首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Floating macrodetritus transport was determined on 72 tidal cycles over 18 months. Floating macrodetritus was exported from the marsh-estuarine ecosystem to the Atlantic Ocean, but export was low (less than 1% of Spartina net aerial primary production). Season and processes within the system seem to determine ebb flux, while flood flux is best explained by a semi-lunar cycle or high water. The extensive observations reported here indicate macrodetritus probably should not be considered a major source of organic carbon export from marsh-estuarine systems.  相似文献   

2.
The magnitude and seasonality of organic carbon exchange was estimated for two basin mangrove forests in Rookery Bay, Florida. Runoff and tidal inundation in the forests were seasonal with half the annual total of each occurring from August to October. In each forest there were 152 tides yr?1 with a cumulative depth of about 12 m. Total organic carbon increased in bay waters exporting from the mangroves following a flood tide and peak concentrations were associated with export due to rainfall. The amount of net export from each basin forest was similar, although the concentration of organic carbon in each were different. Monthly net organic carbon export was proportional to the cumulative tidal amplitude within the forest. Total organic carbon export was 64 gC m?2 yr?1 and DOC was 75% of the total. A comparison of organic carbon export among riverine, fringe and basin mangroves suggests that tidal hydrology influences the proportion of litter fall that is exported from mangroves; and the magnitude of this organic carbon export from mangroves is related to the cumulative tidal amplitude within the forests.  相似文献   

3.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   

4.
长江口北港口门海域悬沙输运机制分析   总被引:1,自引:0,他引:1  
根据2012年10月24日至11月1日在长江口北港口门海域获取的沉积动力学数据,采用输运通量分解方法分析水沙输运机制。结果表明,长江口北港口门附近海域涨、落潮期间底部悬沙浓度与近底部流速呈显著线性相关,存在显著的再悬浮作用;潮周期内的悬沙输运具不对称特征,涨潮悬沙浓度大于落潮悬沙浓度,悬浮泥沙有向陆输运的趋势。拉格朗日平流输运是影响悬沙输运的主要贡献项;潮泵效应(尤其是潮汐捕捉效应)以及河口垂向环流作用是两个次要影响因素,在影响程度上前者比后者略大。观测发现,长江口北港口门海域潮流除了具有涨落潮流速、历时等不对称现象外,还具有流速结构不对称的特征,进而导致涨、落潮底部湍流混合程度不对称与输沙不对称,这可能是造成悬沙向河口内输运形成最大浑浊带的重要因素。  相似文献   

5.
Field measurements were conducted in Mont-Saint-Michel Bay, a megatidal embayment (spring tidal range of 15 m), in order to monitor, over the course of a tidal cycle, sediment transport variability due to waves and tides on the upper part of a tidal flat characterised by shallow water depths. Sensors used to measure currents, water depth and turbidity were installed just above the bed (0.04 m). Two experiments were conducted under contrasting hydrodynamic conditions. The results highlight wave activity over the tidal flat even though observed wind waves were largely dissipated due to the very shallow water depths. Very high suspended sediment concentrations (up to 6 kg/m3) were recorded in the presence of wave activity at the beginning of the local flood, when significant sediment transport occurred, up to 7 times as much as under conditions of no wave activity. This influence may be attributed to the direct action of waves on bed sediments, to wave-induced liquefaction, and to the erosive action of waves on tidal channel banks. The sediment composition, comprising a clay fraction of 2-5%, may also enhance sediment transport by reducing critical shear stress through the sand lubrication effect. The results also show that antecedent meteorological conditions play an important role in suspended sediment transport on the tidal flat. Total sediment flux directions show a net transport towards the inner part of the bay that contributes to deposition over the adjacent salt marshes, and this tendency also prevails during strong wave conditions. Such sediment transport is characterised by significant variability over the course of the tidal cycle. During fair and moderate weather conditions, 83% and 71% of the total flux was observed, respectively, over only 11% and 28% of the duration of the local tidal cycle and with water depths between 0.04 and 0.3 m. These results suggest that in order to improve our understanding of sediment budgets in this type of coastal environment, it is essential to record data just at the beginning and at the end of tidal submergence close to the bed.  相似文献   

