首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
 A study of the geoelectrical structure of the central part of Piton de la Fournaise volcano (Réunion, Indian Ocean) was made using direct current electrical (DC) and transient electromagnetic soundings (TEM). Piton de la Fournaise is a highly active oceanic basaltic shield and has been active for more than half a million years. Joint interpretation of the DC and TEM data allows us to obtain reliable 1D models of the resistivity distribution. The depth of investigation is of the order of 1.5 km but varies with the resistivity pattern encountered at each sounding. Two-dimensional resistivity cross sections were constructed by interpolation between the soundings of the 1D interpreted models. Conductors with resistivities less than 100 ohm-m are present at depth beneath all of the soundings and are located high in the volcanic edifice at elevations between 2000 and 1200 m. The deepest conductor has a resistivity less than 20 ohm-m for soundings located inside the Enclos and less than 60–100 ohm-m for soundings outside the Enclos. From the resistivity distributions, two zones are distinguished: (a) the central zone of the Enclos; and (b) the outer zone beyond the Enclos. Beneath the highly active summit area, the conductor rises to within a few hundred meters of the surface. This bulge coincides with a 2000-mV self-potential anomaly. Low-resistivity zones are inferred to show the presence of a hydrothermal system where alteration by steam and hot water has lowered the resistivity of the rocks. Farther from the summit, but inside the Enclos, the depth to the conductive layers increases to approximately 1 km and is inferred to be a deepening of the hydrothermally altered zone. Outside of the Enclos, the nature of the deep, conductive layers is not established. The observed resistivities suggest the presence of hydrated minerals, which could be found in landslide breccias, in hydrothermally altered zones, or in thick pyroclastic layers. Such formations often create perched water tables. The known occurrence of large eastward-moving landslides in the evolution of Piton de la Fournaise strongly suggests that large volumes of breccias should exist in the interior of the volcano; however, extensive breccia deposits are not observed at the bottom of the deep valleys that incise the volcano to elevations lower than those determined for the top of the conductors. The presence of the center of Piton de la Fournaise beneath the Plaine des Sables area during earlier volcanic stages (ca. 0.5 to 0.150 Ma) may have resulted in broad hydrothermal alteration of this zone. However, this interpretation cannot account for the low resistivities in peripheral zones. It is not presently possible to discriminate between these general interpretations. In addition, the nature of the deep conductors may be different in each zone. Whatever the geologic nature of these conductive layers, their presence indicates a major change of lithology at depth, unexpected for a shield volcano such as Piton de la Fournaise. Received: 3 November 1999 / Accepted: 15 September 1999  相似文献   

2.
 Virtually all the seismicity within Ruapehu Volcano recorded during a 2-month deployment in early 1994, with 14 broadband seismographs around the Tongariro National Park volcanoes in the North Island of New Zealand, was associated with the active vent and occurred within approximately 1 km of Ruapehu Crater Lake. High-frequency volcano-tectonic earthquakes and low-frequency events (similar to bursts of 2 Hz volcanic tremor) were both found to have sources in this region. The high-frequency events, which often consisted of a smaller precursor event followed approximately 2 s later by the main event, had sharp onsets and were locatable using standard techniques. The depth of these events ranged from the surface down to approximately 1500 m below Crater Lake. The low-frequency events did not have sharp onsets and were located by phase-correlation methods. Nearly all occurred under a small region on the east side of Crater Lake, at depths from 200 to 1000 m below the surface. This low-frequency earthquake source region, in which no high-frequency events occurred, may be the steam zone within the actual vent of Ruapehu Volcano. Received: 30 June 1996 / Accepted: 16 February 1998  相似文献   

