首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   511篇
  免费   42篇
  国内免费   12篇
测绘学   5篇
大气科学   37篇
地球物理   164篇
地质学   190篇
海洋学   45篇
天文学   86篇
自然地理   38篇
  2023年   6篇
  2022年   6篇
  2021年   24篇
  2020年   27篇
  2019年   19篇
  2018年   40篇
  2017年   28篇
  2016年   23篇
  2015年   31篇
  2014年   29篇
  2013年   41篇
  2012年   23篇
  2011年   30篇
  2010年   26篇
  2009年   28篇
  2008年   19篇
  2007年   16篇
  2006年   17篇
  2005年   15篇
  2004年   13篇
  2003年   8篇
  2002年   12篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   5篇
  1996年   7篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有565条查询结果,搜索用时 15 毫秒
1.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
2.
Reef-associated landforms are coupled to the health of the reef ecosystem which produces the sediment that forms and maintains these landforms. However, this connection can make reef-fronted coastlines sensitive to the impacts of climate change, given that any decline in ecosystem health (e.g. decreasing sediment supply) or changes to physical processes (e.g. sea level rise, increasing wave energy) could drive the sediment budgets of these systems into a net erosive state. Therefore, knowledge of both the sediment sources and transport mechanisms is required to predict the sensitivity of reef-associated landforms to future climate change. Here, we examine the benthic habitat composition, sediment characteristics (composition, texture, and age), and transport mechanisms and pathways to understand the interconnections between coastal morphology and the reef system at Tantabiddi, Ningaloo Reef, Western Australia. Benthic surveys and sediment composition analysis revealed that although live coral accounts for less than 5% of the benthic cover, coral is the dominant sediment constituent (34% on average). Sediment ages (238U/230Th) were mostly found to be thousands of years old, suggesting that the primary sediment source is relic reef material (e.g. Holocene reef framework). Sediment transport across the lagoon was quantified through measurements of ripple migration rates, which were found to be shoreward migrating and responsible for feeding the large shoreline salient in the lee of the reef. The derived sediment fluxes were comparable with previously measured rates of sediment production by bioerosion. These results suggest that sediment budgets of systems dependent on old (>103 years) source materials may be more resilient to climate change as present-day reef health and community composition (i.e. sources of ‘new’ carbonate production) have limited influence on sediment supply. Therefore, the vulnerability of reef-associated landforms in these systems will be dictated by future changes to mechanisms of sediment generation (e.g. bioerosion) and/or physical processes. © 2018 John Wiley & Sons, Ltd.  相似文献   
3.
NASA's Genesis mission was flown to capture samples of the solar wind and return them to the Earth for measurement. The purpose of the mission was to determine the chemical and isotopic composition of the Sun with significantly better precision than known before. Abundance data are now available for noble gases, magnesium, sodium, calcium, potassium, aluminum, chromium, iron, and other elements. Here, we report abundance data for hydrogen in four solar wind regimes collected by the Genesis mission (bulk solar wind, interstream low‐energy wind, coronal hole high‐energy wind, and coronal mass ejections). The mission was not designed to collect hydrogen, and in order to measure it, we had to overcome a variety of technical problems, as described herein. The relative hydrogen fluences among the four regimes should be accurate to better than ±5–6%, and the absolute fluences should be accurate to ±10%. We use the data to investigate elemental fractionations due to the first ionization potential during acceleration of the solar wind. We also use our data, combined with regime data for neon and argon, to estimate the solar neon and argon abundances, elements that cannot be measured spectroscopically in the solar photosphere.  相似文献   
4.
Subsurface deformation is a driver for river path selection when deformation rates become comparable to the autogenic mobility rate of rivers. Here we combine geomorphology, soil and sediment facies analyses, and geophysical data of the Late Quaternary sediments of the central Garo-Rajmahal Gap in Northwest Bengal to link subsurface deformation with surface processes. We show variable sedimentation characteristics, from slow rates (<0.8 mm/year) in the Tista megafan at the foot of the Himalaya to nondeposition at the exposed surface of the Barind Tract to the south, enabling the development of mature soils. Combined subsidence in the Tista fan and uplift of the Barind Tract are consistent with a N-S flexural response of the Indian plate to loading of the Himalaya Mountains given a low value of elastic thickness (15–25 km). Provenance analysis based on bulk strontium concentration suggests a dispersal of sediment consistent with this flexural deformation—in particular the abandonment of the Barind Tract by a Pleistocene Brahmaputra River and the current extents of the Tista megafan lobes. Overall, these results highlight the control by deeply rooted deformation patterns on the routing of sediment by large rivers in foreland settings.  相似文献   
5.
6.
This article borrows a statistical method from physical geography—topographical prominence—to suggest a new technique for measuring the relative significance or rank of population centers. Unlike raw population measures, prominence gives consideration to both the spatial intensity of concentrated population areas as well as the spatial dependence or independence of neighboring settlement clusters in relation to one another. We explain how to apply the topographic prominence calculation method to gridded population data and examine its practical utility through case studies of several U.S. states. We then discuss some ways in which parametric choices about point-to-surface transformations can result in considerably different outcomes and offer further suggestions for conceptualizing and measuring population center significance.  相似文献   
7.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   
8.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
9.
In hydrological modelling of catchments, wherein streams are groundwater-fed, an accurate representation of groundwater processes and their interaction with surface water is crucial. With this purpose, a coupled model was recently developed linking SWAT (Soil and Water Assessment Tool) with the fully-distributed groundwater model MODFLOW (Modular Groundwater Flow). In this study, SWAT and SWAT-MODFLOW were applied to a Danish groundwater-dominant catchment, simulating groundwater abstraction scenarios and assessing the benefits and drawbacks of SWAT-MODFLOW. Both models demonstrated good performance. However, SWAT-MODFLOW provided more realistic outputs when simulating abstraction: the decrease in streamflow was similar to the volume of water abstracted, while in SWAT the impact was negligible. SWAT also showed impacts on streamflow only when abstractions were taken from the shallow aquifer, not from the deep aquifer. Overall, SWAT-MODFLOW demonstrated wider possibilities for groundwater analysis, providing more insights than SWAT in supporting decision making in relation to environmental assessment.  相似文献   
10.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号