首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
粤北茶山岩体岩石成因与铀、钨成矿潜力探讨   总被引:1,自引:0,他引:1  
粤北诸广山地区是我国重要的花岗岩型铀矿床产地之一,该地区部分岩体亦与钨成矿关系密切。茶山岩体位于诸广山南部岩体的中北部,研究程度较低。茶山岩体锆石U-Pb年龄为148.2±1.9Ma,形成于燕山早期。岩相学上可见原生白云母。岩体富硅、略富碱,贫铁、镁、钙、磷,分异演化程度高(DI=92.2~95.6),弱过铝质(ACNK=1.00~1.08);稀土含量较低(∑REE=90.5×10~(-6)~163×10~(-6)),Eu强烈亏损(δEu=0.04~0.08),富集Rb、U和Ta,亏损Ba、Sr、Ti和P。以上特征表明茶山岩体属于高分异的S型花岗岩。此外,岩体ε_(Nd)(t)值低(-10.6~-9.4),两阶段Nd模式年龄为1.70~1.80Ga,结合其高的Rb/Sr比值(12.6~77.3)和低的CaO/Na_2O比值(0.10~0.28),这些特征表明茶山岩体可能由古元古代从地幔分离出的地壳岩石演变而成的变质泥岩部分熔融而来,并经历后期高分异作用,成岩构造背景属于燕山早期板内伸展环境。对比研究显示,茶山岩体与华南印支期产铀花岗岩和燕山期产钨花岗岩在主要地球化学指标和源区特征上相似,但其W含量较低(1.60×10~(-6)~3.94×10~(-6)),钨成矿潜力较小;而U含量较高(平均19.0×10~(-6)),且主要以铀钍石等易淋滤的富铀矿物存在。该区断裂构造发育,岩体中见晚期岩脉侵入且热液蚀变强烈。岩体西北部有明显的铀矿化显示,钻孔ZK55-4见有沥青铀矿。综上,茶山岩体具有较强的铀成矿潜力。  相似文献   

2.
富城花岗岩体位于赣南会昌盆地东侧,该岩体西部与橄榄玄粗岩系列火山岩接触,河草坑铀矿田就产于该花岗岩体的内外接触带中。在矿区外围花岗岩中发育大面积的蚀变带,其中的黑云母普遍蚀变为绿泥石。为了深入探讨蚀变与铀矿化的关系,文章运用电子探针技术对该蚀变带的黑云母及其蚀变产物绿泥石进行了矿物化学研究。结果表明,黑云母大部分属铁叶云母,估算出富城花岗岩岩浆的氧逸度lg(f O2)值约为-15.0~-14.3,氧逸度较低,源岩为还原性较强的岩石,有利于铀预富集于源区中;富城产铀花岗岩中黑云母的w(F)高达1.41%~2.01%,表明花岗质岩浆富F,而富F岩浆中U溶解度高,可能是富城岩体富铀的重要原因之一。黑云母被绿泥石交代后呈黑云母假象,绿泥石矿物化学分析结果表明,绿泥石以鲕绿泥石和蠕绿泥石为主,属于富铁的绿泥石,主要形成于还原环境;绿泥石的形成温度介于246~307℃之间,平均276℃。全岩U、Th含量分析结果表明,上部"红化"蚀变层中的w(U)(3.5×10-6~9.4×10-6,平均6.6×10-6)明显低于下部"绿色"蚀变层(7.7×10-6~23.1×10-6,平均13.9×10-6),而"红化"蚀变层与"绿色"蚀变层的Th含量相似,w(Th)平均值分别为35.7×10-6和36.5×10-6。矿前期的带状面型"绿色"蚀变层活化了矿物晶格中的结构铀,后期高氧逸度的流体萃取"绿色"蚀变层中已经活化了的铀而形成含铀热液,经迁移在还原带附近沉淀成矿。Th的价态(正四价)难以随这种氧化还原条件的改变而改变,因此未参与流体成矿过程。  相似文献   

