首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
地震绕射波是地下非连续性地质体的地震响应,绕射波成像对地下断层、尖灭和小尺度绕射体的识别具有重要的意义.在倾角域共成像点道集中,反射波同相轴表现为一条下凸曲线,能量主要集中在菲涅耳带内,绕射波能量则比较发散.由于倾角域菲涅耳带随偏移距变化而存在差异,因此本文提出一种在倾角-偏移距域道集中精确估计菲涅耳带的方法,在各偏移距的倾角域共成像点道集中实现菲涅耳带的精确切除,从而压制反射波.在倾角-偏移距域道集中还可以分别实现绕射波增强,绕射波同相轴相位校正,因此能量弱的绕射波可以清晰地成像.在倾角域共成像点道集中,反射波同相轴的最低点对应于菲涅耳带估计所用的倾角,因此本文提出一种在倾角域共成像点道集中直接自动拾取倾角场的方法.理论与实际资料试算验证了本文绕射波成像方法的有效性.  相似文献   

2.
We propose a method for imaging small‐scale diffraction objects in complex environments in which Kirchhoff‐based approaches may fail. The proposed method is based on a separation between the specular reflection and diffraction components of the total wavefield in the migrated surface angle domain. Reverse‐time migration was utilized to produce the common image gathers. This approach provides stable and robust results in cases of complex velocity models. The separation is based on the fact that, in surface angle common image gathers, reflection events are focused at positions that correspond to the apparent dip angle of the reflectors, whereas diffracted events are distributed over a wide range of angles. The high‐resolution radon‐based procedure is used to efficiently separate the reflection and diffraction wavefields. In this study, we consider poststack diffraction imaging. The advantages of working in the poststack domain are its numerical efficiency and the reduced computational time. The numerical results show that the proposed method is able to image diffraction objects in complex environments. The application of the method to a real seismic dataset illustrates the capability of the approach to extract diffractions.  相似文献   

3.
Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. However, wave diffractions generally originate from geological structures, such as fractures, karst caves, and faults. The wave diffraction energy is much weaker than that of the reflections. Therefore, even if wave diffractions can be traced back to their origin, their energy is masked by that of the reflections. Separating and imaging diffractions and reflections can improve the imaging accuracy of diffractive targets. Based on the geometrical differences between reflections and diffractions on the plane-wave record; that is, reflections are quasi-linear and diffractions are quasi-hyperbolic, we use plane-wave prediction filtering to separate the wave diffractions. First, we estimate the local slope of the seismic event using planewave destruction filtering and, then, we predict and extract the wave reflections based on the local slope. Thus, we obtain the diffracted wavefield by directly subtracting the reflected wavefield from the entire wavefield. Finally, we image the diffracted wavefield and obtain high-resolution diffractive target results. 2D SEG salt model data suggest that the plane-wave prediction filtering eliminates the phase reversal in the plane-wave destruction filtering and maintains the original wavefield phase, improving the accuracy of imaging heterogeneous objects.  相似文献   

4.
Prestack image volumes may be decomposed into specular and non‐specular parts by filters defined in the dip‐angle domain. For space‐shift extended image volumes, the dip‐angle decomposition is derived via local Radon transform in depth and midpoint coordinates, followed by an averaging over space‐shifts. We propose to employ prestack space‐shift extended reverse‐time migration and dip‐angle decomposition for imaging small‐scale structural elements, considered as seismic diffractors, in models with arbitrary complexity. A suitable design of a specularity filter in the dip‐angle domain rejects the dominant reflectors and enhances diffractors and other non‐specular image content. The filter exploits a clear discrimination in dip between specular reflections and diffractions. The former are stationary at the specular dip, whereas the latter are non‐stationary without a preferred dip direction. While the filtered image volume features other than the diffractor images (for example, noise and truncation artefacts are also present), synthetic and field data examples suggest that diffractors tend to dominate and are readily recognisable. Averaging over space‐shifts in the filter construction makes the reflectors? rejection robust against migration velocity errors. Another consequence of the space‐shift extension and its angle‐domain transforms is the possibility of exploring the image in a multiple set of common‐image gathers. The filtered diffractions may be analysed simultaneously in space‐shift, scattering‐angle, and dip‐angle image gathers by means of a single migration job. The deliverables of our method obviously enrich the processed material on the interpreter's desk. We expect them to further supplement our understanding of the Earth's interior.  相似文献   

