首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The largest rift zone of Europe and Asia is located in the region of Lake Baikal. In 1968–1970 deep seismic measurements were carried out along a number of profiles with a total length of about 2000 km within the rift zone and in the adjacent parts of the Siberian platform and the region of the Baikal Mountains. These investigations were of a reconnaissance nature, and therefore the point sounding method was used.A low-velocity region for compressional waves (7.6–7.8 km/sec) has been found and could be traced over a large area in the upper parts of the mantle. The width of this anomalous zone is 200–400 km. The Baikal rift lies in its northwestern part. Within the studied part of the Siberian platform the thickness of the earth's crust is 37–39 km, while in the rift zone it is 36 km, and further to the southeast the crust-mantle boundary lies at a depth of 45–46 km. The Baikal rift proper is bounded in the northwest by a deep fracture zone and does not seem to be associated with any significant “root” or “antiroot” in the relief of the Mohorovi?i? discontinuity.The reduced compressional velocity in the upper parts of the mantle beneath the Baikal zone is considered to correspond to the same phenomena found under the mid-oceanic ridges and the extended rift system in the Basin and Range province of North America. The Baikal rift in the narrow sense of the word lies over the northwestern edge of the anomalous mantle region. This asymmetric position seems to be its main peculiarity.  相似文献   

2.
下辽河大陆裂谷与岩浆活动   总被引:3,自引:0,他引:3       下载免费PDF全文
下辽河裂谷是我国东部规模巨大的郯庐断裂带的一部分。五十年代以来,地质和地球物理工作者对郯庐断裂带进行过大量的专题和综合性研究[1-5],取得了可喜的进展。尽管如此,目前对其形成时代、延伸规模、力学机制及活动方式等重要问题,尚存在分歧意见。已有资料表明,发育在华北断块区内的一段,应是郯庐断裂带的主体部分,已确信无疑。该段东界的主干断裂,可能形成于太古代末期(其它三条主干断裂形成时代可能稍晚,但至少在中生代即已存在),构成胶辽断块与冀鲁断块的边界。长期以来,它控制着两侧断块基底的形成和古生界盖层的发育,以及构造格架的布局。  相似文献   

3.
Abyssal variations beneath the Baikal rift zone are revealed in an irregular seismic stratification of the crust, the presence of an intracrust waveguide and by the vast (> 200,000 km2) underlying area of anomalously low velocity (Pn = 7.6−7.8 km/sec) uppermost mantle. In its abyssal structure the Baikal rift is heterogeneous along the strike, with sharp changes in crustal thickness (35–50 km).Comparison of first-arrival seismic-velocity curves and also the respective velocity columns reveals the essential similarity of upper-mantle seismic cross-sections for all continental rift zones. The anomalous upper layer of the mantle (ca. 7.7 km/sec) is relatively thin (15-13 km) and can be linked with the mantle waveguide only locally.  相似文献   

