首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
郑永飞  赵子福 《岩石学报》2011,27(2):345-364
在特定的地质事件过程中,矿物等时线放射体系是否达到并且保持了平衡是变质岩Sm-Nd和Rb-Sr同位素年代学中的一个重要问题。在这个问题上矿物对O同位素测温与矿物等时线定年相似,因此两者之间可以相互制约。在岩浆岩和变质岩中,矿物中Sm-Nd、Sr和O之间的扩散速率在无水的条件下一般具有可比性,因此矿物之间O同位素的平衡状态可以用来对Sm-Nd和Rb-Sr定年的有效性进行检验。对大别-苏鲁造山带超高压变质岩的Sm-Nd和Rb-Sr等时线矿物进行O同位素测温,得到Sm-Nd等时线有时给出三叠纪年龄,有时给出非三叠纪年龄;对应的矿物O同位素分馏分别处于平衡和不平衡状态。对于引起非三叠纪等时线年龄的原因,一方面可以是由于榴辉岩相变质过程中同位素体系没有达到平衡,另一方面则可能角闪岩相退变质作用打破了平衡。等时线矿物中初始同位素比值的均一化速率主要受慢扩散矿物的影响,而矿物等时线时钟的启动主要受高母/子比值矿物控制。因此在变质作用过程中,只有当高母/子比值矿物同时具有快的放射成因同位素扩散速率,才可能得到有效的矿物等时线来用于变质年龄的测定。根据不同矿物中不同元素在扩散速率上的差异,能够定量估计大陆碰撞过程中榴辉岩相变质的持续时间。应用增量方法和离子孔隙度经验模型,不仅分别能够从理论上准确计算所有固体矿物的氧同位素分馏系数和获得不同矿物中元素的扩散参数,而且分别能够定量预测热力学平衡条件下共生矿物之间的18O富集顺序和相同条件下矿物中元素扩散速率的相对快慢。  相似文献   

2.
深刻理解同位素在超高压变质及退变质过程中的地球化学行为对获得超高压变质岩准确并有明确意义的年龄值是非常重要的。对 Sm-Nd,Rb-Sr 同位素体系,只有变质矿物同位素体系达到平衡才能给出精确有意义的等时线年龄。研究表明,与副变质岩互层的细粒榴辉岩的高压变质矿物之间,或者强退变质岩石的退变质矿物之间,其 Nd,Sr 同位素可以达到平衡;然而高压变质矿物与退变质矿物之间 Nd,Sr 同位素不平衡。由于全岩样品总是含有数量不等的退变质矿物,因此石榴石 全岩 Sm-Nd 法或多硅白云母 全岩 Rh-Sr 法将有可能给出无地质意义的年龄。通常低温榴辉岩的高压变质矿物之间存在Nd 同位素不平衡。超高压变质岩多硅白云母所含过剩 Ar 主要源于榴辉岩原岩中角闪石在变质分解时释放出来的放射成因 Ar。因此,不含榴辉岩的花岗片麻岩多硅白云母基本不含过剩 Ar。对变质锆石成因的准确判断是正确理解锆石 U-Ph 年龄意义的关键。本文对不同成因锆石的判别标志及年龄意义做了总结,并指出将阴极发光图形,锆石痕量元素组成及矿物包裹体鉴定相结合是进行锆石成因鉴定的有效方法。高压变质或退变质增生锆石组成单一,是理想变质定年对象。然而变质重结晶锆石域常是重结晶锆石和继承晶质锆石的混合区,因而给出混合年龄。只有完全变质重结晶锆石才能给出准确变质时代。  相似文献   

