首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water resource planners must increasingly make future risk assessments. Though hydrological predictions associated with the global climate change are already being performed, mainly through the use of GCMs, coarse spatial resolutions and uncertain physical processes limit the representation of terrestrial water/energy interactions and the variability in such systems as the Asian monsoon. Despite numerous studies, the regional responses of hydrologic changes resulting from climate change remains inconclusive. In this paper, an attempt at dynamical downsealing of future hydrologic projection under global climate change in Asia is addressed. The authors conducted present and future Asian regional climate simulations which were nested in the results of Atmospheric General Circulation Model (AGCM) experiments. The regional climate model could capture the general simulated features of the AGCM. Also, some regional phenomena such as orographic precipitation, which did not appear in the outcome of the AGCM simulation, were successfully produced. Under global warming, the increase of water vapor associated with the warmed air temperature was projected. It was projected to bring more abundant water vapor to the southern portions of India and the Bay of Bengal, and to enhance precipitation especially over the mountainous regions, the western part of India and the southern edge of the Tibetan Plateau. As a result of the changes in the synoptic flow patterns and precipitation under global warming, the increases of annual mean precipitation and surface runoff were projected in many regions of Asia. However, both the positive and negative changes of seasonal surface runoff were projected in some regions which will increase the flood risk and cause a mismatch between water demand and water availability in the agricul  相似文献   

2.
3.
Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.  相似文献   

4.
An assessment of regional vulnerability of rice to climate change in India   总被引:1,自引:0,他引:1  
A simulation analysis was carried out using the InfoCrop-rice model to quantify impacts and adaptation gains, as well as to identify vulnerable regions for irrigated and rain fed rice cultivation in future climates in India. Climates in A1b, A2, B1 and B2 emission scenarios as per a global climate model (MIROC3.2.HI) and a regional climate model (PRECIS) were considered for the study. On an aggregated scale, the mean of all emission scenarios indicate that climate change is likely to reduce irrigated rice yields by ~4 % in 2020 (2010–2039), ~7 % in 2050 (2040–2069), and by ~10 % in 2080 (2070–2099) climate scenarios. On the other hand, rainfed rice yields in India are likely to be reduced by ~6 % in the 2020 scenario, but in the 2050 and 2080 scenarios they are projected to decrease only marginally (<2.5 %). However, spatial variations exist for the magnitude of the impact, with some regions likely to be affected more than others. Adaptation strategies comprising agronomical management can offset negative impacts in the near future—particularly in rainfed conditions—but in the longer run, developing suitable varieties coupled with improved and efficient crop husbandry will become essential. For irrigated rice crop, genotypic and agronomic improvements will become crucial; while for rainfed conditions, improved management and additional fertilizers will be needed. Basically climate change is likely to exhibit three types of impacts on rice crop: i) regions that are adversely affected by climate change can gain in net productivity with adaptation; ii) regions that are adversely affected will still remain vulnerable despite adaptation gains; and iii) rainfed regions (with currently low rainfall) that are likely to gain due to increase in rainfall can further benefit by adaptation. Regions falling in the vulnerable category even after suggested adaptation to climate change will require more intensive, specific and innovative adaptation options. The present analysis indicates the possibility of substantial improvement in yields with efficient utilization of inputs and adoption of improved varieties.  相似文献   