5.
地震绕射波源于介质非连续性,从地震记录中将绕射波分离出来并进行成像,其结果对研究诸如碳酸盐岩缝洞储层这类复杂非均质储层具有重要意义.对炮集记录进行平面波分解,在地层倾角不大的假设下,反射波和绕射波同相轴在平面波分解剖面上存在较大的倾角差异.基于此,我们提出分步进行绕射波分离的方法:(1)利用局部倾角滤波方法将绕射波的较大倾角信息成分分离出来,此时,余下的部分包含有反射波和残留的低倾角绕射波信息;(2)利用频率-空间域预测反演方法从上述含有反射波和残留的低倾角绕射波信息中分离出残留绕射波成分;(3)将两次分离的绕射波信息相加得到最终的绕射波估计.用该方法能够得到相对完整的绕射波信息,有效地克服了靠单一的倾角差异进行绕射波分离时明显损失低倾角信息,从而影响绕射波成像结果横向分辨率这一问题.理论与实际资料试算验证了该方法的有效性.  相似文献   

6.
A three-dimensional (3-D) kinematic migration algorithm for media in which migration velocity varies linearly with depth is developed, implemented and tested. The algorithm is based on the concept that a single reflection or diffraction in a (zero- or finite-offset) trace may have originated at any point on a constant traveltime surface within the Earth defined by the observed two-way traveltime. The envelope of all such constant time surfaces, for all observed reflections and diffractions produced by one reflector, is the desired migrated 3-D image. The optimal envelope position in depth is determined, beneath each point on a regular grid, by a statistical imaging condition; an incremental function of depth containing the number of constant time surfaces passing through that depth increment is cross-correlated with a Gaussian function whose width is chosen to correspond to the vertical scale of the features of interest. The numerical procedures are based on the observation that, in a medium in which velocity varies linearly with depth, ray segments are circular so traveltimes can be computed analytically. Also, traveltimes are independent of azimuth so the 3-D problem can be collapsed into an equivalent 2-D problem. The algorithm is illustrated and tested by application to synthetic data and to scale-model data from the Seismic Acoustics Laboratory at the University of Houston.  相似文献   

7.
地震资料含有各种类型多次波,而传统成像方法仅利用地震一次反射波成像,在地震成像前需将多次波去除.然而,多次波携带了丰富的地下结构信息,多次波偏移能够提供除反射波外的额外地下照明.修改传统逆时偏移方法,用包含一次反射波和多次波的原始记录代替震源子波,将SRME方法预测的表面多次波代替一次反射波作为输入数据,可将表面多次波成像.多次波成像的挑战和困难在于大量串扰噪声的产生,针对表面多次波成像中的成像噪声问题,将最小二乘逆时偏移方法与多次波分阶思想结合起来,发展可控阶数的表面多次波反演成像方法,有望初步实现高精度的表面多次波成像.在消除原始记录中的表面多次波后,通过逆散射级数方法预测得到层间多次波,将层间多次波作为逆时偏移方法的输入数据可将其准确归位到地下反射位置.数值实验表明,多次波成像能够有效地为地下提供额外照明,而可控阶表面多次波最小二乘逆时偏移成像方法几乎完全避免成像噪声.  相似文献   

