首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
基于信息熵的天然草地综合评价的模糊物元分析法   总被引:3,自引:0,他引:3  
将信息熵、模糊理论和物元可拓集合有机地结合起来,充分考虑天然草地的覆盖度、可食风干牧草产量、牧草利用率、草群中优良牧草比率、草地可利用面积系数、羊单位需草地面积等指标,建立了基于信息熵的草地评价的模糊物元模型,对面向新疆准噶尔盆地西部的天然草地质量进行了综合评价,所得评价结果与灰色关联度模型基本一致,表明该方法是可行的,而且该模型理论清晰、简捷,便于计算机编程。  相似文献   

2.
赵雪 《中国沙漠》2000,20(Z2):167-170
豫北平原的沙质草地分布于黄河多次泛滥改道冲积形成的沙丘、沙地。其主要类型有:①以白茅、达乌里胡枝子为主的草从草地;②刺槐、杨树等林地下层以藜、白茅、茜草等为主的林下草地;③以碱茅、狗牙根等为主的低湿草地。沙质草地的主要特征为种类组成简单,牧草产量低(<2 000 kg·hm-2)且利用过度。但多种优良栽培牧草在沙地生长良好,可获较高产量。在沙地开发中,应针对各草地类型采取相应措施改造为人工、半人工草地。同时应结合沙地多种林木、果树和经济作物种植,建设农牧林复合经营的系统。畜牧业开发应以产业化为主导,发展适应市场需求的优良畜种,实行适度规模经营。  相似文献   

3.
为了研究适用于湿地植物分类的高光谱植被指数及其分类效果,以三江平原洪河国家级自然保护区为研究区,使用HR-1024光谱仪,获取了研究区内毛薹草(Carex lasiocarpa)、小叶章(Calamagrostis angustifolia)、乌拉草(Carex meyeriana)、漂筏薹草(Carex pseudocuraica)和大豆(Glycine max)5种植物的冠层光谱数据,对获取的高光谱数据进行去水汽、平滑处理,以消除环境背景的影响;总结了前人文献中使用的38种高光谱植被指数,研究这些高光谱植被指数对研究区内典型植物分类的的适用性;然后,采用方差分析方法,从所有高光谱植被指数中筛选出区分频率较高的25种指数;最后,采用Fisher线性判别分析法,进行植物类型的识别,并对分类结果进行精度评价与分析。研究结果表明,利用高光谱植被指数进行湿地植物分类的精度总体为85%,高光谱植被指数可以作为植物分类的依据。  相似文献   

4.
翅碱蓬高光谱植被指数对土壤化学性质的响应   总被引:1,自引:0,他引:1  
植被覆盖区土壤化学性质遥感监测一直是一个难点,往往只能通过生物地球化学的方法,利用上覆植被信息间接地反映。该研究通过野外采样分析的17个翅碱蓬(Suaeda salsa)光谱数据和其下土壤样品的理化分析配对数据,探讨土壤化学性质与翅碱蓬高光谱植被指数间的关系。结果表明:上覆翅碱蓬高光谱植被指数与土壤有机质、全氮、速效钾之间均无显著相关,高光谱植被指数(NDNI)可用于初步反映土壤全磷的含量变化,NDVI705可用于初步反映土壤pH值的变化,而高光谱植被指数(MSI)可以很好地反映土壤盐分含量的变化。在此基础上,建立了土壤全盐量与19个高光谱植被指数的偏最小二乘回归模型,这为翅碱蓬覆盖区域土壤盐渍化遥感监测提供了一种方法。  相似文献   

5.
青海南北二地寒冻雏形土分布区,由于海拔高度及地理环境不同,气候变化差异显著。但分析二地地温变化特征发现,青南青北地温分布趋势基本相似,差异不甚明显。这主要与二地土壤质地和湿度、植被覆盖程度不同等有关。表明地温变化是在气候引起变化的基础上叠加了局地土壤-植被性状影响下的结果。当年冬春地温低时,对应牧草产量较高,而地温较高的年份则牧草产量低,究其原因可能与地温低,土壤冻结深厚坚实,地表蒸发减小,易贮存较多的土壤水分有关。  相似文献   