3.
Since August 2000, we have recorded the total intensity of the geomagnetic field at the summit area of Kuchi-erabu-jima volcano, where phreatic eruptions have repeatedly occurred. A time series analysis has shown that the variations in the geomagnetic field since 2001 have a strong relationship to an increase in volcanic activity. These variations indicate thermal demagnetization of the subsurface around the presently active crater. The demagnetization source for the early variations, until summer 2002, was estimated at about 200 m below sea level. For the variations since 2003, the source was modeled on the basis of the expansion of a uniformly magnetized ellipsoid. The modeling result showed that the source is located at 300 m above sea level beneath the crater. We carried out an audio-frequency magnetotelluric survey with the aim of obtaining a relation between the demagnetization source and the shallow structure of the volcano. A two-dimensional inversion applied to the data detected two good conductors, a shallow thin one which is restricted to a region around the summit area, while the other extends over the edifice at depths between 200 and 800 m. These conductors are regarded as clay-rich layers with low permeability, which were assumed to be generated through hydrothermal alteration. The demagnetization source for the early variations was possibly located at the lower part of the deep conductor and the source after 2003 lies between the two conductors, where groundwater is considered to be abundant. Based on these results, as well as on seismological, geodetic, and geochemical information, we propose a heating process of the Kuchi-erabu-jima volcano. In the initial stage, high-temperature volcanic gases supplied from the deep-seated magma remained temporarily at the level around the lower part of the less permeable deep conductor since the ascent path had not yet been established. Then, when the pathway developed as a result of repeated earthquakes, it became possible for a massive flux of volcanic gases to ascend through the conductor. The high temperature gases reached the aquifer located above the conductor and the heat was efficiently transported to the surrounding rocks through the groundwater. As a consequence, an abrupt increase of the gas flux and diffusion of the heat through the aquifer occurred and the high-temperature zone expanded. Since the high-temperature zone is located beneath another conductor, which acts as caprock, we assume that the energy of the phreatic explosion is accumulated there.  相似文献   

4.
Continuous magnetotelluric (MT) measurements were conducted from May 2008 to July 2009 at Sakurajima, one of the most active volcanoes in Japan. Two observation sites were established at locations 3.3 km east and 3 km west–northwest of the summit crater. At both observation sites, the high-quality component of the impedance tensor (Zyx) showed variations in apparent resistivity of approximately ± 20% and phase change of ± 2°, which continued for 20–180 days in the frequency range between 320 and 4 Hz. The start of the period of changes in apparent resistivity approximately coincided with the start of uplift in the direction of the summit crater, as observed by a tiltmeter, which is one of the most reliable pieces of equipment with which to detect magma intrusion beneath a volcano. A 2D inversion of MT impedance suggests that the resistivity change occurred at a depth around sea level. One of the possible implications of the present finding is that the degassed volatiles migrated not only vertically through the conduit but also laterally through a fracture network, mixing with shallow groundwater beneath sea level and thereby causing the observed resistivity change.  相似文献   

5.
The Miyake-jima volcano abruptly erupted on July 8, 2000 after 17 years of quiet and gave birth to a crater, 1 km in diameter and 250 m deep. This expected unrest was monitored during the years 1995–2000 by electromagnetic methods including DC resistivity measurements and self-potential (SP) surveys. Beneath the 2500 yr old Hatcho-Taira summit caldera audio-magnetotelluric soundings made in 1997–98 identified a conductive medium, 200–500 m thick (within the 50 Ω m isoline) located at a few hundred metres depth. It was associated with the active steady-state hydrothermal system centred close to the 1940 cone and extending southward. A DC resistivity meter set in a Schlumberger array with 600, 1000 and 1400 m long injection lines evidenced strong resistivity changes between September 1999 and July 3, 2000 in the vicinity of the newly formed crater. The apparent resistivity has reached about three times its initial values on the 1400 m long line and has lowered to about 20% on the 600 m line. Just prior to the July 8, 2000 eruption SP mapping made inside the summit Hatcho-Taira caldera revealed negative anomalies where positive ones had occurred during the previous tens of years. The largest negative anomaly, −225 mV in amplitude, mainly took place above the 1940 cone which collapsed in the crater formation. A permanent 1 km long SP line across the caldera suggests accelerating changes during the 3 months preceding the eruption. On a larger scale, the comparison between 1995 and 2000 surveys has shown a global increase of the hydrothermal activity beneath the volcano. Its source could have been 250 m to the south of the crater. These observations suggest that the hydrothermal system was slowly disturbed in the months preceding the eruption while drastic changes have occurred during the 2 weeks before the summit collapse when tectonic and volcanic swarms have appeared.  相似文献   

