首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Observations of temperature, pressure and humidity have been made from an aircraft beneath cumulus clouds which formed over extensive flat country. In fair weather over land, cumulus cloud base is generally above the average top of the well-mixed convection layer so that penetrative convection is necessary to initiate cloud formation. The convective layer does not evolve and deepen uniformly over large areas (say greater than 100-km radius). Rather, it develops a patchy structure at 1–10 km scales. Such patches, close beneath cloud base, have thermodynamic properties very like those of the convection layer and in such regions that layer effectively extends right up to cloud base. Meso-scale effects (e.g., 50 km) seem to be important in determining where clear and cloudy areas occur, and although it appears reasonable to attribute this to local dynamic effects (e.g., subsidence), it is not possible to eliminate other possibilities on the basis of the present data.  相似文献   

2.
利用BOMEX(巴巴多斯海洋与气象学试验)的探空资料和LEM(大涡模式),通过改变LEM水平分辨率的敏感性数值试验,对比分析不同尺度的湍涡对信风积云边界层中混合层和云层的结构、演变以及对流形式和强度的影响。结果表明,水平分辨率较高时模拟的湍涡尺度较小、混合层顶的夹卷作用较强,模拟的混合层较暖、较干,而且模拟的对流泡尺度较小、强度较大,能够模拟出较精细的边界层结构;而水平分辨率较低时则相反。模拟的湍涡尺度对海洋信风区边界层积云中液态水混合比的模拟结果影响较大:LEM模拟的湍涡尺度较小时模拟的信风积云形成的时间较早、云顶高度较高,单个云块的体积较小但数目较多,液态水含量较高;而模拟的湍涡尺度较大时则相反。虽然水平分辨率为50 m和125 m的试验都能模拟出较精细的信风边界层中混合层、云层的结构和演变特征,但是,考虑到提高分辨率在模拟过程中产生的噪音信号对结果的影响以及计算时间等问题,LEM采用125 m的水平网格距是对海洋信风边界层积云对流模拟较为理想的选择。   相似文献   

3.
A cloud-ocean planetary boundary layer (OPBL) feedback mechanism is presented and tested in this paper. Water vapor, evaporated from the ocean surface or transported by the large-scale air flow, often forms convective clouds under a conditionally unstable lapse rate. The variable cloud cover and rainfall may have positive and negative feedback with the ocean mixed layer temperature and salinity structure. The coupling of the simplified Kuo’s (1965) cumulus cloud model to the Kraus-Turner’s (1967) ocean mixed layer model shows the existence of this feedback mechanism. The theory also predicts the generation of low frequency oscillation in the atmosphere and oceans.  相似文献   

4.
一次夏季东北冷涡中积云发展过程的数值模拟   总被引:3,自引:7,他引:3  
运用中国科学院大气物理所设计开发的三维冰雹云模式,对2002年7月11日至15日期间,发生在中国东北地区的一次由冷涡天气诱发的积云对流变化过程进行三维数值模拟。模拟结果表明:(1)冷涡诱发的积云自然降水呈中小尺度复合体的特征;(2)积云起源于低层暖湿区域里,并由强上升气流抬升到高层,得到充分发展;(3)冷涡中积云同样存在液态水累积区,一般出现在最大上升气流上,其中液态水含量随着积云的发展而变化,冰雹即在此液态水累积区0℃以下的区域内生长;(4)在模拟区域内,模拟出了多个积云单体的并合现象,而后发展为积云团;(5)模拟出的积云形态与雷达回波基本吻合。  相似文献   

5.
湖南秋季积层混合云系飞机人工增雨作业方法   总被引:2,自引:1,他引:1       下载免费PDF全文
统计分析2007—2016年秋季湖南省长沙市地面气象观测资料、湖南省飞机人工增雨作业资料, 得到湖南省秋季积层混合云系的降水分布情况、一般结构特征和相应的飞机增雨作业方法。使用多普勒天气雷达、GRAPES_CAMS数值模式和中小尺度气象站网等资料对典型作业天气过程进行云降水物理和数值模拟分析, 采用成对对流云和基于TREC算法的回波跟踪等方法进行作业效果评估。归纳得到湖南省秋季积层混合云系人工增雨作业条件判别的12个宏微观指标, 探讨在使用运7飞机、碘化银烟条作业装备条件下, 开展飞机增雨作业的最佳催化时机、部位和剂量。针对积层混合云系中的降水性层状云系、积云对流泡, 飞机增雨适宜作业的区域、播撒高度和催化剂量:在过冷高层云的-15~-5℃层, 播撒达到30 L-1的人工冰晶浓度; 在过冷积云的-15~-7℃层, 静力催化使冰晶浓度达到30 L-1或动力催化达到100 L-1。这些方法在实践中取得了较好的人工增雨作业效果。  相似文献   