6.
岷江上游草地资源及合理利用   总被引:7,自引:1,他引:7  
张建平  叶延琼  樊宏 《山地学报》2002,20(3):343-347
岷江上游自然条件复杂,生态环境类型多样。共7个天然草地类型,面向达813538hm^2,占幅员总面积的32.9%。天然草地理论载畜量143.02万个羊单位,1999年牲畜存栏177.89万个羊单位,超载率24.4%。由于超载放牧,导致草地退化(毒草增多、鼠虫害面积增大、牧草覆盖度下降,产草量降低)。针对草地资源特点有退化状况,提出了草地合理利用建议:①加强草场利用规范和管理;②实行草地承包,落实草场“三权”政策;③调整畜群结构,控制牲畜数量;④提高牲畜出栏率,发展季节性畜牧业;⑤改良天然草地,治理退化草地;⑥发展人工草地,建立打贮草基地,提高抗实保蓄能力。  相似文献   

7.
咸阳市三原县新庄不同植被土层含水量研究   总被引:4,自引:0,他引:4  
赵景波  牛俊杰  杜娟  黄芳 《地理科学》2008,28(2):247-252
通过测定咸阳市三原县新庄2005和2006年降雨正常年份人工林地土壤含水量得知,从地表向下土层含水量呈由高到低再到高的变化;2005年草地和玉米地土层含水量由上向下呈逐渐增高趋势,比同年12龄杨树林地和13龄中国梧桐林地平均含水量高约7%。2003年降水量达880 mm丰水年后,人工林土壤干层中水分完全恢复,人工林出现持续近4年茂盛生长期,预计2007年该区将会再次出现发育弱的土壤干层。  相似文献   

8.
以洪河国家级自然保护区为研究区,2009年8月中旬,在研究区野外实测沼泽植物冠层的光谱反射率和叶面积指数(LAI),将地面实测的植物高光谱反射率以Landsat-5 TM波段范围为基准进行波谱重采样,以重采样后的光谱反射率计算多光谱植被指数,用几种常见的高光谱和多光谱植被指数建立估算沼泽植被叶面积指数的统计回归模型,对比这些模型的精度,选出最优模型.研究结果表明,用各植被指数建立的估算沼泽植被叶面积指数的回归模型分别为二次函数、对数函数或指数函数;各模型对沼泽植被叶面积指数的反演精度差别较大;在全波段高光谱植被指数中,用全波段归一化植被指数H-FNDVI(R930,R515)构建的估算沼泽植被叶面积指数的模型最佳;在常规高光谱植被指数中,用修正简单比率H-MSR构建的估算沼泽植被叶面积指数的模型最佳;在多光谱植被指数中,用多光谱归一化植被指数M-NDVI构建的估算沼泽植被叶面积指数的模型最佳.对比发现,由多光谱数据提取的植被指数构建的模型对研究区LAI的估算效果不太理想,而从实测高光谱数据提取的窄波段特有植被指数构建的估算沼泽植被叶面积指数模型表现出较明显的优势,表明窄波段植被指数更适合用来监测沼泽植被叶面积指数.  相似文献   

9.
一、青海省草地退化概况国土部门的变更调查数据显示,到2004年底,青海全省有牧草地40375300.93hm2,包括天然草地40016860.49hm2(占99.11%)、改良草地163131.64hm2(占0.40%)、人工草地195308.80hm2(占0.48%)(见图1)。图1青海省2004年牧草地概况一般情况下,根据对草地退化现象的分析研究(如青海省海晏县根据牧草产量下降、杂毒草增长比例及草地环境条件三个方面来确定草地退化等级和面积),将草地退化分为三个等级,即轻度退化、中度退化和重度退化。青海全省因自然因素和病、虫、鼠害及人为影响,造成近1000多万hm2草地退化、沙化。其中中度以上…  相似文献   