6.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   

7.
《Coastal Engineering》2005,52(2):159-175
The Frisian Inlet is one of the tidal basins of the Dutch Wadden Sea. In 1969, its basin area was reduced by 30%. As documented by bathymetric surveys, this has led to an import of sediment of 30×106 m3 over the first 18 years. The study presented in this paper seeks to establish the mechanisms responsible for the passage of the sediment through the throat cross-section of the inlet channel. Emphasis is on a 14-day period of relative calm when sediment transport can be attributed solely to tidal currents. Use is made of continuous measurements of velocity, sand and silt concentration. The measurement station was located on one side of the throat cross-section in a water depth of approximately 6 m. For both the sand and silt fraction of the sediment, suspended load transport is the dominant transport mode. It is shown that for sand, concentration variations and net transport are determined by the local (in the throat section) velocity. Especially the residual velocity and tidal velocity asymmetry play an important role in the net sand flux. For silt, except for transport associated with locally generated vertical mixing, the net transport is largely determined by sedimentation–erosion processes in the basin and the silt concentration in the North Sea. Comparison with measurements in a station located in the middle of the throat section shows considerable difference in residual velocity and tidal velocity asymmetry. As a result, the sediment fluxes also differ. Accurately determining the net sediment flux in the throat section would require a dense net of measurement stations.  相似文献   

8.
To understand the role that physical processes play on the biogeochemical cycles of estuaries, we conducted intense field studies of the turbidity maximum region within a partially mixed estuary (Winyah Bay, SC, USA) under contrasting conditions of river discharge, tides and wind. Water samples and hydrographic data were collected at different depths and locations along the main channel over several tidal cycles during several cruises to Winyah Bay. Tidal variations in current speed, salinity, total suspended solid concentrations were measured within each cruise and were consistent with estuarine circulation processes. Salinity and total suspended solid concentrations ranged from 0 to 32 and from 20 to over 500 mg L−1, respectively, with the highest salinity and total suspended solid values measured during periods of low river discharge. In fact, comparison of tidally averaged salinity and total suspended solid concentrations revealed marked differences among cruises that were negatively correlated to river discharge and SW wind speed. Moreover, significant contrasts in the chemical compositions of suspended particles were evident among periods of contrasting river discharge and wind regime. For example, the weight percent organic carbon content of suspended particles ranged from 1 to over 6% and displayed a positive correlation with river discharge. Similarly, both the molar carbon to nitrogen ratios (10 to 20 mol:mol) and stable carbon isotopic compositions (−25 to −29%) of the suspended organic matter varied significantly as a function of discharge and wind. Such trends indicate that in Winyah Bay low river discharge and steady SW winds promote resuspension of bed sediments from shallow regions of the estuary. These materials contain highly altered organic matter and their incorporation into the water column leads to the observed trends in suspended particle concentrations and compositions. Furthermore, these conditions result in net landward fluxes of salt, sediment and particulate organic matter throughout most of the water column, promoting efficient trapping of materials within the estuary. Our results illustrate the fundamental connection between physical forcings, such as discharge and wind, sediment transport processes and the cycling of biogeochemical materials in estuarine environments.  相似文献   

9.
The purpose of the present contribution is to explore the technique to use Acoustic Doppler Current Pro- filers (ADCPs) for suspended sediment flux measurements, which may be applied to coastal embayment environments such as estuaries and tidal inlets for sediment exchange and budget studies. Based on tidal cycle measurements from the entrance of ]iaozhou Bay, Shandong Peninsula, eastern China, statistical rela- tionships between the suspended sediment concentration (SSC) and ADCP echo intensity output are estab- lished. Echo intensity data obtained during an ADCP survey along two cross-sections during a spring tidal phase were transformed into SSC data. The ADCP current velocity and SSC data were then used to calculate the flux of fine-grained sediment. The results show that net sediment transport at the entrance is directed towards the open sea, with an order of magnitude of 103 t per spring tidal cycle; hence, although Jiaozhou Bay is a low SSC environment, the tidally induced suspended sediment transport can be intense.  相似文献   