5.
While previous studies have focused on impacts of average climate change on Russian agriculture and water resources, this study takes into account the impact of changing frequency and spatial heterogeneity of extreme climate events, and the reliance of most of Russia on a few food producing regions. We analyze impacts of the IPCC A2 and B2 climate scenarios with the use of the Global Assessment of Security (GLASS) model (containing the Global Agro-Ecological Zones (GAEZ) crop production model and the Water-Global Assessment and Prognosis (WaterGAP 2) water resources model). As in previous studies we find that decreased crop production in some Russian regions can be compensated by increased production in others resulting in relatively small average changes. However, a different perspective on future risk to agriculture is gained by taking into account a change in frequency of extreme climate events. Under climate normal conditions it is estimated that “food production shortfalls” (a year in which potential production of the most important crops in a region is below 50% of its average climate normal production, taking into account production in food-exporting regions) occur roughly 1–3 years in each decade. This frequency will double in many of the main crop growing areas in the 2020s, and triple in the 2070s. The effects of these shortfalls are likely to propagate throughout Russia because of the higher likelihood of shortfalls occurring in many crop export regions in the same year, and because of the dependence of most Russian regions on food imports from a relatively few main crop growing regions. We estimate that approximately 50 million people currently live in regions that experience one or more shortfalls each decade. This number may grow to 82–139 million in the 2070s. The assessment of climate impacts on water resources indicates an increase in average water availability in Russia, but also a significantly increased frequency of high runoff events in much of central Russia, and more frequent low runoff events in the already dry crop growing regions in the South. These results suggest that the increasing frequency of extreme climate events will pose an increasing threat to the security of Russia's food system and water resources.  相似文献   

6.
Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.  相似文献   

7.
Climate change impacts food production systems, particularly in locations with large, vulnerable populations. Elevated greenhouse gases (GHG), as well as land cover/land use change (LCLUC), can influence regional climate dynamics. Biophysical factors such as topography, soil type, and seasonal rainfall can strongly affect crop yields. We used a regional climate model derived from the Regional Atmospheric Modeling System (RAMS) to compare the effects of projected future GHG and future LCLUC on spatial variability of crop yields in East Africa. Crop yields were estimated with a process-based simulation model. The results suggest that: (1) GHG-influenced and LCLUC-influenced yield changes are highly heterogeneous across this region; (2) LCLUC effects are significant drivers of yield change; and (3) high spatial variability in yield is indicated for several key agricultural sub-regions of East Africa. Food production risk when considered at the household scale is largely dependent on the occurrence of extremes, so mean yield in some cases may be an incomplete predictor of risk. The broad range of projected crop yields reflects enormous variability in key parameters that underlie regional food security; hence, donor institutions’ strategies and investments might benefit from considering the spatial distribution around mean impacts for a given region. Ultimately, global assessments of food security risk would benefit from including regional and local assessments of climate impacts on food production. This may be less of a consideration in other regions. This study supports the concept that LCLUC is a first-order factor in assessing food production risk.  相似文献   

8.
Agricultural Impact Assessment, Vulnerability, and the Scope for Adaptation   总被引:1,自引:1,他引:0  
Climate change assessments which have considered climate impacts of a 2xCO2 climate, using models of the global agricultural system, have found small impacts on overall production, but larger regional changes. Production shifts among regions can be considered one mechanism for adaptation. Adaptation at the farm level, through changes in crops, cultivars, and production practices, is another adaptation mechanism. Existing studies differ in how important these mechanisms will be. Studies that have considered yield effects at specific sites have found very wide ranges of impacts. A useful way to evaluate the impacts of climate change, given the uncertainty about future impacts, is to consider vulnerability. Studies have defined vulnerability in terms of yield, farm profitability, regional economy, and hunger. Vulnerability and climate impacts, particularly in terms of higher order effects on profitability and sustainability, will depend on how society and the economy develop. Lower income populations and marginal agricultural regions, particularly arid or flood prone areas, are most vulnerable to climate change.  相似文献   

9.
During this century global warming will lead to changes in global weather and climate, affecting many aspects of our environment. Agriculture is the sector of the United States economy most likely to be directly impacted by climatic changes. We have examined potential changes in dryland agriculture (Part 3) and in water resources necessary for crop production (Part 4) in response to a set of climate change scenarios. In this paper we assess to what extent, under these same scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the US. In addition, we assess the overall impacts of changes in water supply on national grain production. We apply the 12 climate change scenarios described in Part 1 to the water resources and crop growth simulation models described in Part 2 for the conterminous United States. Drawing on data from Parts 3 and 4 we calculate what the aggregate national production would be in those regions in which grain crops are currently produced by applying irrigation where needed and water supplies allow. The total amount of irrigation water applied to crops declines under all climate change scenarios employed in this study. Under certain of the scenarios and in particular regions, precipitation decreases so much that water supplies are too limited; in other regions precipitation becomes so plentiful that little value is derived from irrigation. Nationwide grain crop production is greater when irrigation is applied as needed. Under irrigation, less corn and soybeans are produced under most of the climate change scenarios than is produced under baseline climate conditions. Winter wheat production under irrigation responds significantly to elevated atmospheric carbon dioxide concentrations [CO2] and appears likely to increase under climate change.  相似文献   

