首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using an internally consistent thermodynamic dataset and updatedmodels of activity–composition relation for solid solutions,petrogenetic grids in the system NKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NKMASH and NKFASH have been calculated withthe software THERMOCALC 3.1 in the PT range 5–36kbar and 400–810°C, involving garnet, chloritoid,biotite, carpholite, talc, chlorite, kyanite/sillimanite, staurolite,phengite, paragonite, albite, glaucophane, jadeite, with quartz/coesiteand H2O in excess. These grids, together with calculated AFMcompatibility diagrams and PT pseudosections, are shownto be powerful tools for delineating the phase equilibria andPT conditions of Na-bearing pelitic assemblages for avariety of bulk compositions from high-P terranes around theworld. These calculated equilibria are in good agreement withpetrological studies. Moreover, contours of the calculated phengiteSi isopleths in PT pseudosections for different bulkcompositions confirm that phengite barometry is highly dependenton mineral assemblage. KEY WORDS: phase relations; HP metapelite; NKFMASH; THERMOCALC; phengite geobarometry  相似文献   

2.
High-Mg chloritoid (XMg = 0·40–0·47) andrelatively high-Mg staurolite (XMg = 0·25–0·28)coexisting with kyanite and garnet were identified in a mica–garnet-richrock associated with very high-pressure eclogites in the BugheaComplex of the Leaota Massif (South Carpathians). Major andtrace element geochemical data for both fresh eclogites andassociated rocks which represent a metasomatic or retrogradealteration rind of the eclogites, indicate a pelitic precursor.Magnesian chloritoid was found as inclusions in garnet as partof a chloritoid–kyanite–garnet assemblage whichis indicative of high-pressure conditions. The host garnet showsa typically prograde chemical zoning pattern. The chloritoid-bearingassemblage is confined to the inner part of the garnet porphyroblasts,whereas the matrix assemblage in equilibrium with Mg-rich garnetrims has exceeded the thermal stability limit of chloritoid.Pressure–temperature pseudosections for simplified compositionsapproaching the rock bulk-chemistry show a high-pressure fieldfor the identified chloritoid-bearing assemblage in good agreementwith pressure–temperature estimates in the CFMASH andKCFMASH chemical subsystems using analysed mineral compositions.The derived pressure–temperature path is clockwise, indicatingoverprinting during exhumation from 1·8 GPa and 580°Cto 1·15 GPa and 620°C, at a water activity approachingaH2O = 1. These conditions were attained in a subduction mélangeindicating transient thermal perturbations of a subduction channel. KEY WORDS: high-pressure metapelite; Mg-rich chloritoid; PT path; PT pseudosection; very high-pressure eclogite  相似文献   