8.
As an ideal carrier of high-resolution information, seismic diffraction can be used to clarify and locate small-scale discontinuities or inhomogeneities in the subsurface. However, a diffraction is weak and thus be suppressed by the specular reflection. Furthermore, a diffraction would be destroyed by the conventional imaging method due to the polarity reversal of diffraction. In this paper, we analyse the behaviour of diffraction and reflection. For the image point on a horizontal or oblique reflector, the zone on both sides of the stationary point has the same energy after using a cosine weight function. Based on the behaviour, we propose the adaptive phase filter to adjust the polarity of the energy on both sides, and calculate it through the illumination angle and the reflector dip angle. This method avoids the calculation of the Fresnel zones and can further suppress residual reflection that disturb the diffraction images. Synthetic and field data applications show that the desired imaging results can be obtained by the proposed method. The test results demonstrate that the method is efficient in detecting small-scale discontinuities or inhomogeneities in the subsurface and can provide high-resolution information for seismic interpretation.  相似文献   

9.
苏北大陆科学钻探靶区深反射地震的叠前深度偏移   总被引:4,自引:2,他引:2  
由于深反射地震数据具有信噪比低和记录长度长等特点,叠前深度偏移方法的应用有许多困难.为此,我们研究了一种适合于深反射地震的叠前深度偏移方法;包括:用逆风有限差分方法计算程函方程;在常规速度扫描的基础上,用协方差控制提高速度分析精度;用联合反演算法计算层速度,再插值后得到初始速度模型;用Kirchhoff法作为偏移速度分析工具,求得最终的速度模型;最终的速度模型作为有限差分深度偏移的输入,求得最终的偏移结果.用该方法对“中国大陆科学深钻工程”东海二维深反射地震数据DH-4线进行了叠前深度偏移,取得了良好的效果。  相似文献   

10.
The seismic K-Horizon is the key to gaining understanding on the deep supercritical geothermal rocks in Southern Tuscany. The K-Horizon is hosted in metamorphic rocks, which cause strong seismic wavefield scattering resulting in a poor signal-to-noise ratio. Our study aims to reveal high-resolution seismic images of the K-Horizon below a geothermal field in Southern Tuscany, using an advanced three-dimensional seismic depth imaging approach. The key seismic pre-processing steps in the time domain include muting a large amount of persistent noise based on the statistical analysis of the seismic amplitudes, and tomostatics technique to correct for static effects. We carried out seismic depth imaging using Kirchhoff Pre-Stack Depth Migration and Fresnel Volume Migration techniques. Each migration technique was tested with constant and heterogeneous three-dimensional velocity models. Due to the difficulties in determining emergent angles for this low signal-to-noise ratio data set, the migration results with the heterogeneous three-dimensional velocity model show less coherent reflections compared to the migration results using the constant velocity model. Both velocity models however lead to relatively the same structure and depth of the K-Horizon, indicating the similarity of the average velocities along the wave propagation paths in both velocity models. With both velocity models Fresnel Volume Migration yields the K-Horizon with better reflection coherency and higher signal-to-noise ratio than standard Kirchhoff Pre-Stack Depth Migration. Nevertheless, both migration techniques have been able to reveal the K-Horizon with relatively high resolution and provide a reliable basis for geothermal rock characterization as well as steering of the first geothermal well penetrating the K-Horizon.  相似文献   

11.
We present an innovative approach for seismic image enhancement using multi‐parameter angle‐domain characterization of common image gathers. A special subsurface angle‐domain imaging system is used to generate the multi‐parameter common image gathers in a summation‐free image space. The imaged data associated with each common image gathers depth point contain direction‐dependent opening‐angle image contributions from all the available incident and scattered wave‐pairs at this point. Each direction‐dependent opening‐angle data can be differently weighted according to its coherency measure. Once the optimal migration velocity is used, it is assumed that in the actual specular direction, the coherency measure (semblance) along reflection events, from all available opening angles and opening azimuths, is larger than that along non‐specular directions. The computed direction‐dependent semblance attribute is designed to operate as an imaging filter which enhances specular migration contributions and suppresses all others in the final migration image. The ability to analyse the structural properties of the image points by the multi‐parameter common image gather allows us to better handle cases of complicated wave propagation and to improve the image quality at poorly illuminated regions or near complex structures. The proposed method and some of its practical benefits are demonstrated through detailed analysis of synthetic and real data examples.  相似文献   