10.
Climate volatility could change in the future, with important implications for agricultural productivity. For Tanzania, where food production and prices are sensitive to climate, changes in climate volatility could have severe implications for poverty. This study uses climate model projections, statistical crop models, and general equilibrium economic simulations to determine how the vulnerability of Tanzania's population to impoverishment by climate variability could change between the late 20th Century and the early 21st Century. Under current climate volatility, there is potential for a range of possible poverty outcomes, although in the most extreme of circumstances, poverty could increase by as many as 650,000 people due to an extreme interannual decline in grain yield. However, scenarios of future climate from multiple climate models indicate no consensus on future changes in temperature or rainfall volatility, so that either an increase or decrease is plausible. Scenarios with the largest increases in climate volatility are projected to render Tanzanians increasingly vulnerable to poverty through impacts on staple grains production in agriculture, with as many as 90,000 additional people entering poverty on average. Under the scenario where precipitation volatility decreases, poverty vulnerability decreases, highlighting the possibility of climate changes that oppose the ensemble mean, leading to poverty impacts of opposite sign. The results suggest that evaluating potential changes in volatility and not just the mean climate state may be important for analyzing the poverty implications of climate change.  相似文献   

11.
Although there are different results from different studies, most assessments indicate that climate variability would have negative effects on agriculture and forestry in the humid and sub-humid tropics. Cereal crop yields would decrease generally with even minimal increases in temperature. For commercial crops, extreme events such as cyclones, droughts and floods lead to larger damages than only changes of mean climate. Impacts of climate variability on livestock mainly include two aspects; impacts on animals such as increase of heat and disease stress-related death, and impacts on pasture. As to forestry, climate variability would have negative as well as some positive impacts on forests of humid and sub-humid tropics. However, in most tropical regions, the impacts of human activities such as deforestation will be more important than climate variability and climate change in determining natural forest cover.  相似文献   

12.
Agriculture and forestry will be particularly sensitive to changes in mean climate and climate variability in the northern and southern regions of Europe. Agriculture may be positively affected by climate change in the northern areas through the introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. The disadvantages may be determined by an increase in need for plant protection, risk of nutrient leaching and accelerated breakdown of soil organic matter. In the southern areas the benefits of the projected climate change will be limited, while the disadvantages will be predominant. The increased water use efficiency caused by increasing CO2 will compensate for some of the negative effects of increasing water limitation and extreme weather events, but lower harvestable yields, higher yield variability and reduction in suitable areas of traditional crops are expected for these areas. Forestry in the Mediterranean region may be mainly affected by increases in drought and forest fires. In northern Europe, the increased precipitation is expected to be large enough to compensate for the increased evapotranspiration. On the other hand, however, increased precipitation, cloudiness and rain days and the reduced duration of snow cover and soil frost may negatively affect forest work and timber logging determining lower profitability of forest production and a decrease in recreational possibilities. Adaptation management strategies should be introduced, as effective tools, to reduce the negative impacts of climate change on agricultural and forestry sectors.  相似文献   

13.
Russian agriculture sensitivity to changes in climate, soil and atmosphere chemistry were analyzed. Calculated data are presented on crop productivity of grain crops and grasses (C3) under arid and humid scenarios of climate taking account of one-, two-, three and four-factor natural environment impacts. All four factors under studies (climatic parameters, CO2 and tropospheric ozone concentrations, soil degradation extent) greatly impact agriculture productivity. The effect of interaction between all considered factors on agroecosystem productivity is studied. It is established that a simple additive scheme for explaining the complex effect of some factors can be much violated. In this case, not only variations in the mean crop yield levels but also variations in the degree of crop stability have been assessed in some regions, that may be more important for determining the social-economic consequences. It turned out that the recurrence of critically very low yields in steppe regions may increase two fold as a result of global warming.  相似文献   