3.
Diffusion rates of Sr and O in minerals are often comparable while Nd has a lower diffusion rate during thermal overprint(s); thus, the O isotope systems between metamorphic minerals can serve as an indicator to evaluate whether equilibrium of Rb–Sr and Sm–Nd systems has been preserved in the metamorphic minerals that experienced retrograde metamorphism. This study presents a combination of investigation on Sm–Nd, Rb–Sr, and O isotopic compositions of minerals separated from ultrahigh-pressure eclogite and gneiss that were collected from the main hole of the Chinese Continental Scientific Drilling project located in the Sulu orogen, eastern China. Oxygen isotopic compositions of minerals from gneiss and eclogite yield two temperature groups of 620–740 and 460–590°C, representing diffusion cessation of isotopic exchange during the eclogite-facies recrystallization and later amphibolite-facies retrograde overprint. Rb–Sr mineral regressions of two eclogite samples give consistent Triassic ages of 244 Ma, corresponding to eclogite-facies metamorphism, while the same minerals do not yield meaningful Sm–Nd isochron ages. This phenomenon likely suggests that Rb–Sr isotopic equilibrium was achieved during eclogite-facies metamorphism and preserved during late amphibolite-facies retrogression. In contrast, Sm–Nd isotopic equilibrium between the minerals of eclogite was not achieved under UHP metamorphic conditions. Regressions of epidote and biotite of one gneiss sample give a Triassic Sm–Nd age of 243 ± 34 Ma, corresponding to the time of the eclogite-facies metamorphism, and a Jurassic mineral Rb–Sr age of 187.5 ± 1.8 Ma. These results imply that fluids have played an important role to achievement of the Sm–Nd isotopic equilibrium during eclogite-facies metamorphism and re-equilibration of the Rb–Sr isotopic system during later retrograde overprint.  相似文献   

4.
胶南榴辉岩矿物氧同位素平衡及其Sm-Nd年代学制约   总被引:2,自引:4,他引:2  
对苏鲁地体中的胶南榴辉岩进行了矿物氧同位素分析,并与同一手标本矿物的Sm-Nd内部等时线定年和Nd-Sr同位素分布进行了对比。研究表明,石榴子石与绿辉石之间的氧同位素平衡与否能够对矿物Sm-Nd同位素体系的平衡状况和内部等时线定年结果的有效性给予直接制约。合理的石榴子石+绿辉石Sm-Nd内部等时线年龄产于两矿物之间达到并在峰变质条件下保持氧同位素平衡的样品中,而两矿物之间处于氧同位素不平衡的样品不能给出正确的Sm-Nd内部等时线年龄。同一矿物在手标本尺度出现显著的O-Nd-Sr同位素不均一性,据此对这些元素在石榴子石和绿辉石中的扩散速率顺序进行了估计,不仅得到了与实验扩散系数相吻合的结果,而且由此估计出在峰变质条件下达到矿物内部同位素均一化所需要的时间应大于10Ma。  相似文献   

5.
Fluid availability during high‐grade metamorphism is a critical factor in dictating petrological, geochemical and isotopic reequilibration between metamorphic minerals, with fluid‐absent metamorphism commonly resulting in neither zircon growth/recrystallization for U‐Pb dating nor Sm‐Nd isotopic resetting for isochron dating. While peak ultra‐high pressure (UHP) metamorphism is characterized by fluid immobility, high‐pressure (HP) eclogite‐facies recrystallization during exhumation is expected to take place in the presence of fluid. A multichronological study of UHP eclogite from the Sulu orogen of China indicates zircon growth at 216 ± 3 Ma as well as mineral Sm‐Nd and Rb‐Sr reequilibration at 216 ± 5 Ma, which are uniformly younger than UHP metamorphic ages of 231 ± 4 to 227 ± 2 Ma as dated by the SHRIMP U‐Pb method for coesite‐bearing domains of zircon. O isotope reequilibration was achieved between the Sm‐Nd and Rb‐Sr isochron minerals, but Hf isotopes were not homogenized between different grains of zircon. The HP eclogite‐facies recrystallization is also evident from petrography. Thus this process occurred during exhumation with fluid availability from decompression dehydration of hydrous minerals and the exsolution of hydroxyl from nominally anhydrous minerals. This provides significant amounts of internally derived fluid for extensive retrogression within the UHP metamorphosed slabs. Based on available experimental diffusion data, the consistent reequilibration of U‐Pb, Sm‐Nd, Rb‐Sr and O isotope systems in the eclogite minerals demonstrates that time‐scale for the HP eclogite‐facies recrystallization is c. 1.9–9.3 Myr or less. This provides a maximum estimate for duration of the fluid‐facilitated process in the HP eclogite‐facies regime during the exhumation of deeply subducted continental crust.  相似文献   