3.
In situ eclogitic schist lenses occur in the coherent low-gradeepidote-zone Ward Creek metabasite unit of the Central Franciscanbelt. They contain almandine garnet, clinopyroxene, and rutile.They have slightly higher Mn content (0–5–1–0wt.%) than the coexisting Type III metabasites (0–12–0–25wt%) which contain epidote + glaucophane + actinolite + chlorite+ omphacite + quartz + sphene ? aragonite? lawsonite ? pumpellyite+ albite. The in situ eclogitic schists (130–140 Ma) canbe distinguished from older tectonic eclogites (150–160Ma) in Ward Creek as follows: (1) they are medium grained, whereasType IV tectonic eclogites are coarse grained; (2) they haveunaltered spessartine-rich idioblastic (0–4–10 mm)garnets, whereas Type IV tectonic eclogites have larger xenoblasticto hypidiomorphic spessartine-poor garnets which were corrodedand chloritized along the rim during retrograde metamorphism;(3) clinopyroxenes are chloromelanite in in situ eclogitic schistsbut omphacite in Type IV tectonic eclogites; (4) barroisiticamphiboles occur both as inclusions in garnets and as matrixminerals in Type IV tectonic eclogites but not in in situ eclogiticschists; (5) albite is present in in situ eclogitic schistsbut not in Type IV tectonic eclogites; and (6) the estimatedP-T condition of in situ eclogitic schists is 290 ?C < T<350 ?C, P = 8–9 kb, whereas that of Ward Creek Type IVtectonic eclogites is 500?C< r<540?C, P< 10–11–5kb. Medium-grained eclogites occur as individual blocks in WardCreek; they are different from Type IV tectonic eclogites butare very similar to in situ eclogitic schists. They have unalteredidioblastic garnet with high almandine and spessartine content(Alm47Sp23Gr20Py10), and they have chloromel-anitic clinopyroxeneand quartz but no barroisite. Paragonite is also stable in theseeclogites. The blocks formed at 380 ?C< r<400?C, and 9–5kb<P< 14 kb. They are presumably in situ eclogites formedat the highest-temperature part of the Ward Creek metabasiteunit and may be younger than Type IV tectonic eclogites. Such low-temperature occurrences of eclogitic assemblages aredue to the compositional effect on reactions between blueschistand eclogite that are insensitive to pressure and shift towardslower temperatures as bulk-rock MnO content and XFe/(Fe+Mg)increase. The Mn/(Mn + Fe) ratio of bulk rock is an importantfactor in controlling the P-T positions of these reactions attemperatures below 450 ?C, whereas the Fe/(Fe + Mg) ratio ofbulk-rock becomes important at temperatures higher than 450?C.  相似文献   

4.
Petrogenetic grids in the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NCKMASH and NCKFASH calculated with the softwareTHERMOCALC 3.1 are presented for the PT range 7–30kbar and 450–680°C, for assemblages involving garnet,chloritoid, biotite, carpholite, talc, chlorite, kyanite, staurolite,paragonite, glaucophane, jadeite, omphacite, diopsidic pyroxene,plagioclase, zoisite and lawsonite, with phengite, quartz/coesiteand H2O in excess. These grids, together with calculated compatibilitydiagrams and PT and TXCa and PXCa pseudosectionsfor different bulk-rock compositions, show that incorporationof Ca into the NKFMASH system leads to many of the NKFMASH invariantequilibria moving to lower pressure and/or lower temperature,which results, in most cases, in the stability of jadeite andgarnet being enlarged, but in the reduction of stability ofglaucophane, plagioclase and AFM phases. The effect of Ca onthe stability of paragonite is dependent on mineral assemblageat different PT conditions. The calculated NCKFMASH diagramsare powerful in delineating the phase equilibria and PTconditions of natural pelitic assemblages. Moreover, contoursof the calculated phengite Si isopleths in PT and PXCapseudosections confirm that phengite barometry in NCKFMASH isstrongly dependent on mineral assemblage. KEY WORDS: phase relations; metapelites; NCKFMASH; THERMOCALC; phengite geobarometry  相似文献   

5.
The results of recent investigations on the stability limitsof staurolite have been combined together with those of thepresent study to develop a semi-quantitative model of the P–T–fo2–Xrelations of staurolite±quartz±magnetite. Theproblem with respect to the hydroxyl content of staurolite hasbeen analysed; it is concluded that no evidence has yet beenmustered to discount the idealised stoichiometry proposed byNaray-Szabó & Sasvari (1958), at least as a limitingcomposition. The stability limits of staurolite±magnetitehave been calculated from the experimental data for the equilibriainvolving quartz. Also the conditions over which the assemblagecordierite+magnetite+quartz could be stable, as well as a quantitativemodel for the fo2-P stability of almandine ± quartz havebeen deduced theoretically. An analysis is presented of the paragenetic relations of staurolitein common pelitic schists. It is suggested that the formationof staurolite at the expense of either chloritoid or chlorite,rather than the unqualified first appearance of staurolite asproposed by Winkler (1970), should define a ‘staurolite-in’isograd in the range of 500–575 °C. In regional metamorphism,chloritoid, staurolite, and aluminum silicates should, underequilibrium conditions, be unstable relative to almandine ingraphitic pelitic schists involving magnetite (chloritoid/staurolite/Al2SiO6+magnetite+quartzalmandine+O2+H2O).The limits of P-T conditions over which staurolite and cordieritemay coexist in natural assemblages have been deduced; it isrestricted, almost entirely within the field of andalusite,between 500–700 °C, and 2–6 kbars, thus definingthe range of P-T conditions for the ‘low-pressure intermediate’—or ‘Buchan’–type amphibolite facies discussedby Miyashiro (1961). In assemblages involving staurolite andandalusite, cordierite rather than almandine should usuallybe stable; the reverse holds for assemblages involving stauroliteand sillimanite.  相似文献   