14.
This paper presents three baseline scenarios of no policy action computed by the IMAGE 2 model. These scenarios cover a wide range of coupled global change Indicators, including: energy demand and consumption; food demand, consumption, and production; changes in land cover including changes in extent of agricultural land and forest; emissions of greenhouse gases and ozone precursors; and climate change and its impacts on sea level rise, crop productivity and natural vegetation. Scenario information is available for the entire world with regional and grid scale detail, and covers from 1970 to 2100. The scenarios indicate that the coming decades could be a period of relatively rapid global environmental change as compared to the period before and after. The natural vegetation in industrialized regions could be threatened by climate change, but abandonment of agricultural lands could also make new lands available for reforestation and revegetation. The opposite is true for most of Asia and Africa. Here the impacts of climate change on vegetation may not be as significant as in temperate climates, but the demand for food will lead to a significant expansion of agricultural lands at the expense of remaining forests and other natural areas.  相似文献   

15.
Environmental change in grasslands: Assessment using models   总被引:7,自引:0,他引:7  
Modeling studies and observed data suggest that plant production, species distribution, disturbance regimes, grassland biome boundaries and secondary production (i.e., animal productivity) could be affected by potential changes in climate and by changes in land use practices. There are many studies in which computer models have been used to assess the impact of climate changes on grassland ecosystems. A global assessment of climate change impacts suggest that some grassland ecosystems will have higher plant production (humid temperate grasslands) while the production of extreme continental steppes (e.g., more arid regions of the temperate grasslands of North America and Eurasia) could be reduced substantially. All of the grassland systems studied are projected to lose soil carbon, with the greatest losses in the extreme continental grassland systems. There are large differences in the projected changes in plant production for some regions, while alterations in soil C are relatively similar over a range of climate change projections drawn from various General Circulation Models (GCM's). The potential impact of climatic change on cattle weight gains is unclear. The results of modeling studies also suggest that the direct impact of increased atmospheric CO2 on photosynthesis and water use in grasslands must be considered since these direct impacts could be as large as those due to climatic changes. In addition to its direct effects on photosynthesis and water use, elevated CO2 concentrations lower N content and reduce digestibility of the forage.  相似文献   

16.
The present study involves using the Canadian Climate Centre (CCC) climate change scenario to evaluate the impacts of a CO2-induced climate change on agriculture in Québec and vicinity. Climate change using the CCC General Circulation Model (GCM) data are fed into a crop model (FAO) so as to gauge the changes in agroclimatic factors such as growing season length and growing degree days, and subsequently potential yield changes for a variety of cereal (C3 and C4), leguminous, oleaginous, vegetable and special crops, for twelve major agricultural regions in southern Québec. Our results show that depending upon the agricultural zone and crop type, yields may increase (ex. corn and sorghum by 20%) or decrease (ex. wheat and soybean by 20 to 30%). Also, these crop yield changes appear to be related to acceleration in maturation rates, mainly to change in moisture stress and to shifts in optimal thermal growth conditions. These possible shifts in agricultural production potentials would solicit the formulation of appropriate adaptation strategies.  相似文献   

17.
Conclusion Studies that include moderate climate forecasts, farmer adaptation, carbon fertilization, and warm-loving crops tend to show that climate change will have only mild impacts on average global agricultural output and may even improve temperate agricultural production. On this point, recent studies yield strikingly consistent results. Of course, impact estimates still contain uncertainties. Key questions include how agriculture might change by 2060, how tropical and subtropical farming will be affected, and how effects will be distributed regionally. The most likely threat to agriculture from climate warming is regional damages in relatively poor areas that lack either the knowledge or the financial resources to adjust. Although it is not clear which regions will actually suffer, the ones that are most vulnerable lie predominantly in or near the tropics (IPCC, 1995). Nonetheless, on average, the factors discussed in this essay will help mitigate the impact of climate change on agriculture.The authors are grateful to the Electric Power Research Institute (EPRI) for financial support. We also wish to thank Richard Adams, Cynthia Rosenzweig, Kathleen Segerson, Joel Smith, Robert Unsworth and Thomas Wilson for their helpful comments. The authors alone are responsible for any remaining errors or omissions.  相似文献   