3.
大埠岩体内及近外围铀、钨矿产信息丰富。地球化学特征显示大埠岩体花岗岩呈钙碱性、过铝质,具高硅(73.73%~77.89%)、富钾(3.99%~5.60%)和低钙(0.107%~0.660%)含量特点,铝饱和指数A/NCK为1.04~1.25、里特曼指数δ为1.66~2.34,稀土元素总量低(∑REE=37.28×10-6~177.49×10-6),稀土元素球粒陨石标准化图解表现为左高右低、具强负铕异常的"V"字型,大离子亲石元素K、Rb、Th、Sr等富集,Ta、P、Ti亏损,这些特点说明岩体的形成是古老陆壳物质熔融的结果。岩体地球化学特征与华南产铀花岗岩和含钨花岗岩地球化学特征相似,结合近年来铀、钨矿勘查取得的新成果,认为大埠岩体具较大的铀、钨成矿潜力。  相似文献   

4.
龙首山中段广泛出露加里东期花岗质岩体,是龙首山花岗质岩浆活动带的重要组成部分,加里东期花岗质岩浆活动与铀成矿(尤其是碱交代型铀矿化)关系密切。本文通过综合分析前人研究成果并结合项目组认识,系统总结了龙首山地区铀成矿带内加里东期花岗岩浆作用特征和铀成矿作用特征,在此基础上探讨了该区加里东期岩浆作用与铀成矿作用之间的关系。认为该区加里东期花岗岩浆作用与铀成矿(尤其是碱交代型铀矿化)关系十分密切,既为铀成矿提供主要铀源,也为铀成矿提供热源。同时认为该区在岩浆岩成岩成矿时代、成岩成矿构造环境、成矿物质来源等方面的研究程度较低。  相似文献   

5.
西昆仑北缘沙拉吾如克铜铅矿是区域内较为典型的矿床类型之一,矿体主要赋存于加里东期阿勒玛勒克杂岩体中,受沙拉吾如克断裂的控制。矿石矿物主要有黄铜矿、方铅矿、黄铁矿等,矿石铜铅品位相对较贫,一般Cu含量为0.50%~1.33%(平均0.7%),Pb为0.60%~5.99%(平均0.9%)。铜铅矿石的稀土总量(ΣREE)为83.5×10~(-6)~122×10~(-6),相对围岩(ΣREE为257×10~(-6)~342×10~(-6))来说,明显偏低。铜铅矿石的δEu为0.90~1.04,δCe为0.95~0.96,表现为铕和铈的无异常。含矿岩系稀土元素含量及配分模式显示出成矿元素直接来源于阿勒玛勒克杂岩体,特别是来自晚序次的似斑状石英二长岩或二长花岗岩(均为埃达克岩),矿床类型属于斑岩型矿床,为区域上加里东期成矿事件的产物,与大同一带加里东期铜钼矿的形成具有一致的大陆动力地质学过程,即原特提斯洋(西昆仑北洋)向南俯冲消减,进而引起花岗质岩浆活动并成矿。  相似文献   

6.
安徽金寨岩体为一钾长花岗岩体,位于大别造山带北淮阳构造带,LA-ICP-MS锆石U-Pb定年获得岩体侵位年龄为129.7±1.5Ma,属早白垩世岩浆活动产物。岩体周边发现有数个铅锌多金属矿点,与区域岩浆作用及其矿化一致。岩体富硅(SiO_2=72.47%~77.80%)、富碱(K_2O+Na_2O=7.48%~8.16%)、贫钙(CaO=0.15%~1.47%);稀土配分曲线呈现"海鸥式"分布特征,显示强烈的Eu负异常(δEu=0.18~0.40);微量元素特征显示具有较高的Ga(21.68×10~(-6)~24.12×10~(-6))、Zr(127.68×10~(-6)~196.75×10~(-6))、Nb(33.31×10~(-6)~60.53×10~(-6))和Y(14.57×10~(-6)~27.51×10~(-6))含量,较低的Sr(8.15×10~(-6)~138.52×10~(-6))、Ba(23.04×10~(-6)~332.63×10~(-6))含量,在微量元素原始地幔标准化蛛网图上显示明显的Ba、Sr、P、和Ti的负异常。以上特征表明金寨钾长花岗岩为A型花岗岩,可能是下地壳源岩部分熔融的产物。金寨钾长花岗岩是形成于造山后伸展环境下的板内A1型花岗岩,不是形成于非造山大地构造背景下的碱性花岗岩。  相似文献   