10.
Between April 2002 and April 2003, in situ measurements of water depth, current velocity and suspended sediment content were carried out in edge region of East Chongming salt marsh and neighboring bald flat in the Changjiang (Yangtze) Estuary under different weather conditions. Cross-shore suspended sediment flux was calculated and analyzed. The results show that under calm weather conditions, the current velocity process in bald field and salt marsh area varied differently during semidiurnal tidal cycles. Owing to current velocity asymmetry, mean SSC during flood tide phase was 1.8 times higher than that of ebb tide phase. As a result, net onshore sediment flux controlled cross-shore suspended sediment transport process and salt marsh pioneer zone was generally accreting. There was significant positive correlation between total sediment flux and quartic power of maximum water depth. It indicates that tidal ranges dominate suspended sediment transport and sedimentation process in the salt marsh pioneer zone under the calm weather condition. The sedimentation rate on the adjacent mudflat was higher than the salt marsh, which induced stable accreting of salt marsh towards the sea. The wind events enhanced SSC and current velocity during the semidiurnal tides. And the remarkable onshore net sediment flux could occur on the high marsh and mudflat close to the marsh fringe during the short period under the rough weather condition.  相似文献   

11.
Measurements of nitrogen fixation (acetylene reduction) showed greatest rates in the saltmarsh pans with a benthic layer of cyanobacteria present. The smallest amount of nitrogen fixation occurred on the marsh surface where a Puccinellia maritima/Halimione portulacoides plant association shaded the underlying sediment. Phototrophic nitrogen fixation was always greater than dark, chemotrophic, bacterial fixation.Only a small proportion of the total amount of ammonium, which was formed during detrital breakdown, was nitrified to nitrate. Although there is a high capacity for bacterial nitrate reduction in these sediments, the process is limited by low nitrate availability and most nitrate upon reduction is converted to ammonium rather than being denitrified to gaseous products. Denitrification does not, therefore, result in any great loss of nitrogen from the saltmarsh.There was little net import or export of nitrogen on an annual basis, although nitrate and organic-N in small particulate material was removed from tidal water by the marsh, and there was net annual export of ammonium, dissolved organic-N and organic-N in large particulate material. Losses of nitrogen by the small net tidal export and by denitrification were approximately balanced by nitrogen fixation. It was concluded that the nitrogen cycle of the Colne Point saltmarsh was balanced on an annual basis, with most nitrogen being recycled within the marsh. The saltmarsh did not apparently act as a net source of nitrogen for the adjacent estuary, although it may act as an important processor of nitrogen, removing some forms of nitrogen such as nitrate from tidal water while exporting other forms of nitrogen such as dissolved organic-N.  相似文献   

12.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   

13.
夏季浙江沿岸陆架区泥沙输运机制   总被引:3,自引:0,他引:3  
陈斌  高飞  刘健 《海洋学报》2017,39(3):96-105
基于2014年夏季浙江沿岸陆架区的水文、泥沙、底质沉积物等实测资料,运用物质通量分析方法和Gao-Collins粒径趋势分析法,探讨了泥沙的输运通量、输运方向、动力机制及净输运趋势。夏季,近岸含沙量规律性较强,由西至东逐渐降低,由南至北逐渐升高,且与潮流有非常好的对应关系,呈现出明显的潮周期变化特征。研究区净悬沙通量自岸向外海迅速变小,悬沙输运中平流输运占主导地位,其次是垂向净环流对悬沙输运的影响,近岸海域表现为向海输沙,30 m以深海域表现为东北向输沙,同时台湾暖流的屏障作用也影响了悬沙向海扩散。粒径趋势分析显示浙江沿岸陆架表层沉积物的长期输运机制为由东北向西南输运,在流系以及海底地形的影响下,中部海域出现粒径趋势较弱的沉积中心。而在夏季,悬浮泥沙主要为平行岸线向东北输运,估算每天进入研究海域的净悬浮泥沙约为1.9×106 t。  相似文献   