6.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

7.
Textural evidence, thermobarometry, and geochronology were usedto constrain the pressure-temperature-time (P—T—t)history of the southern portion of the Britt domain in the CentralGneiss Belt, Ontario Grenville Province. Typical metapeliticassemblages are quartz+plagioclase+ biotite + garnet + kyanite alkali feldspar sillimanite rutile ilmenite staurolite gahnite muscovite. Metatonalitic assemblages have quartz+ plagioclase + garnet biotite + hornblende + rutile + ilmenite.Metagabbroic rocks contain plagioclase + garnet + clinopyroxene+ biotite + ilmenite hornblende rutile quartz. Notabletextural features include overgrowths of sillimanite on kyaniteand of spinel on staurolite. The spinel overgrowths can be modeledby the breakdown of staurolite via the reaction Fe-staurolite= hercynite +kyanite + quartz + H2O. The decomposition of stauroliteto her-cynite has a steep dP/dT slope and constrains the lateprograde path of a staurolite metapelite. Garnet—Al2SiO5—plagioclase—quartz(GASP) barometry applied to metapelitic garnets that preservecalcium zoning reveals a pressure decrease from 11 to 6 kbat an assumed temperature of 700 C. Garnet—plagioclase—ilmenite—rutile—quartzand garnet—clinopyroxene—plagioclase—quartzbarometry is in good agreement with pressures obtained withthe GASP barometer. Geochronologic data from garnet, allanite,and monazite in metapelitic rocks give ages that fall into twogroups, 1–4 Ga and 1.1 Ga, suggesting the presence ofat least two metamorphic events in the area. It is most reasonableto assign the 1.4 Ga age to the high-pressure data and the 1.1Ga age to the lower-pressure data. Collectively the P—T—tdata indicate a complex and protracted history rather than asingle cycle of burial and uplift for this part of the GrenvilleProvince.  相似文献   

8.
Abstract A detailed study of garnet–chloritoid micaschists fom the Sesia zone (Western Alps) is used to constrain phase relations in high pressure (HP) metapelitic rocks. In addition to quartz, phengite, paragonite and rutile, the micaschists display two distinct parageneses, namely garnet + chloritoid + chlorite and garnet + chloritoid + kyanite. Talc has never been observed. Garnet and chloritoid are more magnesian when chlorite is present instead of kyanite. The distinction of the two equilibria results from different bulk rock chemistries, not from P–T conditions or redox state. Estimated P–T conditions for the eclogitic metamorphism are 550–600°C, 15–18 kbar.
The presence of primary chlorite in association with garnet and chloritoid leads us to construct two possible AFM topologies for the Sesia metapelites. The paper describes a KFMASH multisystem for HP pelitic rocks, which extends the grid of Harte & Hudson (1979) towards higher pressures and adds the phase talc. Observed parageneses in HP metapelites are consistent with predicted phase relations. Critical associations are Gt–Ctd–Chl and Gt–Ctd–Ky at relatively low temperatures and Gl–Chl–Ky and Gt–Tc–Ky at relatively high temperatures.  相似文献   

