首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Freely propagating surface gravity waves are observed to slow down and to stop at a beach when the bottom has a relatively gentle upward slope toward the shore and the frequency range of the waves covers the most energetic wind waves (sea and swell). Essentially no wave reflection can be seen and the measured reflected energy is very small compared to that transmitted shoreward. One consequence of this is that the flux of the wave’s linear momentum decreases in the direction of wave propagation, which is equivalent to a time rate of change of the momentum. It takes a force to cause the time rate of change of the momentum. Therefore, the bottom exerts a force on the waves in order to decrease the momentum flux. By Newton’s third law (action equals reaction) the waves then impart an equal but opposite force to the bottom. In shallow (but finite) water depths the wave force per unit bottom area is calculated, for normal angle of incidence to the beach, to be directly proportional to the square of the wave amplitude and to the bottom slope and inversely proportional to the mean depth; it is independent of the wave frequency. Constants of proportionality are: 1/4, the fluid density and the acceleration of gravity. Swell attenuation near coasts and some characteristics of sand movement in the near-shore region are not inconsistent with the algebraic structure of the wave force formula. Since the force has a depth variation which is significantly faster than that of the dimensions of the particle orbits in the vertical direction, the bottom induces a torque on the fluid particles that decreases the angular momentum flux of the waves. By an extension of Newton’s third law, the waves also exert an equal but opposite torque on the bottom. And because the bottom force on the waves exists over a horizontal distance, it does work on the waves and decreases their energy flux. Thus, theoretically, the fluxes of energy, angular and linear momentum are not conserved for shoaling surface gravity waves. Mass flux, associated with the Stokes drift, is assumed to be conserved, and the wave frequency is constant for a steady medium.  相似文献   

2.
In a recent paper, Kenyon (2004) proposed that the wave-induced energy flux is generally not conserved, and that shoaling waves cause a mean force and torque on the bottom. That force was equated to the divergence of the wave momentum flux estimated from the assumption that the wave-induced mass flux is conserved. This assumption and conclusions are contrary to a wide body of observations and theory. Most importantly, waves propagate in water, so that the momentum balance generally involves the mean water flow. Although the expression for the non-hydrostatic bottom force given by Kenyon is not supported by observations, a consistent review of existing theory shows that a smaller mean wave-induced force must be present in cases with bottom friction or wave reflection. That force exactly balances the change in wave momentum flux due to bottom friction and the exchange of wave momentum between incident and reflected wave components. The remainder of the wave momentum flux divergence, due to shoaling or wave breaking, is compensated by the mean flow, with a balance involving hydrostatic pressure forces that arise from a change in mean surface elevation that is very well verified by observations.  相似文献   

3.
The effects of the gravity torques acting on the angular momentum of surface gravity waves are calculated theoretically. For short crested waves the gravity torque is caused by the force of gravity on the orbiting fluid particles acting down the slopes of the crests and troughs and in the direction parallel to the crests and troughs. The gravity torque tries to rotate the angular momentum vectors, and thus the waves themselves, counterclockwise in the horizontal plane, as viewed from above, in both hemispheres. The amount of rotation per unit time is computed to be significant assuming reasonable values for the along-crest and trough slopes for waves in a storm area. The gravity torque has a frequency which is double the frequency of the waves. For long crested waves the gravity torque acts in the vertical plane of the orbit and tries to decelerate the particles when they rise and accelerate them when they fall. By disrupting the horizontal cyclostrophic balance of forces on the fluid particles (centrifugal force versus pressure force) the gravity torque accounts qualitatively for the three characteristics of breaking waves: that they break at the surface, that they break at the crest, and that the crest breaks in the direction of wave propagation.  相似文献   