18.
In West Africa, agriculture, mainly rainfed, is a major economic sector and the one most vulnerable to climate change. A meta-database of future crop yields, built up from 16 recent studies, is used to provide an overall assessment of the potential impact of climate change on yields, and to analyze sources of uncertainty.Despite a large dispersion of yield changes ranging from −50% to +90%, the median is a yield loss near −11%. This negative impact is assessed by both empirical and process-based crop models whereas the Ricardian approach gives very contrasted results, even within a single study. The predicted impact is larger in northern West Africa (Sudano-Sahelian countries, −18% median response) than in southern West Africa (Guinean countries, −13%) which is likely due to drier and warmer projections in the northern part of West Africa. Moreover, negative impacts on crop productivity increase in severity as warming intensifies, with a median yield loss near −15% with most intense warming, highlighting the importance of global warming mitigation.The consistently negative impact of climate change results mainly from the temperature whose increase projected by climate models is much larger relative to precipitation change. However, rainfall changes, still uncertain in climate projections, have the potential to exacerbate or mitigate this impact depending on whether rainfall decreases or increases. Finally, results highlight the pivotal role that the carbon fertilization effect may have on the sign and amplitude of change in crop yields. This effect is particularly strong for a high carbon dioxide concentration scenario and for C3 crops (e.g. soybean, cassava). As staple crops are mainly C4 (e.g. maize, millet, sorghum) in WA, this positive effect is less significant for the region.  相似文献   

19.
The topography of hilly landscapes modifies crop environment changing the fluxes of water and energy, increasing risk in these vulnerable agriculture systems, which could become more accentuated under climate change (drought, increased variability of rainfall). In order to quantify how wheat production in hilly terrain will be affected by future climate, a newly developed and calibrated micro-meteorological model for hilly terrain was linked to a crop growth simulation model to analyse impact scenarios for different European regions. Distributions of yield and growing length of rainfed winter wheat and durum wheat were generated as probabilistic indices from baseline and low (B2) and high (A2) emission climate scenarios provided from the Hadley Centre Regional Climate Model (HadRM3). We used site-specific terrain parameters for two sample catchments in Europe, ranging from humid temperate (southeast UK) to semi-arid Mediterranean (southern Italy). Results for baseline scenario show that UK winter wheat is mainly affected by annual differences in precipitation and yield distributions do not change with terrain, whilst in the southern Mediterranean climate yield variability is significantly related to a slope × elevation index. For future climate, our simulations confirm earlier predictions of yield increase in the UK, even under the high emission scenario. In the southern Mediterranean, yield reduction is significantly related to slope × elevation index increasing crop failure in drier elevated spots but not in wet years under baseline weather. In scenarios for the future, the likelihood of crop failure rises sharply to more than 60%, and even in wet years, yields are likely to decrease in elevated spots.  相似文献   

20.
Yield Variability as Influenced by Climate: A Statistical Investigation   总被引:3,自引:2,他引:3  
One of the issues with respect to climate change involves its influence on the distribution of future crop yields. Many studies have been done regarding the effect on the mean of such distributions but few have addressed the effect on variance. Furthermore, those that have been done generally report the variance from crop simulators, not from observations. This paper examines the potential effects of climate change on crop yield variance in the context of current observed yields and then extrapolates to the effects under projected climate change. In particular, maximum likelihood panel data estimates of the impacts of climate on year-to-year yield variability are constructed for the major U.S. agricultural crops. The panel data technique used embodies a variance estimate developed along the lines of the stochastic production function approach suggested by Just and Pope. The estimation results indicate that changes in climate modify crop yield levels and variances in a crop-specific fashion. For sorghum, rainfall and temperature increases are found to increase yield level and variability. On the other hand, precipitation and temperature are individually found to have opposite effects on corn yield levels and variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号