6.
Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.  相似文献   

7.
The marine atmospheric boundary layer is characterized by cool temperatures and high humidity. Clouds are observed over most of the oceans. It is generally accepted that these overcast cloud decks break up into scattered fragments due to cloud-top entrainment instability. That is, if the air above the boundary layer is sufficiently cool and dry relative to cloud top, the buoyancy flux will be directed upwards and entrainment can occur freely.A boundary-layer model is used to test the sensitivity of the model atmosphere to the various processes which promote the onset of cloud-top entrainment instability. It is found that the transition from a solid cloud deck to scattered cumulus clouds depends on a rate process. The cloud cover is sensitive to mesoscale variations in sea surface temperature only if the cloud-top inversion is sufficiently weak.  相似文献   

8.
A numerical model of the cloudy marine boundary layer is described and used to investigate the role of entrainment instability on the developing boundary layer. In general, previous studies have been limited to boundary layers capped by convectively stable inversions or have described only cumulus fields. Here we extend a stratus-capped boundary-layer model to consider the transition to a convectively unstable cloud layer capped by an inversion across which there is a rapid decrease in wet-bulb or equivalent potential temperature. In this case, the inversion is very active and the entrainment rate is determined by the active instability at the interface, in contrast to the mean turbulent motion within the boundary layer.The model is used to interpret the observed boundary layer from the JASIN experiment. Cool, dry air is modified by prolonged passage over increasingly warmer ocean which leads to the development of a convectively unstable cloud layer.  相似文献   

9.
冯业荣  王作述 《大气科学》1995,19(5):597-605
本文利用积云群整体诊断模式,对一次梅雨静止锋暴雨过程的积云对流活动进行研究,计算了质量通量、云内温度、比湿、液态水等积云属性,讨论了云中凝结蒸发过程以及对流能量输送特征。结果表明,梅雨积云质量通量比热带扰动大,但积云的发展高度不及热带深厚对流;积云群的降水效率约为50%;潜热在对流能量铅直输送中占显著地位,其量值远大于热带扰动中的对流活动。  相似文献   

10.
Based on the simulations with a 3-D large-eddy simulation model of marine cloud-topped boundary layer that includes explicit cloud physics formulation, we have evaluated the effect of spatial inhomogeneities in cloud macro- and microstructure on the performance of parameterizations of optical depth commonly used in large-scale models. We have shown that an accurate parameterization of the grid average optical depth alone is not sufficient for correct determination of cloud transmittance to solar radiation due to the non-linear dependence between these two variables.The problem can be solved by introducing the “equivalent” value of optical depth that differs from the ordinarily defined mean optical depth by a factor αt, that depends on the degree of cloud inhomogeneity and ranges from about 2 in the cumulus case to about 1.3 in the stratiform case.The accuracy of cloud optical depth parameterizations commonly employed in largescale models has been evaluated using the data from the explicit microphysical model as a benchmark for comparison. It has been shown that in the cumulus cloud case the parameterized expressions can err by as much as 100%. The error is smaller for more uniform stratiform clouds, where the error for some parameterizations varied in the 10–40% range. The best results are given by parameterizations that account for vertical stratification of parameters on which they are based. However, the error given by a particular parameterization varies and is different at cloud and surface levels. The results show the limitations of the existing simplified parameterizations and illustrate the scope and complexity of the cloud radiation parameterization problem.  相似文献   

11.
本文建立了一个二维弹性积云数值模式,利用西太平洋考察的平均探空资料,采用能量学方法,讨论单块积云对环境大气能量的转换和传输,为积云参数化提供依据。 文中计算了积云发展演变过程中各种形式的能量的变化。结果表明在云演变过程中释放的凝结潜热是积云发展的主要能量来源,但积云对大尺度的反馈主要不是凝结潜热直接加热大气,而是通过对流及蒸发等过程使积云对流影响的整个区域内大气位势不稳定减小,而离云较远的地区层结变得更不稳定。  相似文献   