6.
对大别山太湖金河桥超高压榴辉岩作了矿物Sm-Nd内部等时线定年研究和激光氧同位素分析。石榴石+绿辉石Sm-Nd等时线给出了较低年龄210±3Ma,石榴石+金红石Sm-Nd等时线给出了较高年龄237±4Ma。岩相学观察发现,绿辉石具有角闪石退变质边。氧同位素分析表明,石榴石与绿辉石之间的氧同位素体系处于不平衡状态。据此,石榴石+绿辉石Sm-Nd同位素体系因退变质作用导致Nd同位素不平衡而给出不合理偏低年龄。较老的石榴石+金红石Sm-Nd年龄有可能指示了榴辉岩相前期阶段的时代,且在温度变质峰期没有使它们之间的Nd同位素再次均一化,它指示Nd在金红石中的扩散速率较慢,可能与石榴石相当。矿物对氧同位素测温得到,石英—石榴石对温度为695±35℃,石英—金红石对为460±15℃,与根据金红石U—Pb内部等时线估计的Pb扩散封闭温度470±50℃一致。对比表明,O在石榴石中的扩散速率与Nd相当或略低,而O和Pb在金红石中的扩散速率相近,且均比Nd快。  相似文献   

7.
报道了大别山北部三个榴辉岩样品的矿物 Sm- Nd等时线年龄,它们分别为 (210± 6) Ma或 (214± 6) Ma、 (208± 38) Ma和 (208± 4) Ma。氧同位素研究表明,这些样品中的石榴子石与绿辉石之间处于氧同位素平衡状态,因此,该 Sm- Nd等时线定年结果可靠。本区榴辉岩的高压麻粒岩相退变质阶段的冷却年龄为 210 Ma左右;榴辉岩的钕同位素初始比ε Nd(t)(两个样品一个为- 10左右,另一个为- 2)基本上表现为陆壳岩石特征,可能类似于南部超高压带中的榴辉岩,为印支期扬子陆壳俯冲变质成因。它们的全岩δ 18O值较低,为+ 2.4‰~+ 3.6‰,可能指示其原岩同大别山南部超高压带中榴辉岩一样,在板块俯冲之前,经受过高温地表水热液蚀变。年代学结果表明,大别山北部榴辉岩在 230~ 210 Ma期间经历的是一等温或升温过程,这与大别山南部含柯石英榴辉岩在这一时期的快速冷却过程形成强烈对比,这对理解俯冲陆壳中不同构造岩片折返过程的差异有重要意义。  相似文献   

8.
Hydrogen and oxygen isotope studies were carried out on high and ultrahigh pressure metamorphic rocks in the eastern Dabie Mountains, China. The δ18O values of eclogites cover a wide range of −4.2 to +8.8‰, but the δD values of micas from the eclogites fall within a narrow range of −87 to −71‰. Both equilibrium and disequilibrium oxygen isotope fractionations were observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some eclogite samples. The δ18O values of −4 to −1‰ for some of the eclogites represent the oxygen isotope compositions of their protoliths which underwent meteoric water–rock interaction before the high to ultrahigh pressure metamorphism. Heterogeneous δ18O values for the eclogite protoliths implies not only the varying degrees of the water–rock interaction before the metamorphism at different localities, but also the channelized flow of fluids during progressive metamorphism due to rapid plate subduction. Retrograde metamorphism caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions and could be derived from structural hydroxyls dissolved in nominally anhydrous minerals.  相似文献   

9.
The oxygen and hydrogen isotope compositions of minerals and whole rock were determined for two types of gneiss (biotite gneiss and granitic gneiss) associated with ultrahigh pressure (UHP) eclogites in the Shuanghe district of the eastern Dabie Mountains. There are significant differences in δ18O between the two gneisses: the UHP biotite gneiss varying from −4.3‰ to 10.6‰ similar to the associated eclogites, whereas the non-UHP granitic gneiss ranges only from −3.8‰ to 1.2‰. The δD values are similar in the two gneisses with −37 to −64‰ for epidote/zoisite, −92 to −83‰ for amphibole, and −63 to −109‰ for biotite/phengite. Hydrogen isotope disequilibrium among the coexisting hydroxyl-bearing minerals is ascribed to retrograde exchange subsequent to amphibolite-facies metamorphism. Oxygen isotopic equilibrium has been preserved among various minerals in both gneisses regardless of the large variation in rock δ18O. Oxygen isotopic geothermometers yield different but regular temperatures corresponding to the closure temperatures of oxygen diffusion in the minerals. The metamorphic temperatures of both eclogite facies and amphibolite facies have been recovered in mineral pairs from the biotite gneiss. The isotopic temperatures for the granitic gneiss are mostly in accordance with amphibolite-facies metamorphism. However, high temperatures of 550 to 650 °C are obtained from those minerals resistant to retrograde oxygen isotope exchange, implying that the granitic gneiss may have experienced higher temperature metamorphism than expected from petrologic thermometers. The 18O-depletion of both gneisses is interpreted to result from meteoric-hydrothermal exchange before/during plate subduction. Therefore, the measured δ18O values of the gneisses reflect the oxygen isotope compositions of their protoliths prior to the UHP metamorphism. It is inferred that the UHP unit is in foreign contact with the non-UHP unit like a tectonic melange, but both of them experienced the two common stages of geodynamic evolution: (1) 18O-depletion prior to the UHP metamorphism, (2) uplifting since the amphibolite-facies metamorphism. Received: 5 May 1998 / Accepted: 27 August 1998  相似文献   