9.
The hornblende garbenschist horizon of the Lower Schieferhulleseries (LSH) in the SW Tauern Window, Austria, contains theassemblage hornblende + kyanite + staurolite + garnet + biotite+ epidote + plagioclase + ankerite + quartz + rutile + ilmenite,with either chlorite or paragonite present in all samples. Theseassemblages are divariant in the system SiO2-Al2O3-TiO2-Fe2O3-MgO-FeO-MnO-CaO-Na2O-K2O-H2O-CO2.Garnet-biotite geothermometry yields temperatures of final equilibrationof {small tilde}550 °C, and garnet-plagioclase-kyanite-quartzgeobarometry indicates pressures of 6–8 kb for the matrixassemblage and 9–10 kb for plagioclase inclusions in garnet.Quantitative modelling of zoned garnet, hornblende, and plagioclaseindicates growth and equilibration along a decompression pathfrom {small tilde}530 °C, 10 kb to {small tilde}550 °C,7 kb. Fluid inclusion data constrain the uplift path to havepassed through a point at {small tilde} 375 °C, 1.5 kb. These data permit the construction of a relatively completeP-T loop for metamorphism associated with the Alpine orogeniccycle in the LSH of the SW Tauern Window. The maximum pressureconditions ({small tilde}10 kb at 530 °C) recorded alongthis loop are considerably higher than previous estimates of5–7 kb for the region. Simple overthrust models developedfor the Tauern Window cannot account for pressures of this magnitude;a more likely scenario involves partial subduction of the rocksto a depth of {small tilde}35 km, followed by prolonged heatingin response to decay of the subduction isotherms. Initial upliftappears to have been rapid and occurred along a nearly isothermalpath. Significant cooling did not occur until the rocks werewithin {small tilde}5 km of the surface. Detailed tectonic modelsfor the evolution of the Tauern Window must be able to accountfor the quantitative features of the P-T loop.  相似文献   

10.
A variety of uncommon garnet-grade assemblages have been foundin rocks from three outcrops in the western part of centralNew Hampshire, and include the associations Grt+MrgCld, Grt+Bt+CldMrg,and Mrg+Cld+HblGrt (all rocks contain Ms, Chl, Ilm, and Qtz).These unusual rocks coexist with more typical Grt+Bt+Chl+Plmetapelites and amphibolites. Rim P–T conditions are {smalltilde}49035C and 5•751•25 kbar. Projection of the assemblages from Qtz, H2O, and Ilm into theCa–Al'–Na–(Fe+Mg) tetrahedron, and from Qtz,Ilm, H2O, and Chl into the Ca–Al'–Fe'–Mn tetrahedronindicates that Ca/(Ca+Na) and Mn differ among the assemblagesin a systematic fashion. Common Grt+Bt+Chl+Pl assemblages arerestricted to relatively high Mn and low Ca/(Ca+Na) values,whereas Cld+Bt+Mrg and Cld+Hbl+Mrg assemblages are stable atlow Mn and high Ca/(Ca+Na). These data suggest that at thisgrade Cld+Bt is more stable than Grt+Chl in the KFMASH system,whereas in the Ca—KFMASH system, Hbl+Cld assemblages arestable. Composition space analysis using the singular value decompositionmethod indicates that compositions of minerals from individualsamples are consistent with local equilibrium, but that differentoutcrops may not have all equilibrated at the same P–T–aH2Oconditions. Thermodynamic analysis suggests that a garnet-zoneprograde sequence of ferromagnesian associations for these bulkcompositions would be Hbl+Cld+Grt+ChlBt+Cld+Grt+ChlBt+Grt+Chl. Staurolite-grade rocks from the same stratigraphic units areexposed across strike, and contain the assemblage Grt+StBtPl(all rocks contain Ms, Qtz, Chl, and Ilm). Margarite is commonlypresent as inclusions in the cores of garnets, but is absentas inclusions near garnet rims and from the matrix; conversely,staurolite inclusions are present towards the rims of the garnets,but are absent from the cores. These inclusion relations suggestthat margarite may react to form staurolite and garnet withincreasing grade via a reaction such as chlorite+margarite=staurolite+garnet+H2O. Biotite is common in the matrix but is not typically abundant,and appears to have been the last phase to join the assemblage.Biotite is inferred to have joined the Grt+St+Chl assemblagesafter margarite breakdown through the reaction Grt+Chl+Ms=St+Bt+H2O. Thus, uncommon margarite assemblages may evolve into commonGrt+Bt+St+Chl assemblages. * Present address: Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706.  相似文献   