12.
利用我们已建立的二维积云降水模式,在相同的大气层结条件下,模拟了孤立积云和层状云中积云的发展和降水情况。结果表明,层状云的存在对积云的发展有显著的促进作用,降水量可加大到几到几十倍,从而认为积层混合云系可能是产生大雨和暴雨的一种重要机构,这与梅雨锋里锋区混合云系常产生暴雨的观测事实比较符合。  相似文献   

13.
利用中尺度数值模式WRF-ARW(V3.2)对2009年4月18-19日发生在张家口地区的一次积层混合云降水进行了模拟,并结合观测资料从不同尺度对这次降水过程进行了对比分析.结果表明:700 hPa西风槽、850 hPa低涡是影响这次降水的主要天气系统,来自南方的暖湿空气和西北内蒙古低涡带来的水汽是这次降水的主要水汽来源,两股水汽在张家口附近低层出现了大尺度辐合,有利于该地区云系的发展、降水的形成;降水云系呈东北-西南向带状分布,带长约1 000 km,带宽300km,在大片的云带中分布着很多个小的高值中心,中心区域一般在几十千米;结合雷达回波可以看到在均匀的回波层中镶嵌着柱状对流回波,具有典型的积层混合云降水回波特征;沿着雷达回波做剖面,发现云中云水含量分布无论是水平方向还是垂直方向都是不均匀的,雨水的大值中心与上层的霰、雪的大值中心相对应,中心水平范围在1020 km.  相似文献   

14.
Based on the two-dimensional slab-symmetric model of cumulus clouds established by the authors,thedevelopment of the cumulus cloud and its precipitation in environments with and without the stratiform cloudpresent has been simulated numerically in almost the same atmospheric stratification.Results show that thepresence of the stratiform cloud has a significant effect on the development of the cumulus cloud and theincreae of its precipitation.The rainfall may increase by scveral to tens of times.It is believed that theconvective-stratiform mixed cloud system may be important for producing heavy to torrential rain.This isin good agreement with what has been observed in the Meiyu frontal cloud system in recent investigations  相似文献   

15.
An algorithm is described for generating stochastic three-dimensional (3D) cloud fields from time–height fields derived from vertically pointing radar. This model is designed to generate cloud fields that match the statistics of the input fields as closely as possible. The major assumptions of the algorithm are that the statistics of the fields are translationally invariant in the horizontal and independent of horizontal direction; however, the statistics do depend on height. The algorithm outputs 2D or 3D stochastic fields of liquid water content (LWC) and (optionally) effective radius. The algorithm is a generalization of the Fourier filtering methods often used for stochastic cloud models. The Fourier filtering procedure generates Gaussian stochastic fields from a “Gaussian” cross-correlation matrix, which is a function of a pair of heights and the horizontal distance (or “lag”). The Gaussian fields are nonlinearly transformed to give the correct LWC histogram for each height. The “Gaussian” cross-correlation matrix is specially chosen so that, after the nonlinear transformation, the cross-correlation matrix of the cloud mask fields approximately matches that derived from the input LWC fields. The cloud mask correlation function is chosen because the clear/cloud boundaries are thought to be important for 3D radiative transfer effects in cumulus.The stochastic cloud generation algorithm is tested with 3 months of boundary layer cumulus cloud data from an 8.6-mm wavelength radar on the island of Nauru. Winds from a 915-MHz wind profiler are used to convert the radar fields from time to horizontal distance. Tests are performed comparing the statistics of 744 radar-derived input fields to the statistics of 100 2D and 3D stochastic output fields. The single-point statistics as a function of height agree nearly perfectly. The input and stochastic cloud mask cross-correlation matrices agree fairly well. The cloud fractions agree to within 0.005 (the total cloud fraction is 18%). The cumulative distributions of optical depth, cloud thickness, cloud width, and intercloud gap length agree reasonably well. In the future, this stochastic cloud field generation algorithm will be used to study domain-averaged 3D radiative transfer effects in cumulus clouds.  相似文献   

16.
Using radiosonde measurements from 26 July to 30 July 2014 at Baiqi over the Inner Mongolia grassland of China, the vertical structure of shallow cumulus(SCu) clouds and associated environmental conditions were investigated. The cloud base height and the cloud top height of SCu was 3.4 km and 5 km, respectively. The temperature of the SCu layer was less than 0℃. The horizontal advection of specific humidity was smaller than the vertical transport in the atmosphere below 5 km.Above 5 km, the thermodynamic structure of the atmosphere remained stable. At the interface of the cloud layer and free air atmosphere, there was obvious wind shear and a temperature inversion(~2.9℃). Comparisons of environmental parameters associated with cumulus congestus, rain and clear days, showed that the formation of SCu was characterized by a higher Bowen ratio(high sensible heat flux and low latent heat flux), which indicated intensive turbulence in the boundary layer. The formation of SCu was associated with the boundary layer height exceeding the lifting condensation level. The maintenance of SCu was likely associated with the lower convective available potential energy, weak wind shear, and weak subsidence of the synoptic system, which did not favor the dramatic vertical development of SCu and thereby the transformation of SCu to cumulus congestus.  相似文献   

