首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison between conventional KAr (biotite) ages and fission track (zircon and apatite) and UPb (zircon) ages obtained from stratigraphically well-constrained Priabonian (Late Eocene) volcano-sedimentary deposits of northern Italy is presented. Two sections at Priabona (one level) and Possagno (two levels) were dated. The application of fission track dating appears fruitful for obtaining reasonably precise (±4 to 5% 2σ errors) ages useful for time-scale calibration. The concordancy of apatite and zircon fission track ages, and the reproducibility of results provide the time of volcanic eruption and deposition. The UPb analysis of the zircons has not been unsuccessful, but discordancy does not permit accurate dating. Significant dates obtained from Possagno are: KAr method, 35.0 ± 0.5 Ma (duplicate analysis on K-rich biotite from the same level); fission track dating method, 35.8 ± 1.4 Ma (weighted mean age on 2 apatite and 3 zircon separates from the same level); UPb method, 36.7 ± 1.0 Ma (maximum age of discordant zircons from the same level). The comparison between the present results and recent multi-method and multi-laboratory results obtained from time equivalent Priabonian (Late Eocene) biotite-rich layers from the Apennines shows perfect agreement and supports the location of a Priabonian stage between about 37.5 Ma and about 33.7 (±0.5) Ma; the alternative ages preferred by the Decade of North American Geology convention should be abandoned and a large portion of this scale revised accordingly.  相似文献   

2.
The mineralization ages reported in the past in the Tuwu-Yandong copper district not only are different,but also fall into the Hercynian epoch.This study has achieved 9 zircon and 7 apatite fission track analysis results.The zircon fission track ages range from 158 Ma to 289 Ma and the apatite ages are between 64 Ma and 140 Ma.The mineralization accords with the regional tectonics in the copper district.We consider that the zircon fission track age could reveal the mineralization age based on annealing zone temperature of 140―300℃ and retention temperature of ~250℃ for zircon fission track,and metallogenetic temperature of 120―350℃ in this ore district.Total three mineralization epochs have been identified,i.e.,289―276 Ma,232―200 Ma and 165―158 Ma,and indicate occurrence of the min-eralization in the Indosinian and Yanshan epochs.Corresponding to apatite fission track ages,the three tectonic-mineralizing epochs are 140―132 Ma,109―97 Ma and 64 Ma,which means age at about 100℃ after the mineralization.The three epochs lasted 146 Ma,108 Ma and about 100 Ma from ~250℃ to ~100℃ and trend decrease from early to late.It is shown by the fission track modeling that this district underwent three stages of geological thermal histories,stable in Cretaceous and cooling both before Cretaceous and after 20 Ma.  相似文献   

3.
40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1 precision of±0.25%–0.4% (±0.07–0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1 precisions averaging ±0.25%. Plateau ages from multiple (n=3–8) samples of individual ignimbrites show 1 within-unit precision of ±0.1%–0.4% (±0.04–0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1–3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west.  相似文献   

4.
Summary The ages of forty six muscovite samples obtained from mines in the three main mica belts of India, viz. Bihar, Rajasthan and Andhra Pradesh, and areas around Delhi have been measured using improved fission track dating technique. The effect of geological annealing in the samples has been assessed and suitable correction applied to the ages, wherever required; also, uranium concentration has been measured in tight cleavages so as to avoid errors due to epigenetically introduced uranium.The ages agree with the main orogenic-metamorphic cycles in the respective regions and also the ages of pegmatites measured by other radiometric methods. The ages of the three belts have been measured as follows: Bihar mica belt, 700–1100 m.y.; Rajasthan mica belt and Delhi samples 700–1050 m.y.; Andhra Pradesh (Nellore) mica belt, 470–650 m.y. Occurrence of metamorphic event 600 m.y. in Rajasthan is supported by the age of one of the samples.  相似文献   