7.
位于华北克拉通北缘的医巫闾山变质核杂岩是中生代东北亚大陆大规模伸展变形的一个代表。本文在系统收集该区已有数据的基础上,对医巫闾山变质核杂岩核部晚中生代花岗岩的主量元素、微量元素以及Sr-Nd同位素进行了测试分析和特征总结,进而讨论其成因及地质意义。研究结果显示,医巫闾山花岗岩主要为一套由黑云母二长花岗岩和花岗闪长岩等组成的杂岩体,总体上富硅(SiO_2=61.17%~75.21%)、富碱(K_2O+Na_2O=7.34%~9.03%),呈准铝质-过铝质(A/CNK=0.96~1.08),属于高钾钙碱性,与I型花岗岩特征相一致;大部分花岗岩具有弱的负Eu异常(δEu=0.71~1.63),富集大离子亲石元素(Rb、Ba、Sr)和轻稀土元素,亏损高场强元素(Nb、Ta、Ti)和重稀土元素,高Sr(308×10~(-6)~1 414×10~(-6),平均709×10~(-6)),低Y(3.17×10~(-6)~13.30×10~(-6),平均7.86×10~(-6))和Yb (0.45×10~(-6)~1.32×10~(-6),平均0.78×10~(-6)),具有埃达克质岩的特征;同位素分析结果显示,早期同侵位花岗岩具有变化较大的(~(87)Sr/~(86)Sr)i值(0.695 966~0.707 869)和较低的εNd(t)值(-21.72~-18.32),表明其物源为古老地壳,应是加厚下地壳在区域伸展减压背景下部分熔融的产物,晚期变形后侵位花岗岩的(~(87)Sr/~(86)Sr)i值为0.705 909~0.706 774,_εNd(t)值为-20.60~-16.99,与晚中生代华北克拉通伸展减薄相关。  相似文献   

8.
本文对武夷山中段的司前岩体进行了系统的岩石学、地球化学、年代学及Lu-Hf同位素研究。结果表明,司前岩体形成于(140±1)Ma,主要由黑云母二长花岗岩组成,富碱(K_2O+Na_2O=6.67 wt%~8.25 wt%),富钾(K_2O/Na_2O=1.16~2.41),A/CNK值介于1.01~1.25之间。岩体具有较高的∑REE(177.73×10~(-6)~427.88×10~(-6))、Zr+Nb+Y+Ce含量(262.6×10~(-6)~581.5×10~(-6))和Zr饱和温度(平均824°C),FeOt/MgO(3.06~3.93)和10 000×Ga/Al(2.64~3.28)比值均较高,属典型的铝质-过铝质A型花岗岩。岩体的锆石εHf(t)值均为负值(–18.6~–7.9),暗示其源于古老的地壳物质重熔。综合上述结果和区域背景推测,司前岩体的源岩为新元古代麻源群变质火山-碎屑岩,源岩可能经历早古生代和白垩纪两期熔融事件,地幔岩浆为花岗岩的形成提供了热源,但并未贡献物质,岩体的形成与古太平洋板块俯冲过程中因俯冲板片后撤诱发的弧后扩张作用有关。  相似文献   