14.
潮沟系统水沙输运研究——以长江口崇明东滩为例   总被引:1,自引:1,他引:0  
本研究以崇明东滩2015年4月实测潮间带水沙数据为基础,分析了潮沟、盐沼及光滩的水沙特征,重点研究了潮沟系统及邻近潮滩潮周期内悬沙通量情况。结果表明:(1)潮沟表层沉积物比潮滩细,二者平均中值粒径分别为21.7 μm和33.0 μm,悬沙粒径由海向陆逐渐变小;(2)大、小潮沟潮周期内潮流均以往复流为主,垂向平均流速分别为15.4 cm/s和34.6 cm/s;盐沼界和光滩则以旋转流为主,平均流速分别为11.3 cm/s和28.9 cm/s;(3)潮沟中的高悬沙浓度出现在涨潮初期,最大可达7.5 kg/m3,而潮滩高悬沙浓度则出现在潮落潮中期和高水位时刻;大、小潮沟和盐沼界站涨潮阶段平均悬沙浓度大于落潮阶段,光滩站则相反。潮沟悬沙主要来自邻近水域,而潮滩悬沙则与滩面表层沉积物密切相关;(4)潮沟在潮周期内净输沙方向均指向滩地,大潮沟潮周期单宽净输沙量可达4.0 t/m;盐沼界处垂直岸线和沿岸输沙强度相近,净输沙由海向陆,潮周期离岸输沙强度为1.0 t/m;光滩沿岸输沙强度远大于垂直岸线输沙,光滩净输沙由陆向海。研究揭示了潮间带潮沟系统的强供沙能力以及研究区域光滩冲蚀,盐沼植被带淤积的动力地貌过程。  相似文献   

15.
Sediment trap experiments were carried out ten times in one year (1977) at three depths in Funka Bay. The material obtained in the traps was analyzed for metals, organic elements and radionuclides, together with the suspended matter in the overlying water column. Two groups with extremely different downward fluxes were found, a group with a small flux increasing with depth, and another with a large flux that is rather constant with depth and is observed only in winter. The flux in winter, and sometimes in the bottom layer below the summer thermocline was larger than the net sedimentation rate for total dry matter or for each chemical constituent. The flux was also larger than the net removal flux for 234Th. A most striking fact is that the specific activity of short-lived 234Th did not decrease in winter, indicating that the large flux in winter was not caused by the re-suspension of old bottom sediments. The concentration of suspended matter in winter was not much greater than that in other seasons. These results suggest that the downward flux observed in sediment trap experiments is not a net removal rate and that there must be an upward particulate flux in the bay.  相似文献   

16.
The relationship between the flux of exotic benthic foraminiferal tests (i.e. tests which are supplied from open-sea sources alone) in a tidal inlet and that of bulk sediment was analysed, which can be expressed as two first-order linear equations. According to this relationship, in order to determine net sediment transport directions in the entrance, the test concentration in surficial sediments of the tidal basin can be compared against a ‘ critical level ’. The critical level is determined for the conditions that no net transport of bulk sediment is present within the entrance. If the observed concentration (averaged over the tidal basin) is higher than the simulated critical level, then the net sediment transport is directed to landward. This method is applied to the analysis of net sand transport at Christchurch Harbour, a tidal inlet system located in southern England. In this investigation, concentrations of exotic foraminiferal tests in the surficial sediments of the tidal basin and ebb tidal delta area were obtained from the analysis of sea-bed sediment samples. A series of probable critical levels were calculated based upon the data sets with regard to: (1) sediment discharge from the rivers; (2) magnitude of sediment discharge within the entrance during the ebb; (3) the test concentration outside the harbour; (4) the thickness of the moving layer; and (5) two parameters associated with dispersive processes. The results show that the concentration in the tidal basin sediment is higher than a number of simulated critical concentrations for representative cases. Consequently, the high level of the concentration of exotic benthic foraminiferal tests within the harbour should be explained as a result of landward net transport of sands within the entrance.  相似文献   

17.
珠江伶仃河口湾及邻近内陆架的纵向环流与物质输运分析   总被引:1,自引:0,他引:1  
根据实测资料分析了珠江伶仃河口湾与邻近内陆架在不同径流影响下的水体混合空间状态和季节变化特征。主要由河口湾表、中层冲淡水和内陆架底层上溯的高盐补偿流构成了河口湾和内陆架之间的净环流,在高径流量和西南大风的情况下,环流下移向内陆架扩展增强。计算表明,7月纵断面上的净环流输运是盐分纵向净通量的控制因素,输运方向指向上游,而其余季节则以向海的净平流输运为主。悬沙净通量主要受净平流及潮抽吸输运控制,潮抽吸输运强度与大小潮有较密切关系。  相似文献   