11.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

12.
High-pressure, regional metamorphic rocks (the Raspas Formation)constitute an inclusion more than 10 km long and 3 km wide ina protrusion of extensively serpentinized harzburgite in ElOro Province, southwestern Ecuador. The high-pressure rocks,all feldspar-free, consist of a dominant pelitic schist withquartzite layers, eclogite, eclogite amphibolite, garnetite,and retrograde mafic rocks. The pelitic schist is coarse grainedand is composed of quartz + phengite + paragonite + garnet +chloritoid + rutile + graphite ± kyanite ± pyrite.Eclogite is fine to medium grained, massive to strongly foliated(average mode: omphacite (Jd42Ac6(Di + He)32), 38.2 per cent;garnet (Alm53 Spess2 Pyr19 Gross26), 26.6; barroisite (4.1 percent Na2O), 22.6; clinozoisite, 4.1; rutile, 2.1; quartz, 5.7;other minerals, 0.7).Eclogite amphibolite is a medium-grainedand massive to foliated rock composed of amphibole (3.1 percent Na2O) + garnet + zoisite + kyanite + rutile + pyrite ±omphacite± paragonite ± quartz ± apatite. Retrogrademafic rocks include glaucophane schist, greenschist, and coarse-grained,amphibole-rich rocks. Prograde metamorphism took place in an active Benioff zone.Based on phase relations in the pelitic schist, partitioningof Mg/(Mg + Fetotal + Mn) in garnet-amphibole and in omphacite-amphibolepairs (Dòbretsov et al., 1975), the absence of lawsonite,and other evidence, the conditions of metamorphism are estimatedto have been T = 580 ° ± 20 °C and P total =13 ± 3 kb (43 ± 10 km depth). P H2O ranged from P total in pelitic schist, through P total in eclogite amphibolitc,to «P total in eclogite. Retrograde metamorphism accompaniedrapid uplift of the Raspas Formation during which the rockspassed through the stability field of glaucophane-epidote schist,but not the stability field of lawsonite. The inclusion of high-pressure rocks was carried upward intactin a protrusion of extensively serpentinized harzburgite whichrose diapirically through the relatively denser amphiboliteand greenschist which constitute the regional basement of ElOro Province. Serpentinization of harzburgite began at depth,and continued coevally with eclogitization. Protrusive riseoccurred upon abandonment of the Benioff zone. Radiometric K-Arages on the uplift of the Raspas Formation and the youngestlavas of a volcanic are of Jurassic-Early Cretaceous age ineastern Ecuador are synchronous (132 m.y.). Present address: Département de Géologie, Université Laval, Québec, P. Q. G1K 7P4 Canada  相似文献   

13.
The metamorphic evolution of metapelites from the eastern partof the Monte Rosa nappe and the Camughera–Moncucco unit,both situated in the upper Penninic units SW of the Simplonline, were investigated using microstructural relationshipsand equilibrium phase diagrams. The units under considerationexperienced pre-Alpine amphibolite-facies conditions and underwenta complex metamorphic evolution during the Alpine orogeny. Peakpressures during an early Alpine high-pressure stage of 12·5–16kbar were similar in the Monte Rosa nappe and Camughera–Moncuccounit. A pronounced thermal gradient is indicated during decompressionleading to an amphibolite-facies overprint, as the decompressionpaths went through the chlorite, biotite and plagioclase stabilityfields in most of the Monte Rosa nappe, through the staurolitefield in the easternmost Monte Rosa nappe and in the Camughera–Moncuccounit, and through the sillimanite field in the easternmost Camughera–Moncuccounit. In high-Al metapelites the initial formation of stauroliteis related to continuous paragonite breakdown and associatedformation of biotite. In the course of this reaction phengitebecomes successively sodium enriched. In low-Al metapelites,in contrast, the initial staurolite formation occurs via thecontinuous breakdown of sodium-rich phengite. In both low- andhigh-Al metapelites the largest volume of staurolite is formedduring the continuous breakdown of sodium-rich phengite belowPT conditions of about 9·5 kbar at 600–650°C.During this reaction phengite becomes successively potassiumenriched as sodium from phengite is used to form the albitecomponent in plagioclase. For ‘normal’ pelitic chemistries,phengite becomes Na enriched during decompression through thebreakdown of paragonite along a near-isothermal decompressionpath. The Na content in phengite reaches its maximum when paragoniteis entirely consumed. During further decompression the paragonitecomponent in phengite decreases again because Na is preferentiallyincorporated into the albite component of plagioclase. KEY WORDS: metapelites; white mica; high pressure; equilibrium diagrams; Western Alps  相似文献   