10.
A combined study of mineral O isotopes and hydroxyl contents was carried out for the contacts between ultrahigh‐pressure eclogite and gneiss from main hole of the Chinese Continental Scientific Drilling Project in the Sulu orogen. While there is a large δ18O variation from ?8.3 to 7.3‰ for all minerals, different styles of mineral‐pair fractionation occur at the boundaries of different lithologies. Both equilibrium and disequilibrium O isotope fractionations are observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some samples of eclogite. This suggests that both eclogite and gneiss acquired their negative δ18O values by meteoric‐hydrothermal alteration of their protoliths at high temperatures before subduction, and that fluid‐assisted O isotope exchange did take place across the boundary of different lithologies at local scales during amphibolite‐facies retrogression. Fourier Transform Infrared Spectroscopy analysis yielded H2O concentrations of 50 to 1144 p.p.m. (by weight) for garnet and 139 to 751 p.p.m. for omphacite. The state of equilibrium or disequilibrium O isotope fractionations between omphacite and garnet are correlated with variations in their water content at local scales, indicating that the internally derived fluid plays a critical role in retrograde metamorphism during exhumation. The retrograde metamorphism results in mineral reactions and O isotope disequilibria between some of the minerals, but the fluid for retrogression was derived from the decompression exsolution of structural hydroxyl and thus internally buffered in the O isotope composition. A quantitative estimate suggests that a hand specimen (3 × 6 × 9 cm) of eclogite composed of 70% garnet and 30% omphacite can release 0.316 g water by the decompression exsolution of structural hydroxyl, which can form 14.4 g amphibole during exhumation. This provides sufficient amounts of water for the amphibolite‐facies retrogression.  相似文献   

11.
Quartz veins in high‐pressure to ultrahigh‐pressure metamorphic rocks witness channelized fluid flow that transports both mass and heat during collisional orogenesis. This flow can occur in the direction of changing temperature/pressure during subduction or exhumation. SHRIMP U‐Pb dating of zircon from a kyanite‐quartz vein within ultrahigh‐pressure eclogite in the Dabie continental collision orogen yields two age groups at 212 ± 7 and 181 ± 13 Ma, which are similar to two groups of LA‐ICPMS age at 210 ± 4 and 180 ± 5 Ma for the same sample. These ages are significantly younger than zircon U‐Pb ages of 224 ± 2 Ma from the host eclogite. Thus the two age groups from the vein date two episodes of fluid flow involving zircon growth: the first due to decompression dehydration during exhumation, and the second due to heating dehydration in response to a cryptic thermal event after continental collision. Laser fluorination O‐isotope analyses gave similar δ18O values for minerals from both vein and eclogite, indicating that the vein‐forming fluid was internally derived. Synchronous cooling between the vein and eclogite is suggested by almost the same quartz–mineral fractionation values, with regularly decreasing temperatures that are in concordance with rates of O diffusion in the minerals. While the quartz veining was caused by decompression dehydration at 700–650 °C in a transition from ultrahigh‐pressure to high‐pressure eclogite‐facies retrogression, the postcollisional fluid flow was retriggered by heating dehydration at ~500 °C without corresponding metamorphism. In either case, the kyanite–quartz vein formed later than the peak ultrahigh‐pressure metamorphic event at the Middle Triassic, pointing to focused fluid flow during exhumation rather than subduction. The growth of metamorphic zircon in the eclogite appears to have depended on fluid availability, so that their occurrence is a type of geohygrometer besides geochronological applicability to dating of metamorphic events in orogenic cycles.  相似文献   