5.
Fission track analysis of apatites from basement rocks of the Wright Valley in southern Victoria Land provides information about the timing, the amount and hence the rate of uplift of the Transantarctic Mountains in this area. Apatite ages increase systematically with elevation, and a pronounced break in the age versus elevation profile has been recognised at about 800 m on Mt. Doorly near the mouth of Wright Valley. The apatite age of about 50 Ma at this point approximates the time at which uplift of the mountain range began. Samples lying above the break in slope lay within the apatite fission track annealing zone prior to uplift, during a Cretaceous to Early Cenozoic period of relative thermal and tectonic stability. At the lower elevations samples had a zero apatite fission track age before the onset of rapid uplift and have track length distributions indicating rapid cooling. Some 4.8–5.3 km of uplift are estimated to have occurred at an average rate of about 100 ± 5m/Ma since uplift began. From the total stratigraphic thickness known above the uplifted apatite annealing zone it can be estimated that the Late Cretaceous/Early Cenozoic thermal gradient in the area was about 25–30°C/km.The occurrence and pattern of differential uplift across the Transantarctic Mountains can be estimated from the vertical offsets of different apatite fission track age profiles sampled across the range. These show the structure of the mountain range to be that of a large tilt block, dipping gently to the west under the polar ice-cap and bounded by a major fault zone on its eastern side. Offset dolerite sills at Mt. Doorly show the mountain front to be step-faulted by 1000 m or more down to the McMurdo Sound coast from an axis of maximum uplift just inland from Mt. Doorly.  相似文献   

6.
依据钻孔系统稳态测温、静井温度资料与实测热导率数据分析了柴达木盆地地温场分布特征,建立了柴达木盆地热导率柱,新增了17个大地热流数据.柴达木盆地现今地温梯度介于17.1~38.6℃·km-1,平均为28.6±4.6℃·km-1,大地热流介于32.9~70.4mW·m-2,平均55.1±7.9mW·m-2.盆地不同构造单元地温场存在差异,昆北逆冲带、一里坪坳陷属于"高温区",祁南逆冲带属于"中温区",三湖坳陷、德令哈坳陷及欧龙布鲁克隆起属于"低温区",盆地现今地温场分布特征受控于地壳深部结构、盆地构造等因素.以现今地温场为基础,采用磷灰石、锆石裂变径迹年龄分布特征定性分析与径迹长度分布数据定量模拟相结合,研究了柴达木盆地晚古生代以来的沉积埋藏、抬升剥蚀和热演化史,并结合区域构造背景,对柴达木盆地构造演化过程进行了探讨,研究表明柴达木盆地晚古生代以来经历了六期(254.0—199 Ma,177—148.6 Ma,87—62 Ma,41.1—33.6 Ma,9.6—7.1 Ma,2.9—1.8 Ma)构造运动,六期构造事件与研究区构造演化的动力学背景相吻合.其中白垩纪末期(87—62 Ma)的构造事件导致了柴达木盆地东部隆升并遭受剥蚀,欧龙布鲁克隆起形成雏形,柴达木盆地北缘在弱挤压环境下形成坳陷盆地;中新世末的两期构造事件(9.6—7.1 Ma和2.9—1.8 Ma)使柴达木盆地遭受强烈挤压,盆地快速隆升,构造变形强烈,基本形成现今的构造面貌.  相似文献   

7.
华山岩体中、新生代抬升的裂变径迹证据   总被引:6,自引:3,他引:6       下载免费PDF全文
对采自华山岩体不同高度的磷灰石样品进行裂变径迹分析 ,所得结果结合相关地质资料认为 :(1)华山岩体抬升至少始于渐新世或始新世 ;(2 )华山主峰及北峰间可能发育一条对应于华山山前断裂的次级正断层 ,断距约 340m ;(3)据华山北峰样品研究 ,其各时段的平均抬升速率依次为2 9 2 6~ 2 5 0 5Ma ,V =0 183mm/a ;2 5 0 5~ 2 3 2 7Ma ,V =0 152mm/a ;2 3 2 7~ 2 0 59Ma ,V =0 0 19mm/a  相似文献   