4.
The Baikal rift zone: the effect of mantle plumes on older structure   总被引:8,自引:0,他引:8  
The main chain of SW–NE-striking Cenozoic half-grabens of the Baikal rift zone (BRZ) follows the frontal parts of Early Paleozoic thrusts, which have northwestern and northern vergency. Most of the large rift half-grabens are bounded by normal faults at the northwestern and northern sides. We suggest that the rift basins were formed as a result of transformation of ancient thrusts into normal listric faults during Cenozoic extension.Seismic velocities in the uppermost mantle beneath the whole rift zone are less than those in the mantle beneath the platform. This suggests thinning of the lithosphere under the rift zone by asthenosphere upwarp. The geometry of this upwarp and the southeastward spread of its material control the crustal extension in the rift zone. This NW–SE extension cannot be blocked by SW–NE compression generated by pressure from the Indian lithospheric block against Central Asia.The geochemical and isotopic data from Late Cenozoic volcanics suggest that the hot material in the asthenospheric upwarp is probably provided by mantle plumes. To distinguish and locate these plumes, we use regional isostatic gravity anomalies, calculated under the assumption that topography is only partially compensated by Moho depth variations. Variations of the lithosphere–asthenosphere discontinuity depth play a significant role in isostatic compensation. We construct three-dimensional gravity models of the plume tails. The results of this analysis of the gravity field are in agreement with the seismic data: the group velocities of long-period Rayleigh waves are reduced in the areas where most of the recognized plumes are located, and azimuthal seismic anisotropy shows that these plumes influence the flow directions in the mantle above their tails.The Baikal rift formation, like the Kenya, Rio Grande, and Rhine continental rifts [Achauer, U., Granet, M., 1997. Complexity of continental rifts as revealed by seismic tomography and gravity modeling. In: Jacob, A.W.B., Delvaux, D., Khan, M.A. (Eds.), Lithosphere Structure, Evolution and Sedimentation in Continental Rifts. Proceedings of the IGCP 400 Meeting, Dublin, March 20–22, 1997. Institute of Advanced Studies, Dublin, pp. 161–171], is controlled by the three following factors: (i) mantle plumes, (ii) older (prerift) linear lithosphere structures favorably positioned relative to the plumes, and (iii) favorable orientation of the far-field forces.  相似文献   

5.
Y. Folkman 《Tectonophysics》1981,80(1-4):135-146
The results of a combined analysis of aeromagnetic and gravity data covering the rift and adjacent areas show two different deep structural models: (a) Across the northern and central portions of the rift zone the crustal thickness and the character of the upper mantle remain unchanged. On the other hand, the lithology of the upper crust varies laterally so that the mafic composition of the rock type probably increases from east to west. (b) The southern portion of the rift may be underlain by an anomalous, low-density upper mantle.

Local negative gravity anomalies within the rift zone delineate deep depressions, separated by structural highs. The Dead Sea depression is interpreted to be filled by 7.5 km of young, low-density sediments.

Local magnetic anomalies which cover the northern portion only are interpreted as basalt flows. This approach enables delineation of fault patterns which support the classic view of sinistral strike slip movement along a complicated fault system.  相似文献   


6.
Devana Chasma is a rift system on Venus formed in association with the Beta Regio and Phoebe Regio volcanic highlands, which are interpreted as mantle plumes. We present a new analysis of a 2500-km-long segment of Devana. Based on the rift topography, the horizontal extension across the rift boundary faults is 3–9 km. This is a lower bound on the total rift extension because the altimetry does not resolve the topographic relief across the numerous faults that are visible in radar images of the rift floor. The total extension across Devana is approximately 20 km, similar in magnitude to continental rift systems on Earth. Rift flank elevations are up to 3.1 km in the regions nearest the mantle plumes and decay strongly with increasing distance from the plumes, indicating a strong thermal component to the rift flank topography, unlike the situation usually reported for terrestrial rifts. As on Earth, there is also a flexural uplift component to the flank topography. Rift depths are up to 2.5 km below the surrounding plains, with considerable along-strike variability. There is a 600 km lateral offset along Devana Chasma near the mid-point between the two mantle plumes. Devana most likely formed as two distinct rifts due to the horizontal stresses created by outflow from the upwelling plumes. The offset zone formed as a result of the interaction between the two rift tips, which requires that upwelling at the two mantle plumes overlapped in time.  相似文献   