12.
While extensive studies have demonstrated fluid release during subduction of oceanic crust, little attention has been paid to fluid activity during subduction and exhumation of continental crust. Abundant occurrence of quartz veins within eclogites in the Dabie-Sulu orogenic belt of China provides us with an opportunity to study the origin and role of vein-forming fluids with respect to heat and mass transfer during ultrahigh pressure (UHP) metamorphism and its relevant processes. This study focuses on kyanite-quartz vein that occurs as polycrystalline aggregates within the low-T eclogite in the Dabie terrane, which are interpreted as pseudomorphs after former porphyroblasts of lawsonite. Coesite pseudomorphs were found for the first time in eclogite garnet, resulting in a revised estimate of peak PT conditions at 670°C and 3.3 GPa for the eclogite and thus upgrading the high-P unit to an UHP unit. On the basis of the relationship between calculated PT path and metamorphic reactions as well as the absence of foliation texture, and undulose extinction of quartzes in the vein, we conclude that lawsonite breakdown into kyanite–quartz–zoisite assemblage took place at the onset of exhumation subsequent to peak pressure. Retrograde metamorphism caused O and H isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in stable isotope compositions. Zircon U–Pb dating and whole-rock Nd–Sr isotope analyses indicate that eclogite protolith is the paleoceanic basalt that was derived from the depleted mantle by magmatism at about 1.8 to 1.9 Ga but experienced hydrothermal alteration by surface waters. The altered basalt underwent UHP metamorphism in the Triassic that caused fluid release for zircon growth/overgrowth not only at about 242±3 Ma prior to the onset of peak pressure but also at about 222±4 Ma during decompression dehydration by lawsonite breakdown and hydroxyl exsolution in the low-T/UHP eclogite. Consistent ages of 236.1±4.2 Ma and 230±7 Ma were obtained from mineral Sm–Nd and Rb–Sr isochron dating, respectively, indicating attainment and preservation of Nd and Sr isotope equilibria during the Triassic UHP eclogite-facies metamorphism. Ar–Ar dating on paragonite from the eclogite gave consistent plateau and isochron ages of 241.3±3.1 Ma and 245.5±9.8 Ma, respectively, which are interpreted to date paragonite crystallization during the prograde eclogite-facies metamorphism. The timing of peak UHP metamorphism for the low-T eclogite is constrained at sometime prior to 236.1±4.2 Ma. Thus the termination age of peak UHP metamorphism may be different in different slices of deep-subducted slab.  相似文献   

13.
The behaviour of the Rb-Sr and Sm-Nd isotopic systems with increasing degree of Hercynian metamorphic overprint was studied along a transect in Cambrian shales of northwestern Morocco. Clay fractions of < 0.2 to 2–6 μm size from five samples were investigated, representing a range from nonmetamorphic to epizonal metamorphic conditions. The samples were washed in cold l N HC1 prior to digestion to separate soluble/exchangeable Rb, Sr, Sm, and Nd from amounts of these elements fixed in the crystallographic sites of the minerals and to analyze both components separately.The results reveal that the Rb-Sr isotopic system is dominated by Sr hosted by clay mineral phases (both detrital and authigenic illite and chlorite) and carbonate-hosted soluble Sr. Isotopic homogenization of Sr occurred during Hercynian metamorphism, yielding ages between 309 and 349 Ma.The Sm-Nd isotopic system, on the other hand, is dominated by cogenetic apatite and Fe oxide/ hydroxide, both having high contents of leachable REEs. The leachates yield a Sm-Nd isochron age of 523 ± 72 Ma, indicating diagenetic equilibrium between apatite and Fe-oxide/hydroxide. Fine-grained clay fractions of < 0.2 μm size plot onto this reference line, suggesting isotopic equilibrium with the leachates. Size fractions > 0.2 μm show inheritance of a detrital Nd component. The study demonstrates that the diagenesis of the investigated argillaceous sediments can be dated by the Sm-Nd chronometer in authigenic cement phases. The isotopic system of these minerals (apatite, Fe hydroxide/oxide) was homogenized during authigenic mineral growth in a sediment that was flushed by diagenetic fluids and had abundant primary or secondary interconnected pore space.The Hercynian metamorphic overprint caused partial isotopic rehomogenization of the adsorbed and clay-hosted portion of the Sr as well as of the carbonate-hosted Sr. The Sm-Nd system in the cement phases survived this metamorphism. This results in decoupling of the two isotopic systems and allows the dating of diagenesis on the one hand (Sm-Nd) and metamorphism on the other hand (Rb-Sr).  相似文献   