4.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

5.
李诚  张弛  隋倜倜 《海洋学报》2016,38(5):141-149
建立了同时考虑波致雷诺应力和时均水平压强梯度影响的二阶波浪边界层数学模型,模型计算得到的浅化波浪层流边界层内瞬时流速剖面、振荡速度幅值和时均流速剖面均与水槽实验数据吻合较好,在此基础上探讨了浅化波浪边界层流速分布特性及其影响机制。随着波浪的浅化变形,边界层内时均流速剖面"底部向岸、上部离岸"的变化特征越来越明显。这是二阶对流项引起的波致雷诺应力和离岸回流引起的时均水平压强梯度共同作用的结果,在床面附近由波致雷诺应力占主导作用并趋于引起向岸流动,在上部区域由时均水平压强梯度占主导作用并趋于引起离岸流动。  相似文献   

6.
《Coastal Engineering》2006,53(7):545-555
In the paper, the three-dimensional structure of the wave-induced momentum flux in irrotational waves propagating over a two-dimensional, irregular bathymetry is analyzed. The expansion method developed by de Vriend and Kitou [de Vriend, H.J., Kitou, N., 1990a. Incorporation of wave effects in a 3D hydrostatic mean current model. Delft Hydraulics Report H-1295. de Vriend, H.J., Kitou, N., 1990b. Incorporation of wave effects in a 3D hydrostatic mean current model. Proc. 22nd Int. Coast. Eng. Conf. ASCE, 1005–1018.] for unidirectional waves has been extended to derive expressions for velocity components in three-dimensional waves over sloping bottom. The vertical wave-induced momentum flux resulting from this solution has been shown to be vertically-varying (contrary to the 2D-V case) and to act as a counterbalance for the vertical variability of the other wave forcing terms in the momentum equations. Thus, the total wave forcing remains depth-invariant, but—contrary to the ‘traditional’ solution based on the radiation stress concept—it does not depend explicitly on the direction of wave propagation and is a simple function of gradients of wave energy and water depth only. One of the most important consequences of this fact is the lack of the longshore-current-generating force in the case of non-dissipative waves approaching a shore with a bottom profile uniform in the along-shore direction. To illustrate the meaning of the new solution, the wave forcing due to waves approaching a barred beach has been analysed in detail. Also, the present solution has been shown to give the same results as the one obtained by extending of the approach by Rivero and Arcilla [Rivero, F.J., Arcilla, A.S., 1995. On the vertical distribution of 〈ũw˜〉. Coast. Eng. 25, 137–152.] to three dimensions.  相似文献   

7.
《Ocean Modelling》2008,20(1):35-60
The generalized Langrangian mean theory provides exact equations for general wave–turbulence–mean flow interactions in three dimensions. For practical applications, these equations must be closed by specifying the wave forcing terms. Here an approximate closure is obtained under the hypotheses of small surface slope, weak horizontal gradients of the water depth and mean current, and weak curvature of the mean current profile. These assumptions yield analytical expressions for the mean momentum and pressure forcing terms that can be expressed in terms of the wave spectrum. A vertical change of coordinate is then applied to obtain glm2z-RANS equations with non-divergent mass transport in cartesian coordinates. To lowest order, agreement is found with Eulerian mean theories, and the present approximation provides an explicit extension of known wave-averaged equations to short-scale variations of the wave field, and vertically varying currents only limited to weak or localized profile curvatures. Further, the underlying exact equations provide a natural framework for extensions to finite wave amplitudes and any realistic situation. The accuracy of the approximations is discussed using comparisons with exact numerical solutions for linear waves over arbitrary bottom slopes, for which the equations are still exact when properly accounting for partial standing waves. For finite amplitude waves it is found that the approximate solutions are probably accurate for ocean mixed layer modelling and shoaling waves, provided that an adequate turbulent closure is designed. However, for surf zone applications the approximations are expected to give only qualitative results due to the large influence of wave nonlinearity on the vertical profiles of wave forcing terms.  相似文献   

