首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6754篇
  免费   303篇
  国内免费   83篇
测绘学   245篇
大气科学   557篇
地球物理   1561篇
地质学   2233篇
海洋学   574篇
天文学   1252篇
综合类   30篇
自然地理   688篇
  2022年   31篇
  2021年   78篇
  2020年   96篇
  2019年   127篇
  2018年   189篇
  2017年   172篇
  2016年   243篇
  2015年   185篇
  2014年   212篇
  2013年   444篇
  2012年   274篇
  2011年   357篇
  2010年   303篇
  2009年   401篇
  2008年   358篇
  2007年   303篇
  2006年   281篇
  2005年   272篇
  2004年   283篇
  2003年   230篇
  2002年   242篇
  2001年   127篇
  2000年   149篇
  1999年   97篇
  1998年   107篇
  1997年   76篇
  1996年   82篇
  1995年   86篇
  1994年   90篇
  1993年   72篇
  1992年   85篇
  1991年   67篇
  1990年   54篇
  1989年   52篇
  1988年   60篇
  1987年   52篇
  1986年   55篇
  1985年   69篇
  1984年   70篇
  1983年   78篇
  1982年   60篇
  1981年   67篇
  1980年   57篇
  1979年   65篇
  1978年   51篇
  1977年   36篇
  1976年   29篇
  1975年   27篇
  1974年   27篇
  1973年   32篇
排序方式: 共有7140条查询结果,搜索用时 15 毫秒
1.

This paper focuses on the shrinkage behavior of soil specimens involving sand, kaolinite, and kaolinite/sand mixtures subjected to desiccation under controlled conditions. Both, free and restrained shrinkage conditions are studied. The experiments show that pure soils do not curl upon unrestrained shrinkage; however, (under the same conditions) kaolinite/sand mixtures exhibited a marked curling. Furthermore, the mixture with the higher sand content broke through the middle of the sample after displaying a significant curling. Soils subjected to restricted shrinkage developed cracks with slight curling. To simulate the observed behavior, a mechanical model able to reproduce the detachment of the soil sample from the mold is proposed in this work and implemented in a fully coupled hydro-mechanical finite-element code. It is concluded that suction and differential shrinkage are key factors influencing the curling behavior of soils. The proposed framework was able to satisfactorily explain and reproduce the different stages and features of soil behavior observed in the experiments.

  相似文献   
2.
The 2 to 5 km thick, sandstone-dominated (>90%) Jura Quartzite is an extreme example of a mature Neoproterozoic sandstone, previously interpreted as a tide-influenced shelf deposit and herein re-interpreted within a fluvio-tidal deltaic depositional model. Three issues are addressed: (i) evidence for the re-interpretation from tidal shelf to tidal delta; (ii) reasons for vertical facies uniformity; and (iii) sand supply mechanisms to form thick tidal-shelf sandstones. The predominant facies (compound cross-bedded, coarse-grained sandstones) represents the lower parts of metres to tens of metres high, transverse fluvio-tidal bedforms with superimposed smaller bedforms. Ubiquitous erosional surfaces, some with granule–pebble lags, record erosion of the upper parts of those bedforms. There was selective preservation of the higher energy, topographically-lower, parts of channel-bar systems. Strongly asymmetrical, bimodal, palaeocurrents are interpreted as due to associated selective preservation of fluvially-enhanced ebb tidal currents. Finer-grained facies are scarce, due largely to suspended sediment bypass. They record deposition in lower-energy environments, including channel mouth bars, between and down depositional-dip of higher energy fluvio-ebb tidal bars. The lack of wave-formed sedimentary structures and low continuity of mudstone and sandstone interbeds, support deposition in a non-shelf setting. Hence, a sand-rich, fluvial–tidal, current-dominated, largely sub-tidal, delta setting is proposed. This new interpretation avoids the problem of transporting large amounts of coarse sand to a shelf. Facies uniformity and vertical stacking are likely due to sediment oversupply and bypass rather than balanced sediment supply and subsidence rates. However, facies evidence of relative sea level changes is difficult to recognise, which is attributed to: (i) the areally extensive and polygenetic nature of the preserved facies, and (ii) a large stored sediment buffer that dampened response to relative sea-level and/or sediment supply changes. Consideration of preservation bias towards high-energy deposits may be more generally relevant, especially to thick Neoproterozoic and Lower Palaeozoic marine sandstones.  相似文献   
3.
The geological mapping carried out by William Smith, which resulted in the publication of his famous map in 1815, was remarkable in many respects, not least because it relied on him being able to make consistent and accurate observations on the rock types he encountered during his fieldwork. This ability, gained from his many years studying rocks, allowed him to observe features with his own eyes (or at the very least, with the aid of a simple magnifying device) that others could not. We take a new look at William Smith's original stratigraphical sequences, and with samples collected from his classic field areas (many of which are around the city of Bath, Somerset, UK), demonstrate how spatial mineralogy mapping can be incorporated into the modern age of digital mapping.  相似文献   
4.