18.
The 25-h measurements of current speed, flow direction, water depth, suspended sediment concentration and salinity were carried out at six anchored stations in the study area during spring and neap tides in winter of 1987 and summer of 1989. Caculations and analyses of the data obtained show that large amounts of suspended sediments are moved back and forth under the action of tidal current, and the net transport of sediment is small, with its predominance upstream in winter and downstream in summer. These calculations and analyses also suggest that the advective transport of sediment is dominant, while the vertical gravitational circulation of the suspended sediment comes next. Meantime, it is indicated that tidal currents play a major role in the suspended sediment transport, and residual flows have effect on the net transport of the suspended sediment, which is more remarkable during neap tide than during spring tide.  相似文献   

19.
An unditched salt marsh-creek drainage basin (Holland Glade Marsh, Lewes, Delaware) has a sedimentation rate of 0·5 cm year?1. During normal, storm-free conditions, the creek carries negligible amounts of sand and coarse silt. Of the material in the waters flooding the marsh surface, over 80% disappears from the floodwaters within 12 m of the creek. About one-half of the lost material is theoretically too fine to settle, even if flow were not turbulent; however, sediment found on Spartina stems can account for the loss.The quantity of suspended sediment that does reach the back marsh during these normal tides is inadequate to maintain the marsh surface against local sea level rise. This suspended sediment is also much finer than the deposited sediments. Additionally, remote sections of low marsh, sections flooded by only the highest spring tides, have 15–30 cm of highly inorganic marsh muds.This evidence indicates that normal tidal flooding does not produce sedimentation in Holland Glade. Study of the effects of two severe storms, of a frequency of once per year, suggests that such storms can deposit sufficient sediment to maintain the marsh.The actual deposition of fine-grained sediments (fine silt and clay) appears to result primarily from biological trapping rather than from settling. In addition, this study proposes that the total sedimentation on mature marshes results from a balance between tidal and storm sedimentation. Storms will control sediment supply and movement on micro- and meso-tidal marshes, and will have less influence on macro-tidal marshes.  相似文献   

20.
A program of long-term observation of suspended solids (TSS), particulate organic carbon (POC) and cadmium transported into the Gironde estuary (France) by its major tributaries has been carried out between 1990 and 1999. This decade included contrasting hydrologic cycles and appears representative of a much longer period (1959–1999). The Garonne and the Dordogne river systems are the main tributaries of the Gironde estuary and derive their waters from drainage basins with different geological, industrial and agricultural features. To better understand their respective contributions, they have been observed separately and compared. Water and TSS fluxes of the Garonne River show greater temporal variations and discharge is more related to the hydrology of the drainage basin (e.g. wet/dry years, local flood events etc.). As POC and particulate Cd concentrations in suspended matter are much less variable than turbidity, their fluxes are mainly controlled by the TSS transport. A major part of annual fluxes of TSS and associated pollutants may occur within few flood days (depending on various parameters, e.g. intensity, duration, season, etc.), and also the succession of dry and wet years has an important influence on annual fluxes. The presented data allow calculating fluvial inputs into the Gironde as the sum of fluxes transported by its major tributaries, the Garonne and the Dordogne river systems. Mean annual fluxes into the Gironde observed in 1990–1999 are about 34×109 m3 year−1 for river water, 3.24×106 t year−1 for suspended solids (TSS) and 9.88×109 mol year−1 for particulate organic carbon (POC). Generally, these fluxes are dominated by the contributions of the Garonne River. However, in dry years, the mean contribution of the Dordogne river system (including Dronne and Isle rivers) to the POC input into the estuary exceeded that of the Garonne. This reflects significant differences in vegetation and soil due to natural properties and land management of the basins. Mean Cd fluxes into the estuary are about 110×103 mol year−1 of which 19.6×103 mol year−1 are transported in the dissolved and 90.8×103 mol year−1 in the particulate phases, respectively. In 1991 (dry year), the net (dissolved) Cd flux towards the ocean exceeded the gross fluvial input of total Cd, suggesting the release of Cd from an important stock in the maximum turbidity zone (MTZ) or the fluid mud of the Gironde estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号