8.
Energy properties and shoaling of higher-order stokes waves on a current   总被引:1,自引:0,他引:1  
The energy density, the energy flux, the set-down, the radiation stress, and some wave energy velocities have been derived correct to fourth order in wave steepness for waves on a vorticity-free current. The energy flux and the set-down have been used for shoaling predictions for finite amplitude waves with and without a net volume flux. The results with a zero volume flux are compared with more accurate shoaling predictions showing rather good accordance, except for large steepnesses. This also applies to the deep water wave energy transport velocity. The results with a net volume flux show that the steepness of the waves reduces the influence of this flux on the wave evolution. Some problems in connection with the orders in Stokes waves are discussed, among others concerning the dispersion relation and the orders of integral properties. Bed shear and accompanying dissipation is neglected.  相似文献   

9.
海气动量通量研究综述   总被引:1,自引:0,他引:1  
冯兴如  李水清  尹宝树 《海洋科学》2018,42(10):103-109
海气界面动量通量也称为风应力,是海流和表面海浪的主要驱动力,是海洋从大气获得动量的重要途径。因此,合理可靠的海洋表面风应力的参数化对于海洋、大气和波浪以及气候模式的准确预报都具有非常重要的科学意义和实用价值。对风应力拖曳系数的参数化是风应力参数化的主要内容。近来的观测发现,风应力拖曳系数随着风速的增加出现了先增后减的趋势,同时还与海面的波浪状态以及海流有关。基于观测或理论分析,目前已经得到了一系列的风应力拖曳系数计算方法或公式,有的考虑了海浪的作用,有的没有,但这些方案大都是适合中低风速,在高风速下的适用性还有待检验。本文回顾了目前在海气动量通量观测和参数化方面的研究进展,并建议应增加高风速下风速、海流以及海浪等的同步观测,以进一步完善风应力参数化方案。  相似文献   

10.
底部切应力作为水动力和泥沙输移模型中的关键参数,对底床泥沙起动、侵蚀淤积速率的研究十分重要.目前基于现场实测流速数据计算底部切应力的理论方法有6种:LP-mean法、LP-max法、TKE法、TKE W法、RS法和ID法,这些方法都有其特定的适用条件.河口海岸浅水区域水流和波浪作用复杂,遴选合适的方法计算底部切应力非常...  相似文献   

11.
The horizontal exchange of momentum due to the organized motion in combined waves and current has been analyzed. The combination of the vertical orbital wave motion and the mean current gives a periodic variation in the horizontal velocity in addition to the wave orbital motion. This periodic variation, combined with the wave orbital motion, gives a significant contribution to the momentum exchange. Two examples are considered, the interaction of a pure wave motion and a current normal to the direction of wave propagation, and a wave driven longshore current with an undertow velocity profile. It is demonstrated that the new contribution changes the resulting momentum exchange considerably.  相似文献   

12.
《Coastal Engineering》2006,53(4):311-318
The extended mild-slope equations of Suh et al. [Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Eng., 32, 91–117] and Lee et al. [Lee, C., Kim, G., Suh, K.D., 2003. Extended mild-slope equation for random waves. Coastal Eng., 48, 277–287] are compared analytically and numerically to determine their applicability to random wave transformation. The geometric optics approach is used to compare the two models analytically. In the model of Suh et al., the wave number of the component wave with a local angular frequency ω is approximated with an accuracy of O(ω  ω¯) at a constant water depth, where ω¯ is the carrier frequency of random waves. In the model of Suh et al., however, the diffraction effects and higher-order bottom effects are considered only for monochromatic waves, and the shoaling coefficient of random waves is not accurately approximated. This inaccuracy arises because the model of Suh et al. was derived for regular waves. In the model of Lee et al., all the parameters of random waves such as wave number, shoaling coefficient, diffraction effects, and higher-order bottom effects are approximated with an accuracy of O(ω  ω¯). This approximation is because the model of Lee et al. was developed using the Taylor series expansion technique for random waves. The result of dispersion relation analysis suggests the use of the peak and weighted-average frequencies as a carrier frequency for Suh et al. and Lee et al. models, respectively. All the analytical results are verified by numerical experiments of shoaling of random waves over a slightly inclined bed and diffraction of random waves through a breakwater gap on a flat bottom.  相似文献   