14.
A suite of garnetiferous amphibolites and mafic granulites occuras small boudins within layered felsic migmatite gneiss in thenorthern part of the Sausar Mobile Belt (SMB), the latter constitutingthe southern component of the Proterozoic Central Indian TectonicZone (CITZ). Although the two types of metabasites are in variousstages of retrogression, textural, compositional and phase equilibriastudies attest to four distinct metamorphic episodes. The earlyprograde stage (Mo) is represented by an inclusion assemblageof hornblende1 + ilmenite1 + plagioclase1 ± quartz andgrowth zoning preserved in garnet. The peak assemblage (M1)consists of porphyroblastic garnet + clinopyroxene ±quartz ± rutile ± hornblende in mafic granulitesand garnet + quartz + hornblende in amphibolites and stabilizedat pressure–temperature conditions of 9–10 kbarand 750–800°C and 8 kbar and 675°C, respectively.This was followed by near-isothermal decompression (M2), andpost-decompression cooling (M3) events. In mafic granulites,the former resulted in the development of early clinopyroxene2A–hornblende2A–plagioclase2Asymplectites at 8 kbar and 775°C (M2A stage), synchronouswith D2 and later anhydrous clinopyroxene2B–plagioclase2B–ilmenite2Bsymplectites and coronal assemblages at 7 kbar, 750°C (M2Bstage) and post-dating D2. In amphibolites, ilmenite + plagioclase+ quartz ± hornblende symplectites appeared during M2at 6·4 kbar and 700°C. During M3, coronal garnet+ clinopyroxene + quartz ± hornblende-bearing symplectitesin metabasic dykes and hornblende3–plagioclase3 symplectitesembaying garnet in mafic granulites were formed. PT estimatesshow near-isobaric cooling from 7 kbar and 750°C to 6 kbarand 650°C during M3. It is argued that the decompressionin the mafic granulites is not continuous, being punctuatedby a distinct heating (prograde?) event. The latter is alsocoincident with a period of extension, marked by mafic dykeemplacement. The combined PT path of evolution has aclockwise sense and provides evidence for a major phase of earlycontinental subduction in parts of the CITZ. This was followedby a later continent–continent collision event duringwhich granulites of the first phase became tectonically interleavedwith younger lithological units. This tectonothermal event,of possibly Grenvillian age, marks the final amalgamation ofthe North and the South Indian Blocks along the CITZ to producethe Indian subcontinent. KEY WORDS: Central Indian Tectonic Zone; clockwise PT path; continental collision; metabasite  相似文献   

