在响应青藏高原向N扩展的过程中表现出2种不同的变形特征:在祁连山内部以剪切变形为主,表现为块体侧向挤出;而在祁连山北缘地形陡变带和酒西盆地内部以挤压变形为主,表现为地壳缩短和隆起,并且盆地内构造缩短变形量占总变形量的50%左右。  相似文献   

4.
西南天山明尧勒背斜的第四纪滑脱褶皱作用   总被引:3,自引:1,他引:3       下载免费PDF全文
通过对明尧勒活动背斜喀浪勾律克河剖面生长前地层和翼部生长地层几何结构的填图以及变形河流阶地的系统测量,结合磁性地层及释光年代学研究,认为该背斜的滑脱褶皱作用起始于距今约1·6Ma,其总体几何结构形成于褶皱作用的早期,但其生长扩展并不完全遵从自相似性特征。持续的缩短作用部分被褶皱翼部陡倾膝折带的加长所吸收(由此导致背斜波幅的增加),另一部分可能是通过不同时期褶皱翼部不同膝折带组的旋转和迁移来实现的。明尧勒背斜的持续构造抬升是背斜区河流下切形成多级基座阶地的主因。晚第四纪褶皱的生长以背斜的垂直抬升为主,主要集中在北翼近核部,背斜宽度变化不大。背斜不同时期的抬升量和抬升速率均大于其缩短量和缩短速率,表明明尧勒背斜的变形以翼旋转为主(Pobletet al.,1996)。背斜自形成以来缩短速率和抬升速率均有减小的趋势  相似文献   

5.
与生长地层类似,在活动褶皱生长发育过程中形成的河流阶地堆积、阶地面与褶皱陡坎记录了褶皱发育的详细过程,其基本几何结构主要受控于下伏褶皱生长的机制与类型。文中讨论了简单膝折带迁移(恒定翼间角)生长断弯褶皱与断展褶皱、翼旋转(恒定翼长)滑脱褶皱、膝折带迁移滑脱褶皱、膝折带迁移-翼旋转联合作用以及弧形弯曲枢纽膝折带迁移褶皱作用下河流阶地的几何结构以及阶地面与下伏基座岩层间的角度关系,提出了这几类褶皱生长与河流阶地相互关系的运动学模型,同时考虑了河流加积和下切侵蚀作用对河流阶地最终几何结构的影响。在这些模型中,变形河流阶地和褶皱陡坎的基本几何结构既具有相似之处,也有截然不同之处。因此,通过对河流阶地和褶皱陡坎的细致填图、测量和测年,不仅可推断其下伏活动褶皱的生长变形机制,而且可以估算褶皱的隆升速率和控制褶皱生长的断层的滑动速率  相似文献   

6.
研究天山地区活动逆冲断裂、褶皱对于认识整个天山再生造山带的隆升和地震危险性评估具有重要意义。以天山北麓博乐盆地南缘库松木楔克断裂东段勒塔干褶皱为研究对象,通过无人机航拍提取高精度DEM和野外实地调查结果,将勒塔干背斜东部迪里克河附近的洪积扇分为5期,从新到老分别为T1、T2、T3、T4、T5。其中,T4洪积扇完整记录了褶皱的变形历史,其后翼褶皱陡坎高度为(8.1±0.6)m。自T4洪积扇废弃以来,勒塔干断层的滑移量为(33.0±2.6)m。T3洪积扇仅发育在迪里克河出水口处,即勒塔干背斜北侧,(16.9±0.2)m的断层陡坎高度揭示了自T3洪积扇废弃以来,控制背斜形成的逆断层发生了21.4~21.7 m的滑动。通过与相邻地区洪积扇期次进行对比,认为T4洪积扇的废弃年龄为(74.01±6.14)ka,勒塔干背斜下断坡晚第四纪滑动速率为(0.45±0.05)mm/a,勒塔干褶皱晚第四纪地壳缩短速率为(0.37±0.04)mm/a。  相似文献   