We developed a seismic geomorphology-based procedure to enhance traditional trajectory analysis with the ability to visualize and quantify lateral variability along carbonate prograding-margin types (ramps and rimmed shelves) in 3D and 4D. This quantitative approach analysed the shelf break geometric evolution of the Oligo-Miocene carbonate clinoform system in the Browse Basin and delineated the feedback between antecedent topography and carbonate system response as controlling factor on shelf break rugosity. Our geometrical analysis identified a systematic shift in the large-scale average shelf break strike direction over a transect of 10 km from 62° to 55° in the Oligo-Miocene interval of the Browse Basin, which is likely controlled by far-field allogenic forcing from the Timor Trough collision zone. Plotting of 3D shelf break trajectories represents a convenient way to visualize the lateral variability in shelf break evolution. Shelf break trajectories that indicate contemporaneous along-strike progradation and retrogradation correlate with phases of autogenic slope system re-organization and may be a proxy for morphological stability of the shelf break. Shelf break rugosity and shelf break trajectory rugosity are not inherited parameters and antecedent topography does not dictate long-term differential movement of the shelf margin through successive depositional sequences. The autogenic carbonate system response to antecedent topography smooths high-rugosity areas by filling accommodation and maintains a relatively constant shelf break rugosity of ~150 m. Color-coding of the vertical component in the shelf break trajectory captures the creation and filling of accommodation, and highlights areas of the transect that are likely to yield inconsistent 2D sequence stratigraphic interpretations.  相似文献   
5.
In this paper, a literature‐based compilation of the timing and history of salt tectonics in the Southern Permian Basin (Central Europe) is presented. The tectono‐stratigraphic evolution of the Southern Permian Basin is influenced by salt movement and the structural development of various types of salt structures. The compilation presented here was used to characterize the following syndepositional growth stages of the salt structures: (a) “phase of initiation”; (b) phase of fastest growth (“main activity”); and (c) phase of burial’. We have also mapped the spatial pattern of potential mechanisms that triggered the initiation of salt structures over the area studied and summarized them for distinct regions (sub‐basins, platforms, etc.). The data base compiled and the set of maps produced from it provide a detailed overview of the spatial and temporal distribution of salt tectonic activity enabling the correlation of tectonic phases between specific regions of the entire Southern Permian Basin. Accordingly, salt movements were initiated in deeply subsided graben structures and fault zones during the Early and Middle Triassic. In these areas, salt structures reached their phase of main activity already during the Late Triassic or the Jurassic and were mostly buried during the Early Cretaceous. Salt structures in less subsided sub‐basins and platform regions of the Southern Permian Basin mostly started to grow during the Late Triassic. The subsequent phase of main activity of these salt structures took place from the Late Cretaceous to the Cenozoic. The analysis of the trigger mechanisms revealed that most salt structures were initiated by large‐offset normal faults in the sub‐salt basement in the large graben structures and minor normal faulting associated with thin‐skinned extension in the less subsided basin parts.  相似文献   
6.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
7.
Subsurface deformation is a driver for river path selection when deformation rates become comparable to the autogenic mobility rate of rivers. Here we combine geomorphology, soil and sediment facies analyses, and geophysical data of the Late Quaternary sediments of the central Garo-Rajmahal Gap in Northwest Bengal to link subsurface deformation with surface processes. We show variable sedimentation characteristics, from slow rates (<0.8 mm/year) in the Tista megafan at the foot of the Himalaya to nondeposition at the exposed surface of the Barind Tract to the south, enabling the development of mature soils. Combined subsidence in the Tista fan and uplift of the Barind Tract are consistent with a N-S flexural response of the Indian plate to loading of the Himalaya Mountains given a low value of elastic thickness (15–25 km). Provenance analysis based on bulk strontium concentration suggests a dispersal of sediment consistent with this flexural deformation—in particular the abandonment of the Barind Tract by a Pleistocene Brahmaputra River and the current extents of the Tista megafan lobes. Overall, these results highlight the control by deeply rooted deformation patterns on the routing of sediment by large rivers in foreland settings.  相似文献   
8.
9.
Although 97% of U.S. farms are “family-owned,” little research examines how gender and sexual relationships – inherent in familial dynamics – influence farmers’ practices and livelihoods. Gender and sexual dynamics – shaped by race and class – affect who is considered a farmer, land management decisions, and access to resources like land, subsidies, and knowledge. We use feminist and queer lenses to illuminate how today’s agricultural gender and sexual relations are not “natural,” but when left uninterrogated are constructed in ways that harm women and queer farmers while limiting potential to develop sustainable practices. Women and queer farmers also resist, “re-orienting” gender and sexual relations in ways that expand possibilities for achieving food justice and ecological sustainability. We offer “relational agriculture” as a tool for making visible and re-orienting gender and sexual relations on farms. Relational agriculture brings sexuality into food justice and demonstrates the centrality of gender and sexuality to agricultural sustainability.  相似文献   
10.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号