8.
The Eastern Anatolia Region exhibits one of the world's best exposed and most complete transects across a volcanic province related to a continental collision zone. Within this region, the Erzurum–Kars Plateau is of special importance since it contains the full record of collision-related volcanism from Middle Miocene to Pliocene. This paper presents a detailed study of the volcanic stratigraphy of the plateau, together with new K–Ar ages and several hundred new major- and trace-element analyses in order to evaluate the magmatic evolution of the plateau and its links to collision-related tectonic processes. The data show that the volcanic units of the Erzurum–Kars Plateau cover a broad compositional range from basalts to rhyolites. Correlations between six logged, volcano-stratigraphic sections suggest that the volcanic activity may be divided into three consecutive Stages, and that activity begins slightly earlier in the west of the plateau than in the east. The Early Stage (mostly from 11 to 6 Ma) is characterised by bimodal volcanism, made up of mafic-intermediate lavas and acid pyroclastic rocks. Their petrography and high-Y fractionation trend suggest that they result from crystallization of anhydrous assemblages at relatively shallow crustal levels. Their stratigraphy and geochemistry suggest that the basic rocks erupted from small transient chambers while the acid rocks erupted from large, zoned magma chambers. The Middle Stage (mostly from 6–5 Ma) is characterised by unimodal volcanism made up predominantly of andesitic–dacitic lavas. Their petrography and low-Y fractionation trend indicate that they resulted from crystallization of hydrous (amphibole-bearing) assemblages in deeper magma chambers. The Late Stage (mostly 5–2.7 Ma) is again characterised by bimodal volcanism, made up mainly of plateau basalts and basaltic andesite lavas and felsic domes. Their petrography and high-Y fractionation trend indicate that they resulted from crystallization of anhydrous assemblages at relatively shallow crustal levels. AFC modelling shows that crustal assimilation was most important in the deeper magma chambers of the Middle Stage. The geochemical data indicate that the parental magma changed little throughout the evolution of the plateau. This parental magma exhibits a distinctive subduction signature represented by selective enrichment in LILE and LREE thought to have been inherited from a lithosphere modified by pre-collision subduction events. The relationships between magmatism and tectonics support models in which delamination of thickened subcontinental lithosphere cause uplift accompanied by melting of this enriched lithosphere. Magma ascent, and possibly magma generation, is then strongly controlled by strike-slip faulting and associated pull-apart extensional tectonics.  相似文献   

9.
Detailed field mapping in the Güvem area in the Galatia province of NW Central Anatolia, Turkey, combined with K–Ar dating, has established the existence of two discrete Miocene volcanic phases, separated by a major unconformity. The magmas were erupted in a post-collisional tectonic setting and it is possible that the younger phase could be geodynamically linked to the onset of transtensional tectonics along the North Anatolian Fault zone. The Early Miocene phase (18–20 Ma; Burdigalian) is the most voluminous, comprising of over 1500 m of potassium-rich intermediate-acid magmas. In contrast, the Late Miocene volcanic phase (ca. 10 Ma; Tortonian) comprises a single 70-m-thick flow unit of alkali basalt. The major and trace element and Sr–Nd isotope compositions of the volcanics suggest that the Late Miocene basalts and the parental mafic magmas to the Early Miocene series were derived from different mantle sources. Despite showing some similarities to high-K calc-alkaline magma series from active continental margins, the Early Miocene volcanics are clearly alkaline with higher abundances of high field strength elements (Zr, Nb, Ti, Y). Crustal contamination appears to have enhanced the effects of crystal fractionation in the petrogensis of this series and some of the most silica-rich magmas may be crustal melts. The mantle source of the most primitive mafic magmas is considered to have been an asthenospheric mantle wedge modified by crustally-derived fluids rising from a Late Cretaceous–Early Tertiary Tethyan subduction zone dipping northwards beneath the Galatia province. The Late Miocene basalts, whilst still alkaline, have a Sr–Nd isotope composition indicating partial melting of a more depleted mantle source component, which most likely represents the average composition of the asthenosphere beneath the region.  相似文献   

10.
New geochemical and 40Ar/39Ar age data are presented from the Neogene volcanic units of the Karaburun Peninsula, the westernmost part of Western Anatolia. The volcanic rocks in the region are associated with Neogene lacustrine deposition and are characterized by (1) olivine-bearing basaltic-andesites to shoshonites (Karaburun volcanics), high-K calc-alkaline andesites, dacites and latites (Yaylaköy, Arma?anda? and Kocada? volcanics) of ~ 16–18 Ma, and (2) mildly-alkaline basalts (Ovac?k basalt) and rhyolites (Urla volcanics) of ~ 11–12 Ma. The first group of rocks is enriched in LILE and LREE with respect to the HREE and HFSE on N-MORB-normalised REE and multi-element spider diagrams. They are comparable geochemically with volcanic rocks in the surrounding regions such as Chios Island and other localities in Western Anatolia. The Ovac?k basalt is geochemically similar to the first stage early–middle Miocene volcanic rocks but differs from NW Anatolian late Miocene alkali basalts.  相似文献   