7.
天山山脉位于中国西部,南北两侧分别与塔里木盆地和准噶尔盆地相邻.在天山山脉北麓,由于持续的冲断和褶皱作用,形成了一系列走向东西近平行排列的活动背斜构造.地质观测表明,这些背斜在平均到大致1 Ma时间上的水平缩短速率在2.1~5.5mm/a,但平均到大致(10±2)ka以来的水平缩短速率仅为(1.25±0.5)mm/a.在时间上,发生天山山脉北麓冲断-褶皱速率下降与末次冰期以来大量冰消融的时间基本一致.为了探讨这些活动背斜在不同时间窗口内水平缩短速率变化的机制,本文建立了一个二维粘-弹-塑性有限元模型.模型考虑了天山山脉水平挤压和地表沉积-剥蚀相互耦合作用.模拟结果显示,在恒定的水平推挤速度下,当地表沉积-剥蚀作用相对较弱时,天山山脉地壳的缩短主要被其北麓的断层相关褶皱吸收,其缩短速率与平均到大致1 Ma时间尺度上这些背斜的水平缩短速率基本一致;然而,随着地表沉积-剥蚀作用不断加强,仍然在相同的水平速率推挤下,天山山脉地壳的缩短却不断向山体内部转移,导致天山北麓的断层相关褶皱水平缩短速率减小,并与平均到大致(10±2)ka以来的水平缩短速率相近.这表明在大陆内部活动构造带,地表的沉积-剥蚀作用对应变在不同构造带的调配起着重要的动力学作用.就天山山脉而言,如果业已存在的天山腹地及其前陆变形带在末次冰消期的气候变化可以用地表沉积-剥蚀作用的强化来代表,那么在平均到大致1 Ma和(10±2)ka时间尺度上,天山山脉北麓观测到的地壳缩短变化可能与气候变化所控制的沉积-剥蚀地表过程有关.  相似文献   

8.
焉耆盆地北缘和静逆断裂-褶皱带第四纪变形   总被引:5,自引:5,他引:0       下载免费PDF全文
焉耆盆地是塔里木盆地东北缘天山山间的重要坳陷区,盆地北缘发育的和静逆断裂-褶皱带是一条现今活动强烈的逆断裂-褶皱带,对其第四纪以来缩短量和隆升量的计算有利于分析该区域的构造活动情况,对缩短速率和隆升速率的估计可以与天山造山带其他区域的活动速率进行横向对比,从而反映出焉耆盆地在天山晚新生代构造变形的作用。在深部资料不足的情况下,对背斜形态完整、构造样式简单的和静逆断裂-褶皱带,利用地表可获得的地层和断层产状,通过恢复褶皱几何形态,计算褶皱的缩短量、隆升量和断层滑动量,得到逆断裂-褶皱带早更新世晚期(1.8Ma)、中更新世(780ka)和晚更新世中期(80ka)以来的缩短量分别为1.79km、0.88km和26m,初步估计的缩短速率分别为0.99mm/a、1.13mm/a和0.33mm/a。显示和静逆断裂-褶皱带自开始形成以来构造活动强度并不一致。与地壳形变观测结果对比,作为南天山东段最主要的坳陷区,焉耆盆地吸收了这一区域(86°~88°E)的大部分地壳缩短,且主要表现为盆地北缘新生逆断裂-褶皱带的强烈变形。  相似文献   

9.
库木库里盆地位于青藏高原北缘,与柴达木盆地一山之隔,是二者的过渡地带,也是高原主体部分向NE扩展的前缘地区;现今构造表现为被3条大型活动构造带(走滑的阿尔金断裂带、东昆仑断裂带和逆冲的祁漫塔格褶皱逆冲系)所夹持。因此,该盆地对于研究青藏高原北缘的构造活动性、活动历史,探讨高原的扩展模式具有十分重要的意义。虽然库木库里盆地南、北两侧均发育活动性很强的大型走滑断裂,但是在盆地中央发育1条大型背斜,走向NWW-SEE,与祁漫塔格褶皱逆冲系和柴达木盆地内的褶皱构造走向一致,说明盆地目前遭受NNE向的挤压。通过对盆地地形横、纵剖面和阶地展布形态的分析,得出背斜有自西向东扩展变形的特征;野外调查和测年结果显示,背斜东段冰川融水形成了大型冰水扇,形成年龄为(87.09±2.31)~(102.4±3.7)ka,进而获得背斜东段自晚更新世以来平均隆升速率的最大值为(2.78±0.28)~(3.28±0.28)mm/a。库木库里盆地整体的活动性很强,在构造上与其北边的柴达木盆地类似,都受控于阿尔金断裂南侧的NNE向的区域挤压作用。  相似文献   