9.
侯红星  张德会  张荣臻 《地球科学》2016,41(10):1665-1682
石瑶沟花岗岩是华北陆块南缘东秦岭熊耳山地区近年来发现的首个埋藏在地下,与钼矿化有关的隐伏花岗岩体.主要岩性为中-细粒黑云母二长花岗岩和斑状花岗岩,LA-ICP-MS锆石U-Pb定年结果显示其主体形成时期为140.46±0.59 Ma~136.53±0.44 Ma,为早白垩世岩浆活动产物.石瑶沟花岗岩SiO2=70.27%~73.22%,Al2O3=12.71%~14.96%,MgO=0.23%~0.54%,全碱(K2O+Na2O)含量(质量百分比)变化范围为6.43%~11.78%,显示高硅、富碱特征.里特曼指数(δ)变化范围为2.11~3.02,AR介于1.48~5.73之间,为钙碱性;ACNK值=0.95~1.01,属准铝质-过铝质Ⅰ型花岗岩.岩体稀土总量(∑REE)变化于147×10-6~322×10-6,LREE/HREE比值变化于15.2~25.2,LaN/YbN=19.1~50.5×10-6,轻重稀土分馏程度较高,在球粒陨石标准化分配模式图上总体表现为轻稀土富集、左陡右平的右倾斜型.岩体Sr含量变化较大(133×10-6~759×10-6,平均371×10-6),Y、Yb含量(Y=10.02×10-6~18.80×10-6,平均12.57×10-6;Yb=1.16×10-6~2.02×10-6,平均1.40×10-6)和Sr/Y比值(12.77~61.66,平均30.44) 低,具中等-弱的负Eu异常(δEu=0.53~0.71,平均0.62),反映岩浆发生过长石分离结晶作用.石瑶沟花岗岩Isr=0.707 44~0.713 84,εSr(t)= 44.1~134.9,εNd(t)=-12.96~-13.46,其tDM2=2.00~2.01 Ga,显示其与附近中生代合峪花岗岩基具同源性,岩浆源区包括南秦岭地块、扬子陆块以及部分太华群、熊耳群物质.综合石瑶沟隐伏花岗岩特征和区域地质演化,可得出结论:东秦岭地区在侏罗纪前的陆内俯冲体制下,南秦岭地块及扬子基底向华北陆块下俯冲碰撞使地壳加厚,侏罗纪-白垩纪之交的挤压向伸展转换过程中形成的减压增温环境,使该区中-下地壳岩石发生部分熔融,最终在早白垩世形成石瑶沟花岗岩.   相似文献   

10.
罗贤冬  杨晓勇  段留安  孙卫东 《地质学报》2014,88(10):1874-1888
胶东半岛是我国最主要的原生金矿矿集区,金矿的主要控矿围岩是郭家岭花岗岩,通过研究郭家岭花岗岩的地球化学特征对研究金矿的成因和物质来源具有指示性意义。本文研究的两个花岗岩岩体为上庄岩体和郭家岭岩体,两岩体同属郭家岭型花岗岩。通过对两岩体的花岗岩样进行岩相学矿相学观察、全岩主、微量元素和U-Pb同位素分析,获得胶东半岛中生代岩浆岩的成因机制与源区性质及自然金的产出形式等科学信息。LAICP MS锆石U-Pb年龄得出郭家岭岩体年龄125.4±2.2 Ma,上庄岩体U-Pb年龄128.8±2.0 Ma,都为中生代早白垩世,两岩体年龄相差3Ma,在年龄误差范围来看可以把两岩体作为同一期岩体,也在年龄角度证实两岩体都同属郭家岭花岗岩。两岩体的锆石组成都含有太古宙和晚侏罗纪的继承锆石,指示两岩体的成岩物质来源具相似性,都包含太古宙岩石成分和晚侏罗世花岗岩成分。两岩体具有相似的稀土元素和微量元素分配模式,表现出明显的LREE富集和HREE极度亏损,没有明显的铕负异常。郭家岭岩体和上庄岩体花岗岩都具有类似埃达克岩的特征,都具有高的Sr含量(913×10-6~1325×10-6),低的Y含量(2.2×10-6~8.4×10-6)和Yb含量(0.21×10-6~0.68×10-6),较高的(Dy/Yb)N比值1.62~2.28,暗示花岗岩岩浆形成时石榴石是一个重要的残留相,而没有斜长石作为残留相。两岩体具有较低的MgO、Cr、Ni含量和Mg#,反映郭家岭型花岗岩岩浆的形成可能是岛弧环境榴辉岩相压力条件下洋壳玄武质岩石的部分熔融。  相似文献   