10.
不同植被类型对厚层黄土剖面水分含量的影响   总被引:16,自引:1,他引:15  
王志强  刘宝元  张岩 《地理学报》2008,63(7):703-713
为了研究不同植被类型土壤水分差异和土壤水分的年际变化特征, 对陕西省绥德县境 内的农地、天然草地、人工柠条林、人工侧柏林、人工油松林、人工油松侧柏混交林地0~10 m 土壤剖面的土壤水分含量进行了测定与分析。农地土壤约在3 m 以上、其他植被类型约在 2 m 以上土层的土壤含水量随年降雨量的大小存在年际变化, 且农地土壤含水量显著高于其 他植被类型, 其他植被类型间无显著性差异。0~2 m 土层农地土壤水分在不同测定年份始终在易效水以上, 但其他植被类型的土壤水分随降雨量的不同变化于难效- 无效水与易效水之间。农地3 m、其他植被类型约2 m 以下的土壤含水量无显著性年际变化。农地与天然草地 土壤含水量显著高于其他人工林植被, 但二者含水量之间无显著差异, 土壤水分都属易效水 范围。人工柠条灌木林土壤水分显著低于其他植被类型, 人工侧柏林、人工油松林和人工油 松侧柏混交林之间土壤含水量无显著性差异。人工柠条林土壤水分属于难效-无效水范围, 人工乔木林接近难效-无效水范围。  相似文献   

11.
青海省属于全国四大牧区之一,及时监测草地植被长势、准确估算牧草产量对青海牧区可持续发展与生态保护具有重要意义。草地产草量遥感估算主要基于植被指数与地面实测数据的统计关系,但是估算涉及植被指数、统计模型和建模指标等因素,不同组合建立的估算模型的精度不同。本文基于青海省MODIS数据与地面实测产草量数据,选择了6种植被指数(NDVIEVIRVIDVIRDVIMSAVI)、5种统计模型(简单线性模型、二次多项式模型、幂函数模型、指数函数模型、对数函数模型)以及3种建模指标(植被指数年度最大值VImax、植被指数生长季累积值VIseason-cum、植被指数年度累积值VIannual-cum),研究不同组合下估算模型的精度差异,并从中选出最优产草量估算模型,用于估算青海省2015年和2016年的产草量。结果表明:(1)6种植被指数中,基于NDVI的产草量估算精度最高;非线性模型的估算精度高于线性模型,尤其是指数模型,适用于大多数草地类型产草量的估算;基于NDVI年度最大值的估算模型对大多数草地类型都具有最高的决定系数(R2)。(2)从干重来看,高产草量区(>1 200 kg·hm-2)主要位于青海东部的高寒草原,中等产草量区(600~1 200 kg·hm-2)位于青海南部和东部的高寒草原和禾草草原,低产草量区(<600 kg·hm-2)位于青海西部和北部的高寒草甸、高寒草原、高寒荒漠和盐生草甸。(3)与2015年相比,2016年青海省干草总产量减少31.60×104 t,减幅为1.36%。其中,禾草草原和高寒草甸的减产幅度最大,而荒漠草原和盐生草甸的产量则有所增加。本文可为草地产草量遥感估算的研究和实践提供参考。  相似文献   

12.
GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalised Difference Vegetation Index) from 1982 to 2006 and MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI from 2001 to 2010 were blended to extract the grass coverage and analyze its spatial pattern. The response of grass coverage to climatic variations at annual and monthly time scales was analyzed. Grass coverage distribution had increased from northwest to southeast across China. During 1982-2010, the mean nationwide grass coverage was 34% but exhibited apparent spatial heterogeneity, being the highest (61.4%) in slope grasslands and the lowest (17.1%) in desert grasslands. There was a slight increase of the grass coverage with a rate of 0.17% per year. Increase in slope grasslands coverage was as high as 0.27% per year, while in the plain grasslands and meadows the grass coverage increase was the lowest (being 0.11% per year and 0.1% per year, respectively). Across China, the grass coverage with extremely significant increase (P<0.01) and significant increase (P<0.05) accounted for 46.03% and 11% of the total grassland area, respectively, while those with extremely significant and significant decrease accounted for only 4.1% and 3.24%, respectively. At the annual time scale, there are no significant correlations between grass coverage and annual mean temperature and precipitation. However, the grass coverage was somewhat affected by temperature in alpine and sub-alpine grassland, alpine and sub-alpine meadow, slope grassland and meadow, while grass coverage in desert grassland and plain grassland was more affected by precipitation. At the monthly time-scale, there are significant correlations between grass coverage with both temperature and precipitation, indicating that the grass coverage is more affected by seasonal fluctuations of hydrothermal conditions. Additionally, there is one-month time lag-effect between grass coverage and climate factors for each grassland types.  相似文献   