7.
The main episode of Cenozoic volcanic activity occurred simultaneously with formation of the Sayan—Baikal uplift, before the rift depressions were initiated. Volcanism and rifting in this region have developed as independent processes, connected with each other only by an ultimate primary mantle energy source. The volcanic regions do not coincide with the rift depressions, except in the Tunka graben.Chemical features of the volcanics show that during the entire period of volcanic activity there was a complex alternation of basaltic lavas of alkaline, intermediate and tholeiitic composition. Both alkaline and subalkaline lavas are distributed over the entire volcanic region, excepting the Tunka depression where tholeiitic lavas are predominant. However, there is neither mineralogical nor chemical evidence for the existence of two separate magma types within the Baikal rift zone.Judging by the presence of high-pressure, lherzolitic megacrysts of clinopyroxene, and to a lesser extent titaniferous biotite and amphibole in alkaline basalts, variations of lava chemistry are connected with high-pressure fractionation of initial melts, which was more complete for sources outside the rift zone. The predominance of tholeiitic lavas in the Tunka depression is likely to have been caused by a higher degree of partial melting and quick ascent of magma to the surface, facilitated by a high geothermal gradient under the depression where crustal extension is taking place.  相似文献   

8.
The modern methods of physical modeling of structure-forming deformations in extension zones of oceanic lithosphere are discussed; the methods differ in their experimental equipment, model material, and experimental techniques. The simulation performed with an elastic-ductile model has demonstrated that extension of a brittle lithospheric layer results in disruption of its continuity and in formation of a rift valley according to the mechanism of running fracture propagation. The modeling results provide insights into qualitative pattern of faulting and fracturing within a rift zone, specific features of rift segmentation, and development of various structural elements (axis bends, echelons of fractures, nontransform offsets, small and large overlaps, etc.) under various geodynamic conditions of spreading. The modeling has shown that origination and evolution of structures of various types depend on the lithosphere’s thickness beneath the rift axis; the width of the lithosphere’s heating zone; the spreading orientation; and, to a lesser degree, on the spreading rate. A relatively rectilinear rift broken into particular segments bounded by small-amplitude offsets with or without minor overlaps arises in the case of both a small width of the heating zone, closely related to the axial magma chamber, and a small thickness of the lithosphere (fast-spreading conditions). In the case of a wide heating zone caused by ascent of an asthenospheric wedge or a mantle plume, offsets of rift are more pronounced and deformations embrace a wider region. If, as a result, the thickness of the lithosphere increases, the rift will be less linear and the structural heterogeneity will become more contrasting. In addition to the thickness of the lithosphere, the angle between the rift zone and the extension axis also controls the rift configuration: the greater the angle, the more conspicuous the en echelon arrangement of fractures. For any spreading type, the propagating front of linear microfractures that disrupt the upper brittle layer of the lithosphere predates the origin of mesoscopic fractures and predetermines a general trend of the rift zone. This indicates that the fractures of various sizes propagate simultaneously.  相似文献   

9.
Recent theoretical studies of rift tectonics have concludedthat their observed geophysical features, require that (1) extensionaffects a much wider zone of the underlying lithospheric mantlethan the crust; (2) early extension involves a comparativelywide zone that narrows with time. The Neogene evolution of thesegment of the Rio Grande rift between the Great Plains andColorado Plateau shows this theoretical pattern clearly. Thewidth of the crustal extension zone narrowed from {small tilde}170km in the Oligo-Miocene to {small tilde}50 km in the Pliocene.In contrast, both gravity and teleseismic studies indicate thatthe current width of the zone of thinned lithospheric mantle(ß = 2–3) beneath the rift is {small tilde}750km. To assess the contributions of lithosphere- and asthenosphere-derivedmelts to the magmatismassociated with the early phase of developmentof the Rio Grande rift, we have undertaken a 670-km geochemicaltraverse of Oligo-Miocene volcanism between latitudes 36 and38N. Our section is centered on the present-day axis of therift in the Espanola Basin. It extends from the Navajo volcanicfield, Arizona, to Two Buttes, SE Colorado, and intersects hypabyssalintrusions on the rift shoulders at Dulce, west of the rift,and Spanish Peaks to the east. We have sampled a diverse rangeof magma types that vary in composition from ultrapotassic toHy- and Ne-normative basalts. A geochemical profile along thistraverse shows a spatially symmetrical variation in elementand oxide ratios, such as Na2O/K2O and Ba/Nb, and also in Srand Nd isotope ratios. On the rift flanks and shoulders Oligo-Miocenevolcanism was dominated by K-rich mafic magmatism, whereas atthe rift axis tholeiitic and alkalic basalts with whole-rockcompositions similar to those of ocean-island basalts (OIB)were erupted. This symmetrical geochemical variation broadlyparallels the corresponding teleseismic lithosphere thicknessprofile and is a mirror image of the gravity profile. We interpret the OIB-type magmas at the rift axis as predominantlyasthenosphere-derived melts. These suggest that mantle upwelling,and melting by decompression, were occurring during the earlydevelopment of the Rio Grande rift The symmetrical variationof incompatible elements and isotope ratios in rocks about therift axis suggests that the sources of the K-rich mafic magmason the stable flanks and shoulders of the rift are not directlyrelated to the subduction of the Farallon plate: an asymmetricprocess. Instead, we propose that the K-rich mafic magmas onthe flanks and shoulders of the Rio Grande rift are derivedfrom the melting of a metasomatized layer in the lithosphericmantle during extension. *Present address: British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK  相似文献   