11.
南秦岭地区印支期花岗质岩浆侵入活动频繁,出现了不同类型的花岗岩,高锶低钇花岗岩就是其中的一种,前人对其进行了广泛的研究,但仍有不同的认识。枣木栏岩体位于南秦岭光头山岩体群北部,为典型的印支期高锶低钇花岗岩,前人对其缺乏研究。本文在对其详细野外地质调查的基础上,进行了较系统的岩石学、岩石地球化学、LA-ICP-MS锆石U-Pb年代学研究,认为其主体为石英闪长岩,岩石中发育大量的暗色包体,低SiO_2(53.72%~62.21%),高镁(MgO:3.84%~7.19%),高Mg~#(65~70),属于准铝质高钾钙碱性岩石。岩石具有高Sr(402×10~(-6)~811×10~(-6))、低Y(5.91×10~(-6)~12.7×10~(-6),18×10~(-6))和重稀土,Yb含量为0.58×10~(-6)~1.22×10~(-6),1.8×10~(-6)),高Sr/Y比值(35~94)的高锶低钇中酸性岩(Adakite)的典型地球化学特征。LA-ICP-MS锆石U-Pb年龄为199±3Ma(MSWD=4.3),限定枣木栏岩体的形成时代为晚三叠世晚期—早侏罗世早期。结合区域地质资料,认为其应该是主碰撞造山后期,地壳加厚背景下形成的具有高锶低钇属性的壳幔混合花岗岩。同时表明南秦岭地区在200Ma左右,仍为后碰撞构造环境,为区域构造演化提供了信息。  相似文献   

12.
万洋山岩体位于湘赣两省交界地带,为加里东期多阶段岩浆活动的复式岩体,花岗岩主要岩石类型有黑云母二长花岗岩、黑云母花岗闪长岩和二云母二长花岗岩,以黑云母二长花岗岩分布面积最广。对岩体中黑云母二长花岗岩中的锆石样品进行激光剥蚀—多接收器电感耦合等离子体质谱(LA-ICP-MS)U-Pb定年,锆石的16个测点206Pb/238U的加权平均年龄为(446.0±3.4)Ma(n=16,MSWD=0.15)(95%置信度),反映该岩体形成于晚奥陶世至早志留世。岩石地球化学表明岩体中Si O2的含量为65.91%~73.35%,K2O的平均含量为4.20%,Na2O+K2O为5.90%~7.88%,K2O/Na2O平均值为1.64,Al2O3平均值为13.81%,ASI平均值为1.09%,总体属于高钾钙碱性过铝质花岗岩。微量元素组成中Ba、K、Sr、P、Ti表现出明显的亏损,Rb、Th、U、Nb、Zr、Hf等则相对富集,稀土元素总量中等(159.71×10-6~262.78×10-6),轻稀土富集LREE/HREE=6.16~10.01,(La/Yb)N=6.37~12.17,具明显的负Eu异常(δEu=0.30~0.59)。岩体的[n(87Sr)/n(86Sr)]i值为0.71223~0.72509,εSr(t)值为117.5~299.9Ma,εNd(t)值为-9.39~-7.30,两阶段Nd模式年龄(TDM2)为1.77~1.94 Ga。根据上述岩石地球化学特征表明万洋山岩体为来源于地壳的S型花岗岩,花岗岩氧化物和微量元素构造环境判别图解指示岩体形成于后碰撞构造环境。结合前人对华南加里东期岩体的研究成果,推断华南加里东期花岗岩岩体的具体形成机制为:在全球板块构造的影响,华夏板块与扬子板块拼接后,板块间的强烈挤压应力相对松弛、压力降低的后碰撞构造环境下,因地壳增厚而升温的中上地壳岩石减压熔融并向上侵位。  相似文献   

13.
为初步探讨锆石铀含量在花岗岩型铀矿远景区预测方面的应用前景,以勘探研究程度较高的诸广南部花岗岩为样本,经花岗岩类样品概率统计显示产铀岩体锆石平均铀含量略大于贫铀岩体,总体差别不明显;样品分期次、岩性对比分析表明产铀岩体锆石平均铀含量也并非普遍高于贫铀岩体,印支期产铀岩体二云母花岗岩锆石平均铀含量甚至低于贫铀岩体;统计发现产铀岩体花岗岩岩脉中具有超高的锆石铀含量(平均铀含量3000×10-6以上)。初步分析认为依据花岗岩类锆石铀含量暂不能有效判别诸广山复式岩体成矿能力;岩脉锆石铀含量超高可能是铀矿找矿的重要标志,因而具超高锆石铀含量的花岗岩岩脉是否发育可能是该区域寻找工业铀矿床的关键。  相似文献   