17.
南方夏旱期积云含水量和降水效率的云模式估算   总被引:5,自引:1,他引:5       下载免费PDF全文
在胡志晋二维对流云模式的物理框架上增加了对整块积云的含水量、地面降水量、降水效率的估算部分.改进后的模式模拟了福建夏旱期37 个降水个例,并估算出南方夏旱期冷云、混合云和暖云的含水量、地面降水、降水效率,其结果与湖南积云的实测值较接近.分析了含水量在关键时段的主要分布情况,为研究南方夏旱期积云的人工影响方法提供物理依据.  相似文献   

18.
深对流云输送对于对流层O3、NOx在分析的作用   总被引:4,自引:0,他引:4  
利用一个冰雹云模式与云化学输送模块耦合而成的三维对流云化学/输送模式, 研究对流云对重要的大气污染物臭氧 (O3)、氮氧化物 (NOx, 包括NO 和NO2) 的输送作用。模式较好地体现了一个单体积云的发展过程及其特征。云化学/输送模式的结果表明, 云内强烈的垂直输送能在30 m in 左右, 把低层低体积分数的O3和高体积分数的NO2快速、有效地输送到对流层的上部, 造成化学物种的再分布。而在云顶附近, 由于对流穿透了对流层的顶部,造成了上层高体积分数O3的向下侵入,说明云的对流活动除了能把边界层内的污染物向上输送, 其夹卷作用还可以造成平流层和对流层化学物质的交换。  相似文献   

19.
In this study, we evaluate the ability of the Weather Research and Forecasting model to simulate surface energy fluxes in the southeast Pacific stratocumulus region. A total of 18 simulations is performed for the period of October to November 2008, with various combinations of boundary layer, microphysics, and cumulus schemes. Simulated surface energy fluxes are compared to those measured during VOCALS-REx. Using a process-based model evaluation, errors in surface fluxes are attributed to errors in cloud properties. Net surface flux errors are mostly traceable to errors in cloud liquid water path (LWPcld), which produce biases in downward shortwave radiation. Two mechanisms controlling LWPcld are diagnosed. One involves microphysics schemes, which control LWPcld through the production of raindrops. The second mechanism involves boundary layer and cumulus schemes, which control moisture available for cloud by regulating boundary layer height. In this study, we demonstrate that when parameterizations are appropriately chosen, the stratocumulus deck and the related surface energy fluxes are reasonably well represented. In the most realistic experiments, the net surface flux is underestimated by about 10 W m?2. This remaining low bias is due to a systematic overestimation of the total surface cooling due to sensible and latent heat fluxes in our simulations. There does not appear to be a single physical reason for this bias. Finally, our results also suggest that inaccurate representation of boundary layer height is an important factor limiting further gains in model realism.  相似文献   

20.
Numerical models of climate have great difficulties with the simulation of marine low clouds in the subtropical Pacific and Atlantic Oceans. It has been especially difficult to reproduce the observed geographical distributions of the different cloud regimes in those regions. The present study discusses mechanisms proposed in previous works for changing one regime into another. One criterion is based on the theory of stratocumulus destruction through cloud top entrainment instability due to buoyancy reversal—situations in which the mixture of two air parcels becomes denser than either of the original parcels due to evaporation of cloud water. Another criterion is based on the existence of decoupling in the boundary layer. When decoupled, the stratocumulus regime changes to another in which these clouds can still exist together with cumulus. In a LES study, the authors have suggested that a combination of those two criteria can be used to diagnose whether, at a location, the cloud regime corresponds to a well-mixed stratocumulus regime, a shallow cumulus regime, or to a transitional regime where the boundary layer is decoupled. The concept is tested in the framework of an atmospheric general circulation model (GCM). It is found that several outstanding features of disagreement between simulation and observation can be interpreted as misrepresentations of the cloud regimes by the GCM. A novel criterion for switching among regimes is proposed to alleviate the effects of these misrepresentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号