10.
Numerical experiments reproduce the fundamental architecture of magma-poor rifted margins such as the Iberian or Alpine margins if the lithosphere has a weak mid-crustal channel on top of strong lower crust and a horizontal thermal weakness in the rift center. During model extension, the upper crust undergoes distributed collapse into the rift center where the thermally weakened portion of the model tears. Among the features reproduced by the modeling, we observe: (1) an array of tilted upper-crustal blocks resting directly on exhumed mantle at the distal margin, (2) consistently oceanward-dipping normal faults, (3) a mid-crustal high strain zone at the base of the crustal blocks (S-reflector), (4) new ocean floor up against a low angle normal fault at the tip of the continent, (5) shear zones consistent with continentward-dipping reflectors in the mantle lithosphere, (6) the mismatch frequently observed between stretching values inferred from surface extension and bulk crustal thinning at distal margins (upper plate paradox). Rifting in the experiment is symmetric at a lithospheric scale and the above features develop on both sides of the rift center. We discuss three controversial points in more detail: (1) weak versus strong lower crust, (2) the deformation pattern in the mantle, and (3) the significance of detachment faults during continental breakup. We argue that the transition from wide rifting towards narrow rifting with a pronounced polarity towards the rift center is associated with the advective growth of a thermal perturbation in the mantle lithosphere.  相似文献   

11.
岩溶发育的气候条件是决定碳酸盐岩油气田储集空间和运移通道类型的主要因素,溶缝和溶洞是古潮湿环境下塔里木盆地奥陶系碳酸盐岩岩溶发育的产物。通过对塔里木盆地北缘奥陶系碳酸盐岩古风化壳岩溶发育特征的调查与分析,掌握了溶缝与溶洞的发育分布规律,认为溶洞与裂缝并不是孤立分布的,溶洞与周边有成因联系的影响带(裂缝密集发育带)一起共同组成一个有机的缝洞系统,从而构成了良好的缝洞型储集层。将溶洞与裂缝有机的结合起来,建立了碳酸盐岩风化壳储集体的非均质分布模型—— 缝洞型油气藏结构模式,并提出将裂缝和溶洞比较集中的彼此互相连通的区域作为油元来研究,有利于从宏观上认识缝洞型油气藏的实质。   相似文献   

12.
Based on rheological interpretation of formalized gravity models, earlier known deep-seated structures in the Earth’s crust and mantle of Transbaikalia have been detailed and new ones discovered. The structures are asymmetric and transverse relative to the Baikal rift zone. Their presence explains the peculiar features of the Baikal rift, including the one-way southeasterly direction of horizontal displacement of tectonic masses and northwestern migration of the Earth’s crust extension processes. The prolonged history (more than 250 Ma) of the Baikal rift zone and Transbaikalia mountainous country involved gravity or rotational detachments of rigid tectonic slabs from the craton and their sliding along intracrustal and subcrustal decollement zones into the above-dome area of the Transbaikalia asthenolith.  相似文献   