6.
Resistivity techniques have been used successfully to identify and delineate geothermal resources in Iceland. The most frequently used techniques include Schlumberger, central loop TEM and head-on profiling. Geothermal systems in Iceland are located both within and outsite the active volcanic regions. Outsite the active volcanic regions the temperature in the upper most kilometer of the geothermal systems is below 150° C whereas the temperature in the geothermal fields within the active volcanic regions exceeds 200° C. The resistivity of the rock in geothermal fields located outside the active volcanic regions ranges from about 10 m to some hundreds of m, and are characterized by considerably lower resistivity than of the surrounding rocks. Most of the geothermal systems within the active volcanic regions, show common resistivity structure with low resistivity of 1–5 m surrounding an inner core of higher resistivity. This increasing resistivity with depth is associated with a change in the conduction mechanism, from interface conduction to electrolyte conduction due to a change in alteration minerals at about 240° C. Examples of resistivity surveys of geothermal fields from both outsite and within the active volcanic regions are discussed.  相似文献   

7.
A two-year chemical monitoring program of Ruapehu Crater Lake shows that it has evolved considerably since the volcano's more active eruptive periods in the early 1970s. The present pH (20°C) of 0.6 is about one half unit more acid than the baseline values in the 1970s, whereas S/Cl ratios have increased markedly owing in part to declining HCl inputs into the lake, but also to absolute increases in SO4 levels which now stand at the highest values ever recorded. Increases in K/Mg and Na/Mg ratios over the 20-year period are attributed to hydrothermal reaction processes in the vent which are presently causing dissolution of previously formed alteration phases such as natroalunite. These observations, combined with results of a recent heat budget analysis of the lake, have led to the development of hydrothermal convection model for the upper portion of the vent. Possible vent/lake chemical reaction processes between end member reactants have been modelled with the computer code CHILLER. The results are consistent with the view that variations in lake chemistry, which are initiated by the introduction of fresh magmatic material into the vent, reflect the extent of dissolution reaction progress on the magmatic material and/or its alteration products. The results also provide insights into the role of such vent processes in the formation of high sulfidation-type ore deposits.  相似文献   

8.
From 1971 until 1995, the style of seismicity at Ruapehu changed little, reflecting a period of relatively low eruptive activity and consequent long-term stability within the vent system. Volcanic earthquakes and volcanic tremor were both dominated by a frequency of about 2 Hz. Volcanic earthquakes accompanied all phreatic and phreatomagmatic eruptions, but not small hydrothermal eruptions that originated within Crater Lake. Furthermore, more than half of the ML>3 volcanic earthquakes and changes in the reduced displacement of 2 Hz volcanic tremor by as much as a factor of 20 occurred without any accompanying eruptive activity. Three and 7 Hz volcanic tremor were also recorded, although never at lower-elevation seismometers. At times, this tremor was stronger at the summit seismometer than the 2 Hz tremor. Their source regions were independent of the 2 Hz source, and located at shallower depths. Volcano-tectonic earthquakes were generally unrelated to eruptive activity. The seismicity accompanying the 1995–1996 eruptive activity was significantly different from that of the period 1971 to 1995, and included volcanic tremor with a frequency of less than 1 Hz, simultaneous changes in the amplitude of the previously independent 2 Hz and 7 Hz volcanic tremor, and finally a change in the frequency content of volcanic earthquakes and volcanic tremor from 2 Hz to wideband. Path transmission effects play an important role in determining the characteristics of seismograms at Ruapehu. The presence of Crater Lake affects both the style of eruptions and the accompanying seismicity.  相似文献   