13.
GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalised Difference Vegetation Index) from 1982 to 2006 and MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI from 2001 to 2010 were blended to extract the grass coverage and analyze its spatial pattern. The response of grass coverage to climatic variations at annual and monthly time scales was analyzed. Grass coverage distribution had increased from northwest to southeast across China. During 1982–2010, the mean nationwide grass coverage was 34% but exhibited apparent spatial heterogeneity, being the highest (61.4%) in slope grasslands and the lowest (17.1%) in desert grasslands. There was a slight increase of the grass coverage with a rate of 0.17% per year. Increase in slope grasslands coverage was as high as 0.27% per year, while in the plain grasslands and meadows the grass coverage increase was the lowest (being 0.11% per year and 0.1% per year, respectively). Across China, the grass coverage with extremely significant increase (P<0.01) and significant increase (P<0.05) accounted for 46.03% and 11% of the total grassland area, respectively, while those with extremely significant and significant decrease accounted for only 4.1% and 3.24%, respectively. At the annual time scale, there are no significant correlations between grass coverage and annual mean temperature and precipitation. However, the grass coverage was somewhat affected by temperature in alpine and sub-alpine grassland, alpine and sub-alpine meadow, slope grassland and meadow, while grass coverage in desert grassland and plain grassland was more affected by precipitation. At the monthly time-scale, there are significant correlations between grass coverage with both temperature and precipitation, indicating that the grass coverage is more affected by seasonal fluctuations of hydrothermal conditions. Additionally, there is one-month time lag-effect between grass coverage and climate factors for each grassland types.  相似文献   

14.
砒砂岩地区降雨与植被耦合关系对侵蚀产沙的影响   总被引:1,自引:0,他引:1  
张喜旺  秦奋 《地理研究》2016,35(3):513-524
研究降雨--植被耦合关系对侵蚀产沙的影响,为侵蚀治理提供数据支持.基于TRMM降雨数据和MODIS 250 m NDVI,分析降雨和植被的年内分布模式和匹配关系,并构建降雨--植被耦合指数RV,用于反映侵蚀产沙状况.进一步利用年降雨量,NDVI以及其分布参数(峰度系数和偏斜度)与输沙量进行相关分析和多元回归分析.结果显示:降雨的集中,偏斜程度和波动性要比植被更为明显;RV与实际输沙量的相关系数为0.84,可以很好地反映侵蚀产沙的相对大小;年输沙量与降雨的分布参数相关性最高,达到0.94和0.87,对提高回归模型的拟合程度影响也最大;考虑降雨量,NDVI及其分布参数的模型的拟合程度最好,Ra2达到0.9232.因此,降雨与植被的年内匹配模式对侵蚀产沙具有重要影响.  相似文献   

15.
李辉霞  刘淑珍 《山地学报》2003,21(Z1):72-76
本文通过分析那曲县草地退化遥感监测对象的空间分布特征、波谱响应特征和时相特征三个地学属性,得出以下结论:(1)那曲县的自然景观单元分异程度比较低;(2)退化草地植被在TM5、6波段具有高反射值,LAND-SAT TM信息源中具有对草地植被退化敏感的波段TM7,TM5和TM3;(3)高原植被返青比较晚,生长期短,7、8月份是牧草生长旺季。并根据地学属性分析结论选择7月下旬的LANDSAT TM图像作为草地退化动态监测的主要遥感信息源。  相似文献   