13.
杨文采 《地质论评》2014,60(5):945-961
本篇讨论大陆岩石圈拆沉、伸展与裂解作用过程。由于大陆岩石圈厚度大而且很不均匀,产生裂谷的机制比较复杂。大陆碰撞远程效应的触发,岩石圈拆沉,以及板块运动的不规则性和地球应力场方向转折,都可能产生岩石圈断裂和大陆裂谷。岩石圈拆沉为在重力作用下"去陆根"的作用过程,演化过程可分为大陆根拆离、地壳伸展和岩石圈地幔整体破裂三个阶段。大陆碰撞带、俯冲的大陆和大洋板块、克拉通区域岩石圈,都可能产生岩石圈拆沉。大陆岩石圈调查表明,拉张区可见地壳伸展、岩石圈拆离、软流圈上拱和热沉降;它们是大陆岩石圈伸展与裂解早期的主要表现。从初始拉张的盆岭省到成熟的张裂省,拆离后地壳伸展成复式地堑,下地壳幔源玄武岩浆侵位,断裂带贯通并切穿整个岩石圈,表明地壳伸展进入成熟阶段。中国东北松辽盆地和西欧北海盆地曾处于成熟的张裂省。岩石圈破裂为岩浆侵位提供了阻力很小的通道网。岩浆侵位作用伴随岩石圈破裂和热流体上涌,成熟的张裂省可发展成大陆裂谷。多数的大陆裂谷带并没有发展成威尔逊裂谷带和洋中脊,普通的大陆裂谷要演化为威尔逊裂谷带,必须有来自软流圈的长期和持续的热流和玄武质岩浆的供应。威尔逊裂谷带岩石圈地幔和软流圈为地震低速带,其根源可能与来自地幔底部的地幔热羽流有关。  相似文献   

14.
Holocene vertical deformation outside the active rift zone of north Iceland   总被引:2,自引:0,他引:2  
In Iceland, the main deformation activity occurs not only in the active rift zone where volcanism and seismicity coexist in fissure swarms but also in the transfer zones (north and south) where the main part of the seismic activity is located. Many studies described extension and vertical displacement associated with rifting and magmatism inside this rift zone. They have classically assumed that no deformation occurs outside the rift zone. However, few studies have already been conducted outside the rift zone. This work focuses on an area west of the rift zone in the Akureyri area, which displays an anomalous topography. We illustrate an ENE tilting of 0.23° since approximately 17,000 years ago using ancient lacustrine shorelines mapped in detail with a differential GPS survey and analysis of SPOT images. This degree of tilting corresponds to a vertical displacement of 160 m, i.e., a deformation rate of 1 cm/year, which is close to values measured in the active zone. This long wavelength deformation is compatible both with (i) the topographic anomaly of the Akureyri area, and with (ii) the very diffuse microseismicity that affects northern Iceland. The origin of this tilting is discussed and the different hypotheses (glacial loading response, rift uplift, transform zone effect, thermal doming, local magmatic intrusion) are reviewed. Our results, structural data and the topography are more consistent with a local magmatic intrusion inducing local doming. This work is the first attempt at quantifying long-term deformation outside the rift zone in Iceland.  相似文献   