14.
Eclogites have been recently discovered in the Xitieshan area in the middle segment of the northern margin of the Qaidam basin. These eclogites, together with those recognized earlier in the Yuka area of the western segment of the northern margin of the Qaidam basin and in the Dulan area of the eastern segment of the northern margin of the Qaidam basin, form an eclogite belt with a length of 350 km. A comparison of the eclogites from the Yuka and Xitieshan areas suggests that they show different country rocks, microtextures, mineral assemblages, and especially, different peak temperatures, PT paths during decompression and isotopic features. Eclogites from the Yuka area bear evidence of prograde metamorphism, such as prograde mineral relics in garnet and growth zoning of garnet, and hairpin-shaped PT paths with coincidence of the baric and thermal peaks of metamorphism, which reflect rapid burial and uplift. Sm-Nd isotopic determination shows obvious Sm-Nd disequilibrium, and no isochron ages of Early P  相似文献   

15.
The Sm-Nd isotopic system of a tonalitic augen gneiss and its constituent minerals from northern Michigan was disturbed during metamorphism. Sm-Nd zircon ages are lower than the wholerock Sm-Nd model age. However, closely associated pairs of minerals (for example, sphene and biotite or apatite and plagioclase) retain their apparent metamorphic ages. The Sm-Nd model age for the tonalitic augen gneiss of 3919 ± 30myr, appears to reflect open system behavior during metamorphism. A mineralogically different gneiss from the same location has a Sm-Nd model age of 3520 ± 70 myr. The two whole rocks differ in their Sm-Nd and Rb-Sr systematics and in their chondrite-normalized rare earth element (REE) patterns. The whole-rock-normalized mineral REE patterns show the contribution of the major and trace minerals to the REE content of the whole rock. The trace minerals contain a significant amount of the total REE.  相似文献   

16.
Kinetics of isotopic equilibrium in the mineral radiometric systems of igneous and metamorphic rocks is an important issue in geochronology. It turns out that temperature is the most important factor in dictating isotopic equilibrium or disequilibrium with respect to diffusion mechanism. Contemporaneous occurrence of Mesozoic granites and gneisses in the Dabie orogen of China allows us to evaluate the thermal effect of magma emplacement and associated metamorphism on mineral radiometric systems. Zircon U-Pb, mineral Rb-Sr and O isotope analyses were carried out for a Cretaceous granite and its host gneiss (foliated granite) from North Dabie. Zircon U-Pb dating gave consistently concordant ages of 127 ± 3 Ma and 128 ± 2 Ma for the granite and the gneiss, respectively. A direct correspondence in equilibrium state is observed between the O and Rb-Sr isotope systems of both granitic and gneissic minerals. Mineral O isotope temperatures correlate with O diffusion closure temperatures under conditions of slow cooling, indicating attainment and preservation of O isotope equilibrium in these minerals. The mineral Rb-Sr isochron of granite, constructed by biotite, feldspar, apatite and whole-rock with the O isotope equilibrium, yields a meaningful age of 118 ± 3 Ma, which is in accordance with the mineral Rb-Sr isochron age of 122 ± 1 Ma for the host gneiss. The consistency in both U-Pb and Rb-Sr ages between the granite and the gneiss suggests a contemporaneous process of crystallizing the zircons and resetting the Rb-Sr radiometric systems during magma emplacement and granite foliation. Whereas the zircon U-Pb ages for both granite and gneiss are interpreted as the timing of magma crystallization, the young Rb-Sr isochron ages record the timing of Sr diffusion closure during the slow cooling. Protolith of the gneiss crystallized shortly before intrusion of the granite, so that it was able to be foliated by voluminous emplacement of coeval mafic to felsic magmas derived by anatexis of orogenic lithospheric keel. Therefore, extensional collapse of collision-thickened crust at Early Cretaceous is suggested to trigger the post-collisional magmatism, which in turn serves as an essential driving force for the contemporaneous high-T deformation/metamorphism.  相似文献   