13.
A modified Boussinesq-type model is derived to account for the propagation of either regular or irregular waves in two horizontal dimensions. An improvement of the dispersion and shoaling characteristics of the model is obtained by optimizing the coefficients of each term in the momentum equation, expanding in this way its applicability in very deep waters and thus overcoming a shortcoming of most models of the same type. The values of the coefficients are obtained by an inverse method in such a way as to satisfy exactly the dispersion relation in terms of both first and second-order analyses matching in parallel the associated shoaling gradient. Furthermore a physically more sound way to approach the evaluation of wave number in irregular wave fields is proposed. A modification of the wave generator boundary condition is also introduced in order to correctly simulate the phase celerity of each input wave component. The modified model is applied to simulate the propagation of breaking and non-breaking, regular and irregular, long and short crested waves in both one and two horizontal dimensions, in a variety of bottom profiles, such as of constant depth, mild slope, and in the presence of submerged obstacles. The simulations are compared with experimental data and analytical results, indicating very good agreement in most cases.  相似文献   

14.
童思友  廖仪  陈亮  吴志强 《海洋科学》2016,40(2):145-150
为研究海洋环境信号在OBS(Ocean Bottom Seismograph)原始数据中的规律及应用,根据OBS原始数据的波形及频谱特征,将研究区划分为5个时间段,依次为旧涌浪阶段、风浪渐强阶段、风浪全盛阶段、风浪消退阶段和新涌浪阶段。结合海洋天气预报,认为上述现象是由偏南风风浪对海流的影响造成的。参考野外地震数据采集记录班报,得到各阶段的时长和距离,计算风浪渐强、全盛和消退阶段OBS附近海流的平均速度。结果表明:OBS原始资料中浅海海洋环境噪音增强的主要因素是风浪,且风浪引起的噪音信号的波形变化特征是渐进式的;OBS可用于接收某种特殊阶段(如台风、海啸等)的噪音信号,并根据噪音信号的波形特征、频谱变化规律和持续时间估算该阶段的海流速度变化。  相似文献   

15.
An analytic-numerical solution of wave transformation in shoaling water is presented in this paper. The analytical expression for wave heights along the wave rays is derived in consideration of the combined effect of water depth shoaling, the wave refraction and the sea bottom friction. The wave rays (orthogonals) are calculated by a fourth order Runge-Kutta algorithm and the wave crest lines are computed by an iteration procedure. The numerical results are compared with analytical solution for a special case of parallel- straight contour shore and field data, and comparisons show that the proposed mathematical model and computation method are very useful and convenient for engineering application.  相似文献   

16.
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.  相似文献   

17.
黄河三角洲海底土波致再悬浮研究   总被引:1,自引:1,他引:0  
在现代黄河三角洲采集土样,制备室内水槽试验的底床,施加波浪作用,观测波致悬沙含量的变化规律,分析不同波高、作用时间对单位面积底床再悬浮量的影响,及波浪停止作用后悬浮泥沙的静水沉降规律。研究发现,在水深一定条件下底床再悬浮量呈现随波高增大而增大的特性,两者线性拟合的相关性很好;在一定波高的波浪连续作用下,约5 000~6 000个波周期底床再悬浮过程完成;在波浪作用初始阶段底层悬沙含量与中上层的相差很大,悬沙含量垂线结构呈斜线型,稳定阶段的悬沙浓度垂向结构呈准直线型,底层与表层含沙量比值为0.98~1.25,整个水层含量分布均匀;静水沉降过程中当悬沙含量大于1 g/dm3,悬沙含量(SSC)呈现出随时间指数衰减的规律,悬沙浓度与沉降通量呈线性关系。研究结果对认识黄河水下三角洲泥沙运移规律具有一定的科学意义。  相似文献   