12.
Prestack depth migrations based on wavefield extrapolation may be computationally expensive, especially in 3D. They are also very dependent on the acquisition geometry and are not flexible regarding the geometry of the imaging zone. Moreover, they do not deal with all types of wave, considering only primary reflection events through the model. Integral approaches using precalculated Green's functions, such as Kirchhoff migration and Born-based imaging, may overcome these problems. In the present paper, both finite-difference traveltimes and wavefront construction are used to obtain asymptotic Green's functions, and a generalized diffraction tomography is applied as an example of Born-based acoustic imaging. Target-orientated imaging is easy to perform, from any type of survey and subselection of shot/receiver pairs. Multifield imaging is possible using Green's functions that take into account, for instance, reflections at model boundaries. This may help to recover parts of complex structures which would be missing using a paraxial wave equation approach. Finally, a numerical evaluation of the resolution, or point-spread, function at any point of the depth-migrated section provides valuable information, either at the survey planning stage or for the interpretation.  相似文献   

13.
The South China Sea where water depth is up to 5000 m is the most promising oil and gas exploration area in China in the future.The seismic data acquired in the South China Sea contain various types of multiples that need to be removed before imaging can be developed.However,compared with the conventional reflection migration,multiples carry more information of the underground structure that helps provide better subsurface imaging.This paper presents a method to modify the conventional reverse time migration so that multiple reflections can migrate to their correct locations in the subsurface.This approach replaces the numerical impulsive source with the recorded data including primaries and multiples on the surface,and replaces the recorded primary reflection data with multiples.In the reverse time migration process,multiples recorded on the surface are extrapolated backward in time to each depth level,while primaries and multiples recorded on the surface are extrapolated forward in time to the same depth levels.By matching the difference between the primary and multiple images using an objective function,this algorithm improves the primary resultant image.Synthetic tests on Sigsbee2 B show that the proposed method can obtain a greater range and better underground illumination.Images of deep water in the South China Sea are obtained using multiples and their matching with primaries.They demonstrate that multiples can make up for the reflection illumination and the migration of multiples is an important research direction in the future.  相似文献   

14.
A local plane-wave approach of generalized diffraction tomography in heterogeneous backgrounds, equivalent to Kirchhoff summation techniques when applied in seismic reflection, is re-programmed to act as repeated synthetic aperture radar (SAR) imaging for seismic prestack depth migration. Spotlight-mode SAR imaging quickly provides good images of the electromagnetic reflectivity of the ground via fast Fourier transform (FFT)-based signal processing. By calculating only the Green's functions connecting the aircraft to the centre of the illuminated patch, scattering structures around that centre are also recovered. SAR technology requires us to examine seismic imaging from the local point of view, where the quantity and quality of the available information at each image point are what are important, regardless of the survey geometry. When adapted to seismics, a local image of arbitrary size and sampling is obtained by FFT of seismic energy maps in the scattering wavenumber domain around each node of a pre-calculated grid of Green's functions. These local images can be used to generate a classic prestack depth-migrated section by collecting only their centres. However, the local images also provide valuable information around the centre, as in SAR. They can therefore help to pre-analyse prestack depth migration efficiently, and to perform velocity analysis at a very low cost. The FFT-based signal-processing approach allows local, efficient and automatic control of anti-aliasing, noise and resolution, including optimized Jacobian weights. Repeated local imaging could also be used to speed up migration, with interpolation between local images associated with a coarse grid of Green's functions, as an alternative to interpolation of Green's functions. The local images may, however, show distortions due to the local plane-wave approximation, and the velocity variations across their frame. Such effects, which are not necessarily a problem in SAR, should be controlled and corrected to further enhance seismic imaging. Applications to realistic models and to real data show that, despite the distortion effects, the local images can yield similar information to prestack depth migration, including common-image-point gathers for velocity analyses and AVO/AVA effects, at a much lower cost when a small target is considered.  相似文献   