11.
K/Ar and fission track age measurements were performed on lava samples of Monte Amiata volcano (Central Italy) which is formed by a sequence of lava flows and lava domes ranging in composition from trachybasalts to high-SiO2 quartzlatites. The ages obtained, except for the oldest volcanic products, range from 290,000 to 180,000 years. Excess40Ar was found in some mineral separates, especially biotite, causing apparent rather old ages. The correct ages were calculated by means of K/Ar isochrons, and were found to be very similar to the ages calculated on sanidine separates. The volcanic activity that built up the outcropping Monte Amiata units seems to have lasted a relatively short time.  相似文献   

12.
Oligocene dome complexes of trachydacitic to rhyolitic composition are common in the southern portion of the Mesa Central physiographic province, which forms part of the southern Basin and Range extensional province as well as of the southern Sierra Madre Occidental volcanic province. Generally, dome complexes occur aligned with regional fault systems, mostly associated with the southern Basin and Range province, and thus suggesting that faults controlled the felsic magmas that formed these domes. Two distribution patterns are evident, one aligned NE–SW and another aligned NNE. The set of domes were emplaced at 33–28 Ma. Emplacement of domes occurred in three continuous phases starting with those of trachydacite affinity at 33–32 Ma, to trachydacite–rhyolitic at 32–31 Ma, and finally to those with rhyolitic composition at 31–28 Ma. Felsic magmas that originated the domes were apparently generated by partial melting at the base of the continental crust. Contrary to previous hypothesis, our evidence suggest that these magmas in these particular areas of the Mesa Central were not accumulated in large magma reservoirs emplaced at shallow levels in the crust, but crossed the continental crust directly. Since continental crust in this region is relatively thin (30–33 km), we propose that an intense extensional episode favored the direct ascension of these magmas through the brittle crust, with little interaction with the country rock during ascent to the surface, to end up forming aligned dome chains or complexes. Geochemical data favors this model, as the felsic rocks show no depletions in Nb and Th but instead relatively enrichment in these elements. REE show flat or concave up patterns, suggesting that the magmas involved enriched (fertile), metasomatized lithospheric fluids that generated partial melting at the base of the continental crust. Based upon these data, we infer an intra-plate tectonic setting for these rocks.  相似文献   

13.
合肥盆地构造热演化的裂变径迹证据   总被引:12,自引:0,他引:12       下载免费PDF全文
运用裂变径迹分析方法,探讨分析了合肥盆地中新生代的构造热演化特征. 上白垩统和古近系下段样品的磷灰石裂变径迹(AFT)数据主体表现为靠近部分退火带顶部温度(±65℃)有轻度退火,由此估算晚白垩世至古近纪早期合肥盆地断陷阶段的古地温梯度接近38℃/km,高于盆地现今地温梯度(275℃/km).下白垩统、侏罗系及二叠系样品的AFT年龄(975~25Ma)和锆石裂变径迹(ZFT)年龄(118~104Ma)均明显小于其相应的地层年龄,AFT年龄-深度分布呈现冷却型曲线形态,且由古部分退火带、冷却带或前完全退火带及其深部的今部分退火带组成,指示早白垩世的一次构造热事件和其随后的抬升冷却过程. 基于AFT曲线的温度分带模式和流体包裹体测温数据的综合约束,推算合肥盆地早白垩世走滑压陷阶段的古地温梯度接近67℃/km. 径迹年龄分布、AFT曲线拐点年龄和区域抬升剥蚀时间的对比分析结果表明,合肥盆地在早白垩世构造热事件之后的104Ma以来总体处于抬升冷却过程,后期快速抬升冷却事件主要发生在±55Ma.  相似文献   