9.
The Surtsey marine volcano was built on the southern insular shelf of Iceland, along the seaward extension of the east volcanic zone, during episodic explosive and effusive activity from 1963 to 1967. A 1600-m-long, east-west line of 42 bench marks was established across the island shortly after volcanic activity stopped. From 1967 to 1991 a series of leveling surveys measured the relative elevation of the original bench marks, as well as additional bench marks installed in 1979, 1982 and 1985. Concurrent measurements were made of water levels in a pit dug on the north coast, in a drill hole, and along the coastline exposed to the open ocean. These surveys indicate that the dominant vertical movement of Surtsey is a general subsidence of about 1.1±0.3 m during the 24-year period of observations. The rate of subsidence decreased from 15–20 cm/year for 1967–1968 to 1–2 cm/year in 1991. Greatest subsidence is centered about the eastern vent area. Through 1970, subsidence was locally greatest where the lava plain is thinnest, adjacent to the flanks of the eastern tephra cone. From 1982 onward, the region closest to the hydrothermal zone, which is best developed in the vicinity of the eastern vent, began showing less subsidence relative to the rest of the surveyed bench marks. The general subsidence of the island probably results from compaction of the volcanic material comprising Surtsey, compaction of the sea-floor sediments underlying the island, and possibly downwarping of the lithosphere due to the laod of Surtsey. The more localized early downwarping near the eastern tephra cone is apparently due to greater compaction of tephra relative to lava. The later diminished local subsidence near the hydrothermal zone is probably due to a minor volume increase caused by hydrous alteration of glassy tephra. However, this volume increase is concentrated at depth beneath the bottom of the 176-m-deep cased drillhole.  相似文献   

10.
Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248°C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat.  相似文献   

11.
Eruption episodes, where a series of eruption events are generically related, can include the eruption of a wide spectrum of volcanic activity over decadal periods. This paper concentrates on the opening phases of an eruption episode which occurred approximately 1800 yrs BP from Mt Taranaki, New Zealand. These events spanned the eruption of differing bulk compositions and styles from two distinct vent locations; an andesitic sub-plinian eruption from the summit vent and a scoria cone-building eruption of basaltic magma from a satellite vent. Compositional profiles and zoning textures of plagioclase, amphibole and clinopyroxene phenocrysts from the opening andesitic event show evidence of magma mixing and subsequent crystallisation just prior to the initiation of the eruption episode. Titanomagnetite grain morphology and Ti variation suggest that the magma mixing event occurred within a few days to weeks before the eruption acting as a trigger for it. We present a magmatic model which is constrained by the petrological observations and eruptions of the episode. In this model magma differentiation at depth causes its rise and recharging of a mid-crustal magma storage area at 5–7 km. Although the recharging magma differed slightly in oxygen fugacity and temperature, it was compositionally and physically similar enough to the residing andesitic magma to allow efficient mixing. The petrological characteristics described here can be readily observed and enable identification of mixing events in other recent eruption episodes.  相似文献   

12.
The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the conductor identified beneath the 1st crater is mainly composed of hydrothermally altered zone that acts both as a cap to upwelling fluids supplied from deep-level magma and as a floor to infiltrating fluid from the crater lake. The relatively resistive body found beneath the 4th crater represents consolidated magma. These results suggest that the shallow conductor beneath the active crater is closely related to a component of the mechanism that controls volcanic activity within Naka-dake.  相似文献   