15.
中国东部及邻区早白垩世裂陷盆地构造演化阶段   总被引:60,自引:0,他引:60  
张岳桥  赵越  董树文  杨农 《地学前缘》2004,11(3):123-133
早白垩世是中国东部及邻区强烈的伸展裂陷和岩石圈减薄时期。根据裂陷盆地几何形态特征和展布型式 ,将早白垩世裂陷盆地分为泛裂陷型 (燕山—松辽断陷盆地群、蒙古断陷盆地群等 )、狭窄型 (沂沭裂谷系、伊兰—伊通裂谷带 )和菱形状型 (胶莱盆地、三江盆地、鸡西盆地等 ) 3种类型。通过综合分析和对比不同类型裂陷盆地沉积序列和构造演化历史 ,结合郯庐断裂带和秦岭—大别造山带白垩纪构造演化历史的研究成果 ,区分了中国东部早白垩世 2个显著不同的引张裂陷阶段和一个构造挤压反转阶段。早白垩世早期引张裂陷阶段 ( 1 4 0~ 1 2 0Ma)形成了宽广展布的燕山—松辽断陷盆地系和蒙古断陷盆地系 ,沿郯庐断裂带发生右旋走滑活动 ,控制了断裂带西侧南华北伸展走滑盆地和东侧胶莱、三江等和沿敦—密断裂带走滑拉分盆地的发育 ;早白垩世中期引张裂陷阶段 ( 1 2 0~ 1 0 0Ma) ,沿郯庐断裂带中、北段发生裂谷作用 ,形成沂沭裂谷系和伊兰—伊通裂谷带 ;早白垩世晚期 ( 1 0 0~ 90Ma)在区域NW SE向挤压应力场作用下 ,所有早白垩世裂陷盆地发生不同程度的构造反转 ,沿郯庐断裂发生强烈的左旋走滑运动。最后指出 ,太平洋古板块向东亚大陆边缘俯冲诱发的大陆岩石圈底侵作用、拆沉作用、地幔底辟和对流 ,以及来自西部块体  相似文献   

16.
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.  相似文献   

17.
J.D. Fairhead 《Tectonophysics》1976,30(3-4):269-298
A compilation of all published and unpublished gravity data for the Eastern rift between latitudes 1°N and 5°S is presented. The Bouguer anomaly map reveals that the shape of the negative regional anomaly associated with the rift is approximately two-dimensional, striking east of north, of width 350 ± 50 km and amplitude500 ± 100 g.u. relative to the background value of−1300 ± 100 g.u. to the west. The regional anomaly is interpreted in terms of an upward thinning of the lithosphere and replacement by low-density asthenosphere. This model is different from previous interpretations in that major lithospheric thinning is restricted to the region of the Eastern rift affected by the domal uplift and does not extend beneath the Lake Victoria region to the west. The gravity and seismic models are compatible if the anomalous upper mantle (asthenospheric part), beneath the rift, is in a state of partial melt. A consequence of the revised regional anomaly is that it reduces previous amplitude estimates of the axial positive residual anomaly within the rift by at least 50% and generates negative anomalies over the rift shoulders in areas covered by Cenozoic volcanics. These negative anomalies are considered to be caused by the low density of the surface volcanics. Within the rift, elongated negative anomalies of amplitude 100–350 g.u. are associated with sedimentary basins and are attributed to low-density sediments up to 3 km thick. The positive residual anomaly along the axis of the rift can be interpreted in terms of either a dyke injection zone less than 15 km wide or by a dense infill body about 2.5 km thick. The positive anomaly is shown to be confined to the volcanic province of the Eastern rift and has its southern termination in the Magadi—Natron area, just north of where the Kenya rift valley changes to block faulting in N. Tanzania. This termination coincides with a change in the spatial distribution of the seismic and geothermal activity.  相似文献   

18.
闽北角闪辉长岩的地球化学特征及其地球动力学意义   总被引:4,自引:0,他引:4  
赤门角闪辉长岩是中国东南部晚白垩世末基性岩浆活动的产物,分布在福建省南平市的北部,总体呈近NS向展布.岩石属于低钾(拉斑)岩石系列,富Al、Na2O>K2O的特征,岩浆演化过程中经历了以橄榄石、辉石、斜长石和Ti-Fe氧化物的分离结晶作用.赤门角闪辉长岩具相对富集大离子亲石元素(LILE)和轻稀土元素(LREE)、亏损高场强元素(HFSE)的特性, 不相容元素蛛网图显示出消减带岩石的地球化学性质,以Nb、Ta、Ti负异常为特征.微量元素地球化学研究表明,赤门角闪辉长岩浆在上升侵位过程中未发生地壳物质混染,来自不含石榴石的富集岩石圈地幔岩部分熔融的产物,地幔源区的演化与太平洋板块俯冲密切相关.赤门角闪辉长岩形成于大陆拉张带-陆内初始裂谷的过渡环境.综合晚中生代的基性岩类资料,与形成较早的沿海辉长岩对比研究,赤门角闪辉长岩是拉张向裂谷转换体制下形成的过渡岩石类型,标志初始裂谷活动的开始.  相似文献   