14.
Following the collision along the Bitlis–Zagros suture, a north–south convergence between the Arabian Platform and Laurasia has continued uninterrupted until the present. As a result, the continental crust has been shortened, thickened and consequently elevated to form the Turkish–Iranian high plateau. On the high plateau volcanic activity began during the Neogene, intensified during the late Miocene–Pliocene and continued until historical times. Large volcanic centres have been developed during the Quaternary which form significant peaks above the Turkish–Iranian high plateau. Among the Quaternary volcanoes, the major volcanic centres are Ararat, Tendürek, Suphan and Nemrut. Ararat (Ağri Daği) is the largest volcanic center and is a compound stratovolcano, consisting of Greater Ararat and lesser Ararat. The former represents the highest elevation of Anatolia reaching over 5000 m in height. Tendürek is a double-peaked shield volcano, which produced a voluminous amount of basalt lava as extensive pahoehoe, and aa flows. It has an ill-defined semi-caldera. Suphan is an isolated stratovolcano, capped by silicic dome. It represents the second highest topographic elevation in Anatolia, with a height of over 4000 m. A cluster of subsidiary cones and small domes surrounds the volcano. Nemrut is the largest member of a group of volcanoes, which trend north–south. It is a stratovolcano, having a well-defined collapse caldera and a caldera lake. Various volcanic ejecta have been extruded from these volcanic centres over the last 1 to 2 million years. The Quaternary volcanic centres, although temporally and spatially closely associated, display a wide range of lavas from basalt to rhyolite. The volcanoes have diverse compositional trends; Ararat is distinctly subalkaline, Suphan is mildly subalkaline, Nemrut is mildly alkaline and Tendürek is strongly alkaline. The major and trace element compositions together with the isotope ratios indicate that their magmas were generated from a heterogeneous mantle source. Each of the volcanic centres has undergone a partly different magmatic evolution.  相似文献   

15.
The rates and configuration of seismic deformation in the North Aegean trough-North Anatolian fault are determined from the moment tensor mechanisms of the earthquakes that occurred within this region. The analysis is based onKostrov's (1974) formulation. The fault plane solutions of the earthquakes of the period 1913–1983 withM s 6.0 are used. The focal mechanism of some of the past events (before 1960) is assumed, based on the present knowledge of the seismotectonics as well as on the macroseismic records of the area studied. The analysis showed that the deformation of the northern Aegean is dominated by EW contraction (at a rate of about 15 mm/yr) which is relieved by NS extension (at a rate of about 9 mm/yr). It was also shown that the northern part of North Anatolia (north of 39.7°N parallel) undergoes contraction in the EW direction (at a rate of about 9 mm/yr) and NS extension as the dominant mode of deformation (at a rate of about 5 mm/yr). It may be stated therefore, that the pattern of deformation of the northern Aegean and the northern part of North Anatolian fault is controlled by the NS extension the Aegean is undergoing as a whole, and the dextral strike-slip motion of the North Anatolian fault. The southern part of North Anatolia is undergoing crustal thinning at a rate of 2.3 mm/yr, NS extension (at a rate of 5 mm/yr) as well as EW extension (at a rate of 4 mm/yr), which are consistent with the occurrence of major normal faulting and justify the separation of North Anatolia into two separate subareas.  相似文献   

16.
The thermal history of outcropping Devonian sediments of the northern Appalachian Basin, New York, has been investigated using fission track analysis of detrital apatites from 57 sandstone samples. Based on lengths and apparent age measurements using fission tracks in apatite it is concluded that Lower Devonian sediments presently at the surface in the Catskill region were cooled rapidly from temperatures higher than about 110°C during Early Cretaceous times (120–140 Ma ago). In the western part of New York (Wellsville-Buffalo) data from late Devonian sediments are consistent with cooling at the same time as that identified for the Catskill region but from lower temperatures, in the range of approximately 80–110°C, the maximum temperature these sediments experienced since deposition. For a pre-uplift paleogeothermal gradient of 25–35°C/km, the confined track length data indicates uplift and erosion of 2–3 km for western New York and greater than 3–4 km for the Catskill region, a differential uplift pattern which is consistent with the historical stratigraphic data from the region. This conclusion is at variance with earlier interpretations put forth by others.Rapid broad scale uplift and erosion of the scale identified imply that large volumes of sediment could have been supplied from the northern Appalachian Basin during the Early Cretaceous. This timing for the dominant post-Devonian cooling phase in the basin is not accounted for by recent models of the tectonic evolution of the Appalachian Orogen but is compatible with the change from carbonate to siliciclastic deposition in the Atlantic coastal plain. It is suggested that this style of broad regional uplift without significant deformation is characteristic of a tectonic regime associated with, and subsequent to, continental rifting.Apatite fission track analysis is shown to be a basic tool in providing fundamental limits for thermal history assessment in regional tectonic problems.  相似文献   

17.