14.
李雪峰  李永胜  董国臣  吕鑫  夏清 《岩石学报》2021,37(6):1691-1712
西秦岭造山带东段发育大量印支期花岗岩,由北向南贯通整个西秦岭造山带。本文选取西秦岭东段的柴家庄、太白、周家山和迷坝4个花岗质岩体进行岩石学、地球化学、锆石U-Pb定年和Lu-Hf同位素研究。这些花岗质岩体的岩性主体为石英闪长岩-花岗闪长岩-二长花岗岩,属高钾钙碱性系列,形成时代在237~219Ma之间,并显示出两期岩浆活动的特点,早期柴家庄岩体形成于236.6±2.9Ma,晚期的太白、周家山和迷坝岩体形成于220.12~218.9Ma。早期柴家庄二长花岗岩显示出类似埃达克岩的一些地球化学特点,如高含量的Sr(578 × 10~(-6)~661 × 10~(-6))和高的(La/Yb)_N比值(37.44~41.73),低含量的Y(3.48 × 10~(-6)-5.50 × 10~(-6))和Yb(0.3 × 10~(-6)~0.5 × 10~(-6)),以及弱的负Eu异常(δEu=0.85~1);在晚期花岗岩中,迷坝和周家山岩体同样表现高Sr含量(Sr400 × 10~(-6))、低Yb含量(Yb 2 × 10~(-6))的特点,但太白花岗岩则类似于喜马拉雅型花岗岩(Sr 400 ×10-6,Yb 2 ×10~(-6))。锆石Hf同位素组成显示,柴家庄、太白、周家山和迷坝岩体的ε_(Hf)(t)值分别为-5.1~2.2、-4.8~-0.9、-6.0~-2.7和-6.3~-3.9,对应的二阶段模式年龄(t_(DM2))依次为2153~1495Ma、2120~1767Ma、2227~1932Ma、2249~2033Ma,表明西秦岭东段花岗质岩体的源区主要为古元古代-中元古代壳源物质,柴家庄岩体可能有部分新生下地壳物质加入,并且整体表现出结晶基底组成由北向南逐渐变老的趋势。显示埃达克岩特点的花岗岩可能形成于加厚下地壳的部分熔融,而其喜马拉雅型的花岗岩则是正常下地壳部分熔融的产物。三叠纪时期发生的陆陆碰撞导致地壳加厚,加厚下地壳在不同深度发生的部分熔融,形成本区具有埃达克或者喜马拉雅型地球化学特点的花岗质岩体。  相似文献   

15.
内蒙古乌兰哈达地区位于大兴安岭林西-扎兰屯多金属成矿带上,属于扎兰屯火山岩型铀成矿远景带。通过1/5万伽玛能谱测量工作发现工区内古生代、中生代地层U背景值1.88×10-6~2.54×10~(-6),海西期花岗岩U背景值为3.74×10~(-6),具备很好的铀源条件。该区断裂构造及层间破碎带发育,为铀矿运移提供通道和沉淀的场所。粘土矿化、萤石化等热液蚀变发育,可以作为铀矿找矿的热液蚀变标志。通过放射性测量工作圈定9处铀异常区,发现2处铀矿化带,圈定了2个找矿靶区,为该地区铀矿找矿指明了方向。  相似文献   

16.
中祁连西段晚寒武世埃达克岩的发现及地质意义   总被引:3,自引:0,他引:3  
乌尔格拉特岩体位于中祁连西段,由花岗闪长岩和二长花岗岩组成。花岗闪长岩锆石LA-ICPMS U-Pb年龄为490.5±1.4 Ma(MSWD=0.85),侵位时代为晚寒武世。岩石中Si O2含量为65.10%~71.21%,Al2O3含量为14.94%~16.82%,Mg O含量为0.23%~1.24%,A/NKC为0.9~1.0,Na2O/K2O为1.01~2.33,属准铝质花岗岩类;富集轻稀土元素和大离子亲石元素(Ba、U和Sr),亏损高场强元素(Nb、Ta、Ti和P)和重稀土元素,其中Sr含量为345×10-6~541×10-6(平均402×10-6),Yb为0.72×10-6~1.19×10-6(平均0.97×10-6),Y为6.09×10-6~11.3×10-6(平均8.67×10-6),无铕异常(δEu=0.91~1.27),高Sr/Y值(32.6~74.3),具埃达克岩地球化学特征。结合区域地质背景,认为乌尔格拉特岩体形成于俯冲环境,为晚寒武世北祁连洋向中祁连地块俯冲的产物。  相似文献   