16.
To date, the interpretation of remote sensing images has not revealed wide-spread degradation of the vegetation in the Sahel. However, the interpretation of spectral information depends on a range of assumptions regarding the dynamics of the Sahelian vegetation as a function of rainfall variability and human management. Recent papers have presented diverging views on the vegetation dynamics of the Sahel and how these can be analysed with remote sensing images. We present a further analysis of the vegetation dynamics of semi-arid rangelands, in particular the Sahel, and the subsequent implications for the interpretation of remote sensing images. Specifically, the ecological processes driving the response of the Sahelian vegetation to rainfall variation are re-examined, and a regression analysis of NPP versus rainfall data is carried out. It is shown that the relation between the interannual variation in NPP and rainfall in the Sahel is non-linear and that this relation differs between sites with different average annual rainfall. It has been common practise in remote sensing studies for the Sahel to aggregate data from various Sahelian sites in order to obtain an average relation between rainfall, NPP and Rain Use Efficiency, and to assume these relations to be linear. This paper shows that this approach may lead to a bias in the interpretation of remote sensing images and that further work is required to clarify if wide-spread ecosystem degradation has occurred in the Sahel.  相似文献   

17.
北方农牧交错带草原产草量遥感监测模型   总被引:21,自引:0,他引:21  
及时准确地了解草原产草量的时空配置状况,对于科学合理地利用、管理草地,保证畜牧业生产持续稳定发展、改善生态环境等具有重要的意义。本文利用2005年的MODIS数据和同期野外实测的668个样方产草量数据,分析了5种植被指数和草地生物量之间的相关关系。研究表明:(1)分区模型优于不分区模型,在分区基础上建模更能反映产草量的实际情况;(2)通过线性、非线性模型和BP神经网络模型的对比,得出BP神经网络模型在拟合精度上优于线性和非线性模型,是最适宜监测北方农牧交错带草原产草量的模型;(3)5种植被指数中,NDVI和SAVI与草地生物量之间的拟合精度最高,是研究区最适宜使用的植被指数。  相似文献   

18.
The concept of rainfall erosivity is extended to the estimation of catchment sediment yield and its variation over time. Five different formulations of rainfall erosivity indices, using annual, monthly and daily rainfall data, are proposed and tested on two catchments in the humid tropics of Australia. Rainfall erosivity indices, using simple power functions of annual and daily rainfall amounts, were found to be adequate in describing the interannual and seasonal variation of catchment sediment yield. The parameter values of these rainfall erosivity indices for catchment sediment yield are broadly similar to those for rainfall erosivity models in relation to the R-factor in the Universal Soil Loss Equation.  相似文献   

19.
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre-lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi-cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

20.
黄河中游的侵蚀环境与植被恢复前景   总被引:3,自引:0,他引:3  
黄土高原的土壤侵蚀和生态环境问题世界瞩目。在保证蓄水拦沙效益基础上,提高林、草保存率,使植被恢复得到最佳的生态效益,是黄土高原环境整治中亟待解决的关键问题。本文根据黄土高原不同空间地理位置的流域、重点县水文监测资料,研究了气候、地表覆被、土地利用方式的变化对流域侵蚀产沙的影响以及流域产沙与地理环境要素间的耦合关系,定量分析了黄土高原,特别是多沙粗沙区自然与人文要素对流域侵蚀产沙的综合影响和因子的权重分析,并利用天然降雨植被生态需水适宜性系数和林、草恢复度的概念,重点探讨了黄河中游主要产沙区、尤其是多沙粗沙区退耕还林等土地利用方式宏观格局变化与植被恢复前景。研究表明,在植被生长主要依赖天然降雨的黄土高原,生物措施(植被类型)要与自然带相适应,应根据植被恢复度和植被生态需水适应性系数来进行宏观植被的恢复与实施。这是目前在不断增长的人口压力下,进行水土保持,解决好经济发展与环境保护、减少垦殖率与保证老百姓的基本农田、造林种草与植被类型的自然适应性、以及控制泥沙作用中生物措施与工程措施合理布局等诸多矛盾的关键所在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号