10.
日月山断裂德州段晚更新世以来的活动速率研究   总被引:1,自引:1,他引:0  
日月山断裂位于柴达木-祁连活动块体内部,受到东昆仑断裂和祁连-海原断裂等主边界断裂控制,形成了块体内部夹持于主边界断裂之间的次级构造。该断裂的构造位置特殊,确定其晚更新世以来的活动速率可提供青藏高原东北缘向外扩展的最新活动信息。文中通过建立地貌面时间标尺,分析断错的地貌标志,获得了以下2点认识:1)晚更新世以来,日月山断裂德州段主要发育一级洪积扇面fp,三级河流阶地面T1、T2和T3。其中洪积扇fp的废弃年龄约(21.2±0.6)ka,河流阶地T2的废弃年龄约(12.4±0.11)ka;2)日月山断裂晚更新世晚期以来的右旋走滑速率约(2.41±0.25)mm/a,全新世以来的右旋走滑速率约(2.18±0.40)mm/a,垂直滑动速率约(0.24±0.16)mm/a。日月山断裂德州段的右旋走滑速率在晚更新世晚期以来基本不变。日月山断裂并未切错大型块体的边界,而是青藏高原东北缘地区夹持于区域大型左旋走滑断裂内部的1套右旋走滑断裂中的1支。在青藏高原东北缘整体生长和扩展的过程中,右旋走滑断裂对各次级块体之间的变形协调起着十分重要的调节作用。  相似文献   

11.
12.
A procedure for short-term rainfall forecasting in real-time is developed and a study of the role of sampling on forecast ability is conducted. Ground level rainfall fields are forecasted using a stochastic space-time rainfall model in state-space form. Updating of the rainfall field in real-time is accomplished using a distributed parameter Kalman filter to optimally combine measurement information and forecast model estimates. The influence of sampling density on forecast accuracy is evaluated using a series of a simulated rainfall events generated with the same stochastic rainfall model. Sampling was conducted at five different network spatial densities. The results quantify the influence of sampling network density on real-time rainfall field forecasting. Statistical analyses of the rainfall field residuals illustrate improvement in one hour lead time forecasts at higher measurement densities.  相似文献   

13.
14.
正This journal is established by the Institute of Engineering Mechanics(IEM),China Earthquake Administration,to promote scientific exchange between Chinese and foreign scientists and engineers so as to improve the theory and practice of earthquake hazards mitigation,preparedness,and recovery.To accomplish this purpose,the journal aims to attract a balanced number of papers between Chinese and  相似文献   

15.
Water quality analyses for the Niger River for the 1980/81 hydrological year are presented. The samples were collected from the main river at Lokoja, and from two main tributaries, the Kaduna and the Benue Rivers. Different water types were distinguished by the concentrations of major ions. The type Ca > Na > Mg > K - HCO3 > SO4 > Cl was represented at all stations during at least part of the year. Chloride was found to dominate the sulphate ion in the Kaduna and Niger, while the Benue maintained a higher concentration of sulphate relative to chloride all year round. Distinct patterns of seasonal variation in the ion concentrations were observed, particularly for the samples collected at Lokoja. Low ion concentrations were prominent during periods of high discharge, while low flow periods coincided with high dissolved ion concentrations. The contribution of rainwater to the total dissolved solids in the river waters was assessed indirectly using rainwater chemistry data from the Gulf of Guinea. The estimated rainwater contribution to the Lower Niger amounts to 5.15 mg 1?1. Geochemical weathering calculations involving reactions of the four major minerals of granitic rocks - anorthite, biotite, albite, and K-feldspar - with carbon dioxide and water, can account for the average water composition of the Lower Niger. The proportion of the ionic components was also related to the occurrence of the respective element in the minerals.  相似文献   

16.
Historical earthquakes noted in the written records of the South China region, including Hong Kong, are not well delineated along identified prominent fault sources. Despite the lack of any definitive, localised trend in the spatial distribution of seismic activity in the region, there does appear to be some major disparity in the seismic activity rates (especially for large magnitude earthquakes) between the near-field and the far-field regions of Hong Kong. Despite this observation, previous studies of the regional seismic activity and seismic ground motion hazard (the latter using a probabilistic seismic hazard assessment, PSHA) have considered very broad source zone regions, in which uniform levels of seismic activity have been assumed. The present paper further scrutinises this broad source zone (BSZ) approach by adopting a novel expanding circular disc (ECD) method to determine the rates of earthquake recurrence. Such a method is intended to counter-check previously developed models by determining earthquake scenario events in terms of magnitude–distance (M–R) pairs or combinations, having defined values of average return period. Unlike the BSZ approach, the ECD method specifically accounts for the supposed variations in the seismic activity rates between events in the near-field and the far-field of Hong Kong.The form of the developed method is particularly suited to the determination of design-level earthquake ground motions for bedrock sites, since it assumes a directionally-independent attenuation model as described in the companion paper. It is found that, whilst the BSZ approach may indicate the overall average levels of hazard that are representative of the South China region as a whole, it does not capture the large disparity in seismic activity rates between near-field and far-field events. This important feature is expected to have a significant impact upon engineering assessments of the seismic safety of structures in Hong Kong and elsewhere in the South China region. For example, it is found that for events with M≥6, the seismic activity rate (normalised by time and area) in the very far-field is around 3.5 times larger than in the near-field and medium-field of Hong Kong. The resulting design M-R combinations, covering a range of return periods from 70 to 2500 years, are limited, for very long return periods and for distant events, by the maximum credible earthquake (MCE) magnitude. Intensive research to determine this seismic hazard parameter is recommended, in order to refine further the results of the ECD analysis, which presently conservatively assumes the MCE to range between M=6 in the near-field of Hong Kong to M=8 in the very far-field, at distances greater than 280 km from Hong Kong.  相似文献   