17.
A combined study of chronometric dating and oxygen isotope analysis for minerals from vein and host eclogite as well as regional country-rock gneiss in the Dabie orogen provides a direct constraint on timing of fluid flow in this orogen formed by continental collision. Oxygen isotope ratios of vein minerals are significantly lower than those of the host eclogite, but comparable with those of the regional gneiss. This suggests the veining fluid came from the regional gneiss (i.e. exhumed slab itself) rather than the host eclogite. While zircon U–Pb and phengite Ar–Ar dating yields ages of 214 to 222 Ma for the eclogite and gneiss, the vein gives a quartz–muscovite Rb–Sr isochron age of 181 Ma and a muscovite K–Ar age of 179 Ma. Thus the veining postdates the Triassic ultrahigh pressure metamorphic event, witnessing postcollisional fluid flow after the orogenic cycle of continental collision.  相似文献   

18.
The formation depth of metamorphic rocks in the Dabie ultrahigh pressure metamorphic (UHPM) zone influences not only our understanding of formation mechanism and evolution processes of collision orogenic belt, but also the studies on earth's interior and geodynamic processes. In this study, the isotopic data of metamorphic rocks in the Dabie UHPM zone are discussed to give constraints on the formation depth in the Dabie UHPM zone. The εSr of eclogite in the Dabie UHPM zone varies from 18 to 42, and the εNd varies from -6.1 to -17, both of them show the characters of isotopic disequilibrium. The oxygen isotope studies indicate that the protoliths of these UHPM rocks have experienced oxygen isotope exchange with meteoric water (or sea water) before metamorphism and no significant changes in the processes of metamorphism on their oxygen isotope composition have been recorded in these rocks. Except for one sample from Bixiling, all samples of eclogite from Dabie UHPM zone show the 3He/4He ratios from 0.79×10-7 to 9.35×10-7, indicating the important contribution of He from continental crust. All Sr, Nd, O and He isotopic studies indicate that the UHPM rocks retain the isotopic characteristics of their protoliths of crust origin. No significant influence of mantle materials has been found in these metamorphic rocks. Trying to explain above isotopic characteristics, some researchers assume that the speeds of dipping thrust and uplifting of rocks were both very high. In this condition, there will not be enough time for isotopic exchange between crust protolith and mantle materials. Therefore, we can not see the tracer of mantle materials in these UHPM rocks. However, this assumption can not be justified with available knowledge. Firstly, it was estimated that the whole process of UHPM took at least 15 Ma. During such a long period, and at the metamorphic temperature of ≥700 ℃, the protolith of crust origin can not escape from isotopic exchange with mantle materials if the UHPM have happened in the mantle depth of ≥100 km. In contrast, all problems will be dismissed if we assume that the UHPM have happened at the depth still in crust.  相似文献   

19.
华中榴辉岩带地球化学和年代学研究   总被引:8,自引:0,他引:8  
张泽明  游振东 《矿物学报》1994,14(3):215-222
根据地质产状,华中高压超高压变质带中的榴辉岩可划分为与超基性岩伴生的P类和与片麻岩、斜长角闪岩等伴生的G类。它们具有不同的地球化学特征,但均为大洋基性火成岩经复杂成分演化作用的产物。全岩-矿物Sm-Nd和颗粒锆石207Pb-206Pb年代学研究表明,超高压变质作用很可能发生在加里东期(480Ma);而印支期(265Ma)则可能是超高压变质岩的后期高压退变质改造阶段。  相似文献   

20.
报道了大别造山带西南部湖北红安榴辉岩和罗田麻粒岩的氧同位素组成,并讨论了氧扩散作用对矿物氧同位素平衡的影响,结果得到,红安榴辉岩的全岩δ^18O值为6.4-7.3‰,罗田黄土岭麻粒岩的全岩δ^18O值为6.6-7.8‰,罗田惠兰山麻粒岩的全岩δ^18O值为3.9‰,这些榴辉岩和麻粒岩全岩的氧同位素组成保持了峰期变质条件下的平衡分馏特征,得到的氧同位素温度对于红安榴辉岩425-620度,对于罗田麻粒岩为740-945度。根据快速颗粒边界扩散模型计算的矿物对氧同位素温度不仅与大多数实测氧同位素温度一致,而且与岩石学测温结果相吻合,因此,这些岩石与东大别榴辉岩一样在形成后经历了快速冷却过程,退变质反应过程中没有外来流体加入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号