19.
The Saar-Nahe-Basin in SW-Germany is one of the largest Permo-Carboniferous basins in the internal zone of the Variscides. Its evolution is closely related to movements along the Hunsrück Boundary Fault, which separates the Rhenohercynian and the Saxothuringian zones. Recent deep seismic surveys indicate that the Saar-Nahe-Basin formed in the hanging wall of a major detachment which soles out at lower crustal levels at about 16 km depth. Oblique extension along an inverted Variscan thrust resulted in the formation of a half-graben, within more than 8 km of entirely continental strata accumulated. The structural style within the basin is characterized by normal faults parallel to the basin axis and orthogonal transfer fault zones. Balanced cross-section construction and subsidence analysis indicate extension of the orogenically thickened lithosphere by 35%. Subsidence modeling shows discontinuous depth-dependent extension with laterally varying extension factors for crust and mantle lithosphere. Thus, the offset between maximum rift and thermal subsidence can be explained by a zone of mantle extension shifted laterally with respect to the zone of maximum crustal extension.
  相似文献   

20.
A new model is suggested for the history of the Baikal Rift,in deviation from the classic two-stage evolution scenario,based on a synthesis of the available data from the Baikal Basin and revised correlation between tectonic-lithological-stratigraphic complexes(TLSC) in sedimentary sections around Lake Baikal and seismic stratigraphic sequences(SSS) in the lake sediments.Unlike the previous models,the revised model places the onset of rifting during Late Cretaceous and comprises three major stages which are subdivided into several substages.The stages and the substages are separated by events of tectonic activity and stress reversal when additional compression produced folds and shear structures.The events that mark the stage boundaries show up as gaps,unconformities,and deformation features in the deposition patterns. The earliest Late Cretaceous-Oligocene stage began long before the India-Eurasia collision in a setting of diffuse extension that acted over a large territory of Asia.The NW-SE far-field pure extension produced an NE-striking half-graben oriented along an old zone of weakness at the edge of the Siberian craton.That was already the onset of rift evolution recorded in weathered lacustrine deposits on the Baikal shore and in a wedge-shaped acoustically transparent seismic unit in the lake sediments.The second stage spanning Late Oligocene-Early Pliocene time began with a stress change when the effect from the Eocene India-Eurasia collision had reached the region and became a major control of its geodynamics.The EW and NE transpression and shear from the collisional front transformed the Late Cretaceous half-graben into a U-shaped one which accumulated a deformed layered sequence of sediments.Rifting at the latest stage was driven by extension from a local source associated with hot mantle material rising to the base of the rifted crust.The asthenospheric upwarp first induced the growth of the Baikal dome and the related change from finer to coarser molasse deposition.With time,the upwarp became a more powerful stress source than the collision,and the stress vector returned to the previous NW-SE extension that changed the rift geometry back to a half-graben. The layered Late Pliocene-Quaternary subaerial tectonic-lithological-stratigraphic and the Quaternary submarine seismic stratigraphic units filling the latest half-graben remained almost undeformed.The rifting mechanisms were thus passive during two earlier stages and active during the third stage. The three-stage model of the rift history does not rule out the previous division into two major stages but rather extends its limits back into time as far as the Maastrichtian.Our model is consistent with geological, stratigraphic,structural,and geophysical data and provides further insights into the understanding of rifting in the Baikal region in particular and continental rifting in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号