15.
In the application of a conventional common‐reflection‐surface (CRS) stack, it is well‐known that only one optimum stacking operator is determined for each zero‐offset sample to be simulated. As a result, the conflicting dip situations are not taken into account and only the most prominent event contributes to any a particular stack sample. In this paper, we name this phenomenon caused by conflicting dip problems as ‘dip discrimination phenomenon’. This phenomenon is not welcome because it not only leads to the loss of weak reflections and tips of diffractions in the final zero‐offset‐CRS stacked section but also to a deteriorated quality in subsequent migration. The common‐reflection‐surface stack with the output imaging scheme (CRS‐OIS) is a novel technique to implement a CRS stack based on a unified Kirchhoff imaging approach. As far as dealing with conflicting dip problems is concerned, the CRS‐OIS is a better option than a conventional CRS stack. However, we think the CRS‐OIS can do more in this aspect. In this paper, we propose a workflow to handle the dip discrimination phenomenon based on a cascaded implementation of prestack time migration, CRS‐OIS and prestack time demigration. Firstly, a common offset prestack time migration is implemented. Then, a CRS‐OIS is applied to the time‐migrated common offset gather. Afterwards, a prestack time demigration is performed to reconstruct each unmigrated common offset gather with its reflections being greatly enhanced and diffractions being well preserved. Compared with existing techniques dealing with conflicting dip problems, the technique presented in this paper preserves most of the diffractions and accounts for reflections from all possible dips properly. More importantly, both the post‐stacked data set and prestacked data set can be of much better quality after the implementation of the presented scheme. It serves as a promising alternative to other techniques except that it cannot provide the typical CRS wavefield attributes. The numerical tests on a synthetic Marmousi data set and a real 2D marine data set demonstrated its effectiveness and robustness.  相似文献   

16.
Depth velocity model building remains a difficult step within the seismic depth imaging sequence. Stereotomography provides an efficient solution to this problem but was limited until now to a picking of seismic data in the prestack time un-migrated domain. We propose here a method for stereotomographic data picking in the depth migrated domain. Picking in the depth migrated domain exhibits the advantage of a better signal-to-noise ratio and of a more regular distribution of picked events in the model, leading to a better constrained tomographic inverse problem. Moreover, any improvement on the velocity model will improve the migrated results, again leading to improved picking. Our strategy for obtaining a stereotomographic dataset from a prestack depth migration is based on migration of attributes (and not on a kinematic demigration approach!). For any locally coherent event in the migrated image, migration of attributes allows one to compute ray parameter attributes corresponding to the specular reflection angle and dip. For application to stereotomography, the necessary attributes are the source/receiver locations, the traveltime and the data slopes. For the data slope, when the migration velocity model is erroneous, some additional corrections have to be applied to the result of migration of the attributes. Applying these corrections, our picking method is theoretically valid whatever the quality of the migration velocity model. We first present the theoretical aspects of the method and then validate it on 2D synthetic and real seismic reflection data sets.  相似文献   

17.
Using an elementary theory of migration one can consider a reflecting horizon as a continuum of scattering centres for seismic waves. Reflections arising at interfaces can thus be looked upon as the sum of energy scattered by interface points. The energy from one point is distributed among signals upon its reflection time surface. This surface is usually well approximated by a hyperboloid in the vicinity of its apex. Migration aims at focusing the scattered energy of each depth point into an image point upon the reflection time surface. To ensure a complete migration the image must be vertical above the depth point. This is difficult to achieve for subsurface interfaces which fall below laterally in-homogeneous velocity media. Migration is hence frequently performed for these interfaces as well by the Kirchhoff summation method which systematically sums signals into the apex of the approximation hyperboloid even though the Kirchhoff integral is in this case not strictly valid. For a multilayered subsurface isovelocity layer model with interfaces of a generally curved nature this can only provide a complete migration for the uppermost interface. Still there are various advantages gained by having a process which sums signals consistently into the minimum of the reflection time surface. The position of the time surface minimum is the place where a ray from the depth point emerges vertically to the surface. The Kirchhoff migration, if applied to media with laterally inhomogeneous velocity, must necessarily be followed by a further time-to-depth migration if the true depth structure is to be recovered. Primary normal reflections and their respective migrated reflections have a complementary relationship to each other. Normal reflections relate to rays normal to the reflector and migrated reflections relate to rays normal to the free surface. Ray modeling is performed to indicate a new approach for simulating seismic reflections. Commonly occuring situations are investigated from which lessons can be learned which are of immediate value for those concerned with interpreting time migrated reflections. The concept of the ‘image ray’ is introduced.  相似文献   