15.
Four assemblages from calcic pelitic schists from South Strafford,Vermont, have been studied in detail to determine the relationshipbetween reaction history and compositional zoning of minerals.The lowest-grade assemblage is garnet + biotite + chlorite +plagioclase + epidote + quartz + muscovite + graphite + fluid.Along a path of isobaric heating, the net reaction is Chl +Ms + Ep + Gr = Grt + Bt + Pl + fluid. Garnet grows with decreasingFe/(Fe + Mg) and XSpa, (from 0•2 to 0•05), XGra staysnearly constant between 0•20 and 0•25, and plagioclasegrows with XAn increasing from peristerite to 0•2–0•5. The subsequent evolution depends on whether chlorite or epidotereacts out first. If chlorite is removed from the assemblagefirst, the net reaction along an isobaric heating path becomesGrt + Ms + Ep + Qtz + Gr = Bt + Pl + fluid. XAn of plagioclaseincreases to 0•20–0•70, depending on the bulk-rockcomposition and changes in pressure and temperature. If epidoteis removed first, the assemblage becomes a simple pelite andthe net reaction becomes Chl + Pl + Ms + Qtz = Grt + Bt + H2O.Plagioclase is consumed to provide Ca for growing garnet, andXAn, Fe/(Fe + Mg) of garnet, XGra, and XSpa all decrease. Afterboth chlorite and epidote are removed, continued heating upto the metamorphic peak of {small tilde}600C produces littleprogress of the reaction Grt + Ms = Bt + Pl; and XAn increases. The four assemblages have been numerically modeled using theGibbs method starting with measured compositions. The modelssuccessfully predict the observed compositional zoning and trendsof mineral growth and consumption along the computed P–Tpaths. The models also predict the compositional mineral zoningthat would have resulted from other P–T paths. * Present address: Department of Geology, University of Alabama, Tuscaloosa, Alabama 35487  相似文献   

16.
Mineral assemblages in the blueschist-facies metapelites fromthe Ile de Groix (Armorican Massif, France) permit the distinctionof two main units. The Upper Unit is characterized by: (1) highmodal proportions of garnet; (2) larger grain size; (3) therarity of graphite-bearing layers; (4) a single, although composite,foliation S1. A Lower Unit is defined by: (1) low modal proportionsof garnet; (2) smaller grain size; (3) an abundance of graphite-bearinglayers; (4) a pervasive crenulation cleavage S2. In the UpperUnit, coexisting garnet and chloritoid are more magnesian andless manganiferous than in the Lower Unit. The differences inmodal proportions and chemistry of coexisting minerals reflectdifferent P–T conditions. The P–T history of theblueschist-facies metapelites is estimated using a simplifiedpetrogenetic grid in the NFMASH system and thermodynamic calculations,which suggest peak P–T conditions at about P = 16–18kbar, T = 450–500°C and P = 14–16 kbar, T =400–450°C in the Upper and Lower Units, respectively.Peak P–T conditions were followed by a nearly isothermaldecompression for both units at slightly different temperatures(of the order of 50°C). The contact between the two units,i.e. the garnet isograd, is interpreted as a greenschist-faciesductile thrust. Thrusting of the higher-grade unit, i.e. theUpper Unit, over the Lower Unit occurred after the high-pressureevent, i.e. during the exhumation of both units. The observedsuperposition of higher-grade rocks over lower-grade rocks arguesagainst models where the exhumation history is entirely controlledby crustal-scale vertical shortening (i.e. extension). KEY WORDS: Armorican Massif; blueschist facies; Ile de Groix; metapelites; PT path; garnet isograd  相似文献   

17.
During prograde metamorphism garnet and, in some higher grade samples, staurolite were produced in a chlorite-chloritoid schist, part of the Precambrian Z to Cambrian Hoosac Formation near Jamaica, VT. Garnet grew during two prograde events separated by a retrogression. This sequence resulted in distinctive inclusion textures and zoning anomalies in garnet produced by diffusive alteration. Textures, reaction space analysis, and mineral compositional variations constrain the possible sequence of reactions in these rocks. Below the staurolite isograd, and to some unknown extent above it, garnet grew by the reaction chloritoid+chlorite+quartz→garnet+H2O. With increasing grade the mineral compositions are displaced towards lower Mn/Fe and higher Mg/Fe ratios. The data are compatible with equilibrium with respect to exchange reactions for the matrix assemblages on a thin section scale and with minerals having closely followed equilibrium paths during reaction. The staurolite isograd coincides with the reaction chloritoid+quartz→garnet+staurolite+chlorite+H2O. This reaction is continuous and trivariant with ZnO becoming an additional component concentrated in staurolite. During this reaction both the Mn/Fe and Mg/Fe ratios of the phases appear to have decreased. This new chemical trend is recorded by garnet zoning profiles and is compatible with trends predicted from phase diagrams. Thus there are two distinct types of garnet zoning reversals in these samples. One is near the textural unconformity and is best explained by diffusive alteration during partial resorption of first stage garnet. The other occurs near the outer rim of garnet in staurolite zone samples and marks the onset of a new prograde garnet producing reaction.  相似文献   