18.
《Coastal Engineering》2006,53(2-3):149-156
Wave setup can contribute significantly to elevated water levels during severe storms. In Florida we have found that wave setup can be 30% to 60% of the total 100-year storm surge. In areas with relatively narrow continental shelves, such as many locations along the Pacific Coast of the United States, wave setup can be an even larger proportionate contributor of anomalous water levels during major storms. Wave setup can be considered as comprising two components, with the first being the well-known static wave setup resulting from the transfer of breaking wave momentum to the water column. The second, oscillating component, is a result of nonlinear transfer of energy and momentum from the primary (linear) spectrum to waves with length and time scales on the order of the wave groups.Static wave setup is the focus of this paper with emphasis on effects due to internal or surface forces that act on the wave system and cause both dissipation of wave energy and transfer of momentum. In particular, the effects of wave damping by vegetation and bottom friction are considered. Linear wave theory is applied to illustrate these effects and, for shallow water waves, the setup is reduced by two-thirds the amount that would occur if the same amount of energy dissipation occurred in the absence of forces. Effects of nonlinear waves are then considered and it is found, for a shallow water wave of approximately one-half breaking height, that a wave setdown rather than setup occurs due to damping by vegetation and bottom friction.The problem of wave setup as waves propagate through vegetation was stimulated by studies to establish hazard zones associated with 100-year storm events along the shorelines of the United States. These storms can generate elevated water levels exceeding 4 to 6 m and can result in overland wave propagation. As these waves propagate through vegetation and damp, the question arose as to the contribution of this process to elevated mean water levels through additional wave setup.  相似文献   

19.
Estimation of the wave height transformation of shoaling and breaking is essential for the nearshore hydrodynamics and the design of coastal structures. Many empirical formulas have been well recognized to the wave height transformation, but most of them were only applicable for gentle slopes. This paper reports the experimental results of wave shoaling and breaking over the steep slopes to examine the applicability of the previous empirical formulas. Two steep bottom slopes of 1/3 and 1/5, and one gentle slope of 1/10 were conducted in the present experiments. Experimental results show that the shoaling distance of steep slopes become short and the surface waves may be partially reflected from the steep bottom, thus the estimation of wave shoaling using the well-known previous formula did not conform completely to the experimental results. The previous empirical formulas for the wave breaking criteria were also examined, and the modified equations to the steep beaches were proposed in this work. A numerical model was finally adopted to calculate the wave height transformation in the surf zone by introducing the modified breaking index.  相似文献   

20.
Jonsson and Arneborg (Jonsson, I.G., Arneborg, L., 1995. Energy properties and shoaling of higher-order Stokes waves on a current. Ocean Engng 22, 819-857.) combined energy flux and set-down to make shoaling predictions for fourth-order Stokes waves with and without a net volume flux. With basis in their expressions, sixth-order expressions are derived and combined to make shoaling predictions correct to sixth order with an arbitrary net volume flux. The new sixth-order results are compared with the fourth-order results and the practically exact results obtained by Sobey and Bando (Sobey R.J., Bando K., 1991. Variations on higher-order shoaling. J. Waterway, Port, Coastal Ocean Engng ASCE 117, 348-368) with a Fourier 18 model. The effects of introducing sixth-order theory rather than the fourth-order theory in shoaling calculations are in general found to be small. As expected the deviations increase with increasing wave-steepness, decreasing depth and opposing currents. Also as expected, the results obtained with the sixth-order expressions improve the results obtained with the fourth-order expressions when compared to the results of Sobey and Bando. As novelties, some considerations regarding the consistency of odd- and even-order shoaling calculations, and the magnitude of the bottom slope, are presented. Furthermore a comparison between the wave-induced current and the total current is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号