17.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   

18.
ABSTRACT

The one-dimensional transient downward entry of water in unsaturated soils is investigated theoretically. The mathematical equation describing the infiltration process is derived by combining Darcy's dynamic equation of motion with the continuity and thermodynamic state equations adjusted for the unsaturated flow conditions. The resulting equation together with the corresponding initial and boundary conditions constitues a mathematical initial boundary value problem requiring the solution of a nonlinear partial differential equation of the parabolic type. The volumetric water content is taken as the dependent variable and the time and the position along the vertical direction are taken as the independent variables. The governing equation is of such nature that a solution exists for t > 0 and is uniquely determined if two relationships are defined, together with the specified state of the system, at the initial time t = 0 and at the two boundaries. The two required relations are those of pressure versus permeability and pressure versus volumetric water content.

Since the partial differential equation has strong non-linear terms, a discrete solution is obtained by approximating the derivatives with finite-differences at discrete mesh points in the solution domain and integrated for the corresponding initial and boundary conditions. The use of an implicit difference scheme is employed in order to generate a system of simultaneous non-linear equations that has to be solved for each time increment. For n mesh points the two boundary conditions provide two equations and the repetition of the recurrence formula provides n—2 equations, the total being n equations for each time increment. The solution of the system is obtained by matrix inversion and particularly with a back-substitution technique. The FORTRAN statements used for obtaining the solution with an electronic digital computer (IBM 704) are presented together with the input data.

Analysis of the errors involved in the numerical solution is made and the stability and convergence of the solution of the approximate difference equation to that of the differential equation is investigated. The method applied is that of making a Fourier series expansion of a whole line of errors and then following the progress of the general term of the series expansion and also the behavior of each constituent harmonic. The errors (forming a continuous function of points in an abstract Banach space) are represented by vectors with the Fourier coefficients constituting a second Banach space. The amplification factor of the difference equation is shown to be always less than unity which guarantees the stability of the employed implicit recurrence scheme.

Experiments conducted on a vertical column packed uniformly with very fine sand, show a satisfactory agreement between the theoretically and experimentally obtained values. Many experimental results are shown in an attempt to explain the infiltration phenomenon with emphasis on the shape and movement of the wet front, and the effects of the degree of compaction, initial water content and deaired water on the infiltration rate.  相似文献   

19.
20.
GHODRAT TORABI 《Island Arc》2012,21(3):215-229
Late Permian trondhjemites in the Anarak area occur as stocks and dykes, which cross cut the Anarak ophiolite and its overlying metasedimentary rocks, and are exposed along the northern Anarak east–west main faults. These leucocratic intrusive bodies have enclaves of all ophiolitic units and metamorphic rocks. They are composed of amphibole, plagioclase (oligoclase), quartz, zircon and muscovite. Secondary minerals are chlorite (pycnochlorite), epidote, albite, magnetite and calcite. Whole‐rock major‐ and trace‐element analyses reveal that they are characterized by high SiO 2 (67.8–71.0 wt%), Al 2 O 3 (14.9–17.1 wt%) and Na 2 O (5.3–8.6 wt%), low K 2 O (0.1–1.5 wt%; average: 0.8 wt%), low Rb/Sr ratio (0.01–0.40; average: 0.09), low Y (3–6 ppm), negative Ti, Nb and Ta anomalies, slightly negative or positive Eu anomaly, LREE enrichment and fractionated HREE. These rocks present 2 to 40 times enrichment in inclined chondrite‐normalized REE patterns. Geochemical characteristics of the Anarak trondhjemites all reflect melting of a mafic protolith at more than 10 kbar. The field evidence and whole‐rock chemistry reveal that these rocks have been crystallized from magmas derived from melting of subducted Anarak oceanic crust. This study reveals that melting of garnet amphibolite was an important element of continent formation in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号