18.
The Southern Venn-Stavelot Massif is characterized by Ordovician and Devonian rocks very rich in manganese and aluminum, which are attacked by a low grade regional metamorphism. The assemblages 1 (phengite, paragonite, chlorite, chloritoid, garnet, quartz, hematite, rutile) and 2 (phengite, paragonite, chlorite, kaolinite (andalusite, pyrophyllite), garnet, quartz, hematite, rutile) are of basic interest for the formation of chloritoid. As the two rock types are isofaciell and quasi-identical in chemistry except for the iron oxides, there is clear evidence for the influence of on the chloritoid formation at its lower p-T stability limit. This can be shown by a discussion of the phase relations of chloritoid, garnet, kaolinite, chlorite and phengite in respect to the oxidation ratio mol 2 Fe2O3x 100/2 Fe2O3+ FeO of the host rocks. Especially chloritoid and chlorite change their chemistry in a characteristic way with rising oxidation ratio in getting richer and richer in manganese and magnesium (chloritoid) and magnesium (chlorite). A simultaneous increase in trivalent iron in these phases is supposed. At an oxidation ratio of 85–90 the stability limit of chloritoid is reached. The increasing substitution of manganese and magnesium up to this limit should have a stabilizing effect. In a rough estimate the oxygen partial pressure is supposed to be in the order of 10−10 atm at the stability limit of chloritoid assuming a temperature of metamorphism between 360–400° C. Rocks with oxidation ratios between 90 and 100 are characterized by the presence of kaolinite. If the oxidation ratio is still higher (all iron as Fe3+, parts of the manganese in the trivalent state), the rocks belong to assemblage 3 (phengite, paragonite, chlorite, viridine, (kaolinite), (garnet), quartz, hematite, braunite, rutile). Dedicated to Prof. Dr. K. Jasmund at his 60. birthday.  相似文献   

19.
Both high- and medium-pressure granulites have been found asenclaves and boudins in tonalitic–trondhjemitic–granodioriticgneisses in the Hengshan Complex. Petrological evidence fromthese rocks indicates four distinct metamorphic assemblages.The early prograde assemblage (M1) is preserved only in thehigh-pressure granulites and represented by quartz and rutileinclusions within the cores of garnet porphyroblasts, and omphacitepseudomorphs that are indicated by clinopyroxene + sodic plagioclasesymplectic intergrowths. The peak assemblage (M2) consists ofclinopyroxene + garnet + sodic plagioclase + quartz ±hornblende in the high-pressure granulites and orthopyroxene+ clinopyroxene + garnet + plagioclase + quartz in the medium-pressuregranulites. Peak metamorphism was followed by near-isothermaldecompression (M3), which resulted in the development of orthopyroxene+ clinopyroxene + plagioclase symplectites and coronas surroundingembayed garnet grains, and decompression-cooling (M4), representedby hornblende + plagioclase symplectites on garnet. The THERMOCALCprogram yielded peak (M2) P–T conditions of 13·4–15·5kbar and 770–840°C for the high-pressure granulitesand 9–11 kbar and 820–870°C for the medium-pressuregranulites, based on the core compositions of garnet, matrixpyroxene and plagioclase. The P–T conditions of pyroxene+ plagioclase symplectite and corona (M3) were estimated at  相似文献   

20.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号