17.
野马山岩基位于中祁连地块西段,由早期岩体(花岗闪长岩、斑状二长花岗岩)和晚期岩体(二长花岗岩)组成,二者呈侵入接触。LA-ICPMS锆石U-Pb定年表明,早期岩体侵位时代为中奥陶世((469.0±1.3)Ma),晚期岩体侵位时代为晚奥陶世((450.0±1.0)Ma)。早期岩体Si O2=59.8%~64.2%,K2O/Na2O1,且A/NKC=0.8~1.0,为准铝质岩石;微量元素相对富集Rb、U、Th和亏损Ba、Nb、Ta、Sr、P、Ti;稀土总量为97.7×10-6~185×10-6,且(La/Yb)N=5.57~12.47,LREE/HREE=7.7~11.3,具轻重稀土分馏明显,轻稀土富集,弱Eu负异常(δEu=0.66~0.89)特征。晚期岩体Si O2=69.8%~76.5%、K2O/Na2O=1.2~1.7、A/NKC=1.0~1.1,属弱过铝质花岗岩;稀土总量为78.97×10-6~244.92×10-6,轻重稀土分馏不明显((La/Yb)N=1.90~5.72),强Eu负异常(δEu=0.11~0.24)。岩石地球化学特征表明,野马山岩基早期岩体为I型花岗岩,形成于俯冲环境,晚期岩体为高分异的I型花岗岩,形成于后碰撞环境。结合岩体产出的区域构造位置及区域地质演化,认为早古生代北祁连洋发生了双向俯冲,野马山岩基为其向南俯冲碰撞的产物。  相似文献   

18.
华南是我国重要的花岗岩型铀成矿区,印支期-燕山期花岗岩是最主要的产铀花岗岩。广西北部形成于新元古代的摩天岭岩体是我国目前已知的最古老的产铀花岗岩体之一。前人对华南印支-燕山期花岗岩的铀成矿作用研究较深入,但对以摩天岭岩体为代表的新元古代古老花岗岩的铀成矿作用研究程度较低。本文以摩天岭花岗岩体为对象,进行了岩石学、地球化学、年代学及其铀矿成矿特征和规律的深入研究,取得以下认识:1)摩天岭岩体规模巨大,相带分布明显,内部相带和过渡相带发育,岩性主要为黑云母花岗岩、二云母花岗岩和含电气石二云母花岗岩,花岗岩体具有富硅富碱、铝过饱和、钾大于钠的特点,属S型花岗岩; 2)摩天岭岩体形成于850~760Ma之间的新元古代; 3)摩天岭岩体铀成矿潜力巨大,铀矿化以铀-绿泥石型和铀-硅化带型为主,铀-绿泥石型的代表矿床——达亮矿床形成于360~401Ma,是加里东期区域变质及构造活动共同作用的结果;铀-硅化带型铀矿的代表——新村铀矿形成于47Ma,是喜马拉雅期伸展构造作用下构造-热液活动共同作用的结果; 4)摩天岭岩体中铀矿床的铀源来自于元古界四堡群、丹州群和摩天岭岩体本身;成矿流体主要来源于大气降水,同时有深部流体的参与;热源主要与加里东期区域变质作用和喜马拉雅期伸展背景下的构造作用关系密切; 5)摩天岭岩体铀成矿经过了新元古代铀预富集、加里东晚期到海西早期的区域变质-构造热液成矿作用、喜马拉雅期的构造热液成矿作用等几个阶段,形成了类型丰富、规模较大的铀矿床,铀找矿潜力巨大。  相似文献   