It is a new attempt to study thermal evolution related to mineralization using the fission track (FT) method. Apatite and zircon fission track data are reported for 6 samples collected from Jiama ore district as well as its periphery. The FT ages of apatites in the ore district are (16.1±0.9) Ma and (18.8±1.1) Ma and reflect the age of late period of hydrothermal mineralizing event. Apatite FT age of (22.0±4.3) Ma and zircon FT age of (20.9±2.0) Ma are related to the early period of mineralization. Another zircon FT age of (341.6±79.1) Ma, inheriting mineral source characteristic, has no connection with the mineralization. Based on the thermal history analysis, the mineralization began before 25–22 Ma. Cooling rate in the ore district is 5–6°C/Ma averagely, in which a slow cooling occurred at 90–80°C. About 2.7 km has been denuded and the denudation rate is higher than the uplifting rate.

  相似文献   

18.
An analysis is made of the long-period geomagnetic pulsations as recorded at seven Norilsk meridian stations ( = 162°, latitudinal range: 61°–71°N) following abrupt magnetospheric expansion during the storm of 22 March 1979 caused by a rapid decrease in solar wind density. As with the time interval following an abrupt contraction at the time of sudden storm commencement, there exist two types of pulsations in the pulsation spectra: latitude-independent (T>400 s) and latitude-dependent (T<200 s) pulsations. The first pulsation type is interpreted in terms of forced pulsations associated with magnetopause oscillations. The oscillation period is determined by plasma density in the boundary layer and by the radius of the magnetosphere (T 1/2R4). The latitudinal dependence of the period, amplitude and polarization of the second-type pulsations is in agreement with the resonance mechanism of their origin.  相似文献   

19.
The Xigaze fore-arc basin is adjacent to the Indian plate and Eurasia collision zone. Understanding the erosion history of the Xigaze fore-arc basin is significant for realizing the impact of the orogenic belt due to the collision between the Indian plate and the Eurasian plate. The different uplift patterns of the plateau will form different denudation characteristics. If all part of Tibet Plateau uplifted at the same time, the erosion rate of exterior Tibet Plateau will be much larger than the interior plateau due to the active tectonic action, relief, and outflow system at the edge. If the plateau grows from the inside to the outside or from the north to south sides, the strong erosion zone will gradually change along the tectonic active zone that expands to the outward, north, or south sides. Therefore, the different uplift patterns are likely to retain corresponding evidence on the erosion information. The Xigaze fore-arc basin is adjacent to the Yarlung Zangbo suture zone. Its burial, deformation and erosion history during or after the collision between the Indian plate and Eurasia are very important to understand the influence of plateau uplift on erosion. In this study, we use the apatite fission track(AFT)ages and zircon and apatite(U-Th)/He(ZHe and AHe)ages, combined with the published low-temperature thermochronological age to explore the thermal evolution process of the Xigaze fore-arc basin. The samples' elevation is in the range of 3 860~4 070m. All zircon and apatite samples were dated by the external detector method, using low~U mica sheets as external detectors for fission track ages. A Zeiss Axioskop microscope(1 250×, dry)and FT Stage 4.04 system at the Fission Track Laboratory of the University of Waikato in New Zealand were used to carry out fission track counting. We crushed our samples finely, and then used standard heavy liquid and magnetic separation with additional handpicking methods to select zircon and apatite grains. The new results show that the ZHe age of the sample M7-01 is(27.06±2.55)Ma(Table 2), and the corresponding AHe age is(9.25±0.76)Ma. The ZHe and AHe ages are significantly smaller than the stratigraphic age, indicating suffering from annealing reset(Table 3). The fission apatite fission track ages are between(74.1±7.8)Ma and(18.7±2.9)Ma, which are less than the corresponding stratigraphic age. The maximum AFT age is(74.1±7.8)Ma, and the minimum AFT age is(18.7±2.9)Ma. There is a significant north~south difference in the apatite fission track ages of the Xigaze fore-arc basin. The apatite fission track ages of the south part are 74~44Ma, the corresponding exhumation rate is 0.03~0.1km/Ma, and the denudation is less than 2km; the apatite fission track ages of the north part range from 27 to 15Ma and the ablation rate is 0.09~0.29km/Ma, but it lacks the exhumation information of the early Cenozoic. The apatite(U-Th)/He age indicates that the north~south Xigaze fore-arc basin has a consistent exhumation history after 15Ma. The results of low temperature thermochronology show that exhumation histories are different between the northern and southern Xigaze fore-arc basin. From 70 to 60Ma, the southern Xigaze fore-arc basin has been maintained in the depth of 0~6km in the near surface, and has not been eroded or buried beyond this depth. The denudation is less than the north. The low-temperature thermochronological data of the northern part only record the exhumation history after 30Ma because of the young low-temperature thermochronological data. During early Early Miocene, the rapid erosion in the northern part of Xigaze fore-arc basin may be related to the river incision of the paleo-Yarlungzangbo River. The impact of Great Count Thrust on regional erosion is limited. The AHe data shows that the exhumation history of the north-south Xigaze fore-arc basin are consistent after 15Ma. In addition, the low-temperature thermochronological data of the northern Xigaze fore-arc basin constrains geographic range of the Kailas conglomerate during the late Oligocene~Miocene along the Yarlung Zangbo suture zone. The Kailas Basin only develops in the narrow, elongated zone between the fore-arc basin and the Gangdese orogenic belt. The southern part of the Xigaze fore-arc basin has been uplifted from the sea level to the plateau at an altitude of 4.2km, despite the collision of the Indian plate with the Eurasian continent and the late fault activity, but the plateau has been slowly denuded since the early Cenozoic. The rise did not directly contribute to the accelerated erosion in the area, which is inconsistent with the assumption that rapid erosion means that the orogenic belt begins to rise.  相似文献   