18.
Starting from a given time‐migrated zero‐offset data volume and time‐migration velocity, recent literature has shown that it is possible to simultaneously trace image rays in depth and reconstruct the depth‐velocity model along them. This, in turn, allows image‐ray migration, namely to map time‐migrated reflections into depth by tracing the image ray until half of the reflection time is consumed. As known since the 1980s, image‐ray migration can be made more complete if, besides reflection time, also estimates of its first and second derivatives with respect to the time‐migration datum coordinates are available. Such information provides, in addition to the location and dip of the reflectors in depth, also an estimation of their curvature. The expressions explicitly relate geological dip and curvature to first and second derivatives of reflection time with respect to time‐migration datum coordinates. Such quantitative relationships can provide useful constraints for improved construction of reflectors at depth in the presence of uncertainty. Furthermore, the results of image‐ray migration can be used to verify and improve time‐migration algorithms and can therefore be considered complementary to those of normal‐ray migration. So far, image‐ray migration algorithms have been restricted to layered models with isotropic smooth velocities within the layers. Using the methodology of surface‐to‐surface paraxial matrices, we obtain a natural extension to smooth or layered anisotropic media.  相似文献   

19.
The development of cost-effective and environmentally acceptable geophysical methods for the exploration of mineral resources is a challenging task. Seismic methods have the potential to delineate the mineral deposits at greater depths with sufficiently high resolution. In hardrock environments, which typically host the majority of metallic mineral deposits, seismic depth-imaging workflows are challenged by steeply dipping structures, strong heterogeneity and the related wavefield scattering in the overburden as well as the often limited signal-to-noise ratio of the acquired data. In this study, we have developed a workflow for imaging a major iron-oxide deposit at its accurate position in depth domain while simultaneously characterizing the near-surface glacial overburden including surrounding structures like crossing faults at high resolution. Our workflow has successfully been showcased on a 2D surface seismic legacy data set from the Ludvika mining area in central Sweden acquired in 2016. We applied focusing prestack depth-imaging techniques to obtain a clear and well-resolved image of the mineralization down to over 1000 m depth. In order to account for the shallow low-velocity layer within the depth-imaging algorithm, we carefully derived a migration velocity model through an integrative approach. This comprised the incorporation of the tomographic near-surface model, the extension of the velocities down to the main reflectors based on borehole information and conventional semblance analysis. In the final step, the evaluation and update of the velocities by investigation of common image gathers for the main target reflectors were used. Although for our data set the reflections from the mineralization show a strong coherency and continuity in the seismic section, reflective structures in a hardrock environment are typically less continuous. In order to image the internal structure of the mineralization and decipher the surrounding structures, we applied the concept of reflection image spectroscopy to the data, which allows the imaging of wavelength-specific characteristics within the reflective body. As a result, conjugate crossing faults around the mineralization can directly be imaged in a low-frequency band while the internal structure was obtained within the high-frequency bands.  相似文献   

20.
Review of ray-Born forward modeling for migration and diffraction analysis   总被引:1,自引:0,他引:1  
The ray-Born approximation is a very useful tool for forward modeling of scattered waves. The fact that ray-Born modeling underlies most seismic migration techniques, and therefore shares their assumptions, is a justification in itself to consider it for forward modeling. The ray-Born approximation does not make an explicit distinction between specular reflections and nonspecular diffractions. It therefore allows the modeling of diffractions from structural discontinuities such as edges and tips, as well as caustic diffractions. In the simplest implementation ray-Born seismograms are multiple-free. Ray-Born modeling can be orders of magnitude faster than finite-difference modeling, both in two-and three dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号