19.
胶东是我国最重要的金矿集区,拥有全国近四分之一的金资源储量,其95%以上赋存在玲珑型和郭家岭型花岗质岩体内。然而,关于花岗岩类的成因,尤其是早白垩世郭家岭型花岗质岩石成因仍存有争议。郭家岭型花岗岩质岩体自西向东包括三山岛岩体、新城岩体、上庄岩体、北截岩体、丛家岩体和郭家岭岩体等。其中,新城岩体是迄今为止在胶东矿集区内发现的唯一赋存超大型金矿床的郭家岭型花岗质岩体,呈北东向岩株状侵入到玲珑型花岗岩体中,主要由石英二长岩和二长花岗岩组成,二者之间呈渐变过渡关系,为同期岩浆活动作用的产物。为了厘定新城岩体的岩石成因,揭示胶西北早白垩世高Ba-Sr郭家岭型花岗岩形成的地球动力学背景,论文对新城岩体进行了详实的野外地质调查,系统采集了二长花岗岩样品,分析了其矿物化学、元素地球化学和Sr-Nd同位素组成。新城二长花岗岩的SiO2含量变化于70.89%~73.35%,相对于传统的I、S、M和A型花岗岩具有高的全碱(K2O+Na2O=7.03%~8.68%)、Sr(640×10-6)、Ba(853×10-6)和轻稀土(LREE)含量(65.43×10-6),低的Al2O3(14.41%~15.54%)、MgO(0.21%~0.62%)、Rb(103×10-6)、Th(10.3×10-6)、U(5.87×10-6)、Nb(6.14×10-6)、Ta(0.599×10-6)、Y(10.3×10-6)和重稀土(HREE)含量(5.3×10-6),LREE富集、HREE相对亏损(LREE/HREE=15.03~42.05),轻、重稀土元素分馏明显[(La/Yb)N=20.32~198.79],无明显的铕异常,明显亏损Nb、Ta、P、Ti等高场强元素,显示出典型的高Ba-Sr花岗岩所具有的地球化学特征,属高Ba-Sr花岗岩。二长花岗岩中的斜长石和钾长石斑晶均呈典型的反环带结构,其中斜长石属于更长石,An值介于12.87~22.91,钾长石属于正长石,Or值为81.24~93.69。Sr-Nd同位素分析表明二长花岗岩的初始87Sr/86Sr(Isr)和εNd(t)分别为0.71071~0.71172和-21.3~-17.1,二阶段亏损地幔模式年龄(tDM2)为2310~2648Ma。上述元素地球化学、矿物化学和Sr-Nd同位素数据分析表明,高Ba-Sr新城二长花岗岩是胶北地体基底岩石胶东群变质岩部分熔融形成的酸性岩浆与早先幔源岩浆底侵作用形成的新生镁铁质地壳部分熔融形成的中性岩浆混合作用的结果,古太平洋板块向华北板块俯冲及其伴生的软流圈物质上涌可能是胶西北高Ba-Sr郭家岭型花岗岩形成的机制。  相似文献   

20.
王安镇杂岩体主要由花岗闪长岩、二长花岗岩、花岗岩、石英闪长岩、二长闪长岩组成,LA-ICP-MS锆石U-Pb测年显示,花岗闪长岩和石英闪长岩分别形成于129±2.7Ma和128.3±1.9Ma,说明该杂岩体形成于早白垩世。王安镇杂岩体具有高Sr/Y比值(3.63~83.5),和高Sr(373×10-6~821×10-6),及低Y(7.36×10-6~22.21×10-6)、Yb(0.95×10-6~1.27×10-6)含量的地球化学特征,这与埃达克岩相似。该杂岩体具有相对低的87Sr/86Sr初始比值(0.706538~0.709484)和明显偏低的εNd(128Ma)值(-18.4~-12.8)。结合太行山中生代中-基性侵入岩中地幔包体已有的研究成果,认为具有高Sr/Y特征的王安镇杂岩体是在下地壳发生大规模拆沉的基础上,随着软流圈上涌其所携带的热促使加厚基性下地壳发生部分熔融,之后熔融岩浆在上升的过程中发生了角闪石的结晶分异和岩浆混合作用形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号