20.
Least-squares collocation technique was used to process regional gravity data of the SE South American lithospheric plate in order to map intermediate (10–2000 km) wavelength geoid anomalies. The area between 35–10° S and 60–25° W includes the Paraná CFB Province, the Southern São Francisco Craton and its marginal fold/thrust belts, the Brazilian continental margin and oceanic basins. The main features in the geoid anomaly map are: (a) Paraná CFB Province is characterized by a 1000 km long and 500 km wide, NE-trending, 9 m-amplitude negative anomaly which correlates with the distribution of sediments and basalts within the Paraná basin. (b) A circular (600–800 km in diameter) positive, 8 m-amplitude geoid anomaly is located in the southern S. Francisco craton and extends into the northeastern border of the Paraná CFB Province. This anomaly partially correlates with Alto Paranaíba Igneous Province (APIP), where alkalic volcanism and tholeiitic dikes of ages younger than 80 Ma are found and where a low-velocity zone in the mantle has been mapped using seismic tomography. This positive geoid anomaly extends towards the continental margin at latitude 21° S and joins a linear sequence of short wavelength positive geoid anomalies associated with Vitoria–Trindade seamounts. (c) A NE-trending, 1000 km long and 800 km wide, 4 m-amplitude, positive geoid anomaly, which is located along the southeastern coast of Brazil, from latitude 24 to 35° S. The northern part of this anomaly correlates with the Ponta Grossa Arch and Florianopolis dyke swarm provinces. The age of this intrusive volcanism is 130–120 Ma. (d) A circular positive anomaly with 9 m of amplitude, located over the Rio Grande and Uruguay shields and offshore Pelotas basin. Few alkaline intrusives with ages between 65 and 80 Ma are found in the region and apatite fission track ages in basement rocks indicates cooling at around 30 Ma. A semi-quantitative analysis of the observed geoid anomalies using isostatic considerations suggests that the mechanism which generated Paraná CFB Province did not change, in a significant manner, the lithospheric thermal structure, since the same geoid pattern observed within this province continues northward over the Neoproterozoic fold/thrust belts systems separating the São Francisco and Amazon cratons. Therefore, this observation favours Anderson’s idea of rapid basaltic outpouring through a pull-apart mechanism along a major suture zone. A thermal component may still be present in the Southern São Francisco Craton and in the Rio Grande Shield and contiguous continental margins, sites of Tertiary thermal and magmatic reactivations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号