13.
Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.  相似文献   

14.
After the phreatic eruption in 1982–83, volcanic activities at Kusatsu–Shirane volcano had been decreasing and reached a minimum in 1990, had turned to a temporal rise in activity up to 1994 and then decreased again at least up to 1997. During this low-activity period we observed a relatively short (≤ 1 y) cyclic variation in polythionates (PT) in the Yugama lake water. Spectral power density analysis of the PT time-series by an autoregressive (maximum entropy spectral estimation, MESE) method indicates that the major frequency in the PT variations is 1.0 y− 1 and the minor is 2–3 y− 1 (1.0 and 0.3–0.5 y in periodicity, respectively). Annual variations in the lake temperature are ruled out for explaining these periodicities. We attribute these cyclic variations to a cyclic magnification-reduction in meteoric-water injection into a hydrothermal regime where volcanic gases from cooling magma bodies at depth and cooler oxidized groundwater come into contact with each other. This interaction may result in a periodical change in the composition and flux of SO2 and H2S gases being discharged into the lake and forming PT. From a phase deviation (2–3 months) in the cycles between the annual precipitation, including snowmelt, and the PT time-series, we estimated the maximal depth of a hydrothermal reservoir beneath the lake assuming a vertical hydraulic conductivity (5 × 10− 3 cm/s) of the volcanic detritus around the summit hydrothermal system. Chloride in the lake water reached a maximum 1.5 years faster than PT. This is most likely due to a gradual elevation of the potentiometric front of a concentrated sublimnic solution in the hydrothermal reservoir. Variations of dissolved SO2 and H2S in the lake water were not consistent with those of the fumarolic gases on the north flank of the volcano. This fact together with additional observations strongly suggests that these fumaroles may have the same origin but are chemically modified by a subsurface aquifer. The PT monitoring at active crater lakes during a quiescent period can provide insight into the annual expansions and reductions of a volcano-hosted hydrothermal reservoir.  相似文献   

15.
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.  相似文献   

16.
In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.  相似文献   

17.
 Mount Rainier is one of the most seismically active volcanoes in the Cascade Range, with an average of one to two high-frequency volcano-tectonic (or VT) earthquakes occurring directly beneath the summit in a given month. Despite this level of seismicity, little is known about its cause. The VT earthquakes occur at a steady rate in several clusters below the inferred base of the Quaternary volcanic edifice. More than half of 18 focal mechanisms determined for these events are normal, and most stress axes deviate significantly from the regional stress field. We argue that these characteristics are most consistent with earthquakes in response to processes associated with circulation of fluids and magmatic gases within and below the base of the edifice.Circulation of these fluids and gases has weakened rock and reduced effective stress to the point that gravity-induced brittle fracture, due to the weight of the overlying edifice, can occur. Results from seismic tomography and rock, water, and gas geochemistry studies support this interpretation. We combine constraints from these studies into a model for the magmatic system that includes a large volume of hot rock (temperatures greater than the brittle–ductile transition) with small pockets of melt and/or hot fluids at depths of 8–18 km below the summit. We infer that fluids and heat from this volume reach the edifice via a narrow conduit, resulting in fumarolic activity at the summit, hydrothermal alteration of the edifice, and seismicity. Received: 10 February 1999 / Accepted: 26 June 1999  相似文献   

18.
The relationship between structure and volcanism in the Tongariro Volcanic Centre, New Zealand, is largely masked by a mantle of young volcanic deposits. Here we report the results of an integrated geophysical investigation (using gravity, multi-level aeromagnetic and magnetotelluric methods) of subsurface deposits and structures in the upper 1–2 km across the axis of the Tongariro Volcanic Centre. Modelling of these data across the Tama Lakes saddle shows that the outcropping volcanic deposits are up to 800 m thick, underlain by Tertiary sediments (of a few 10's to a few 100 m in thickness) and in turn lying above a basement of probable Mesozoic greywacke. Basement faulting is shown to be concentrated in the centre of the rift, which is 18 km wide at this location, but no vertical offset is resolved at the rift axis. Vertical displacements on basement faults of 250–300 m are modelled giving a minimum total basement subsidence of 650 m. A 5 km-wide, deep low resistivity zone occurs at the axis of the rift which is interpreted as either resulting from extensive fracturing and/or hydrothermal alteration within the basement. Steep-sided volcanic bodies with a high proportion of lavas/dykes coincide with the Waihi fault and the rift axis. Coincidence with the Waihi Fault suggests that this fault system may have provided magma pathways to the surface and a focus for dyke emplacement, which could have contributed to rift extension. The lack of offset at the rift axis may reflect the juvenile nature of faulting at this location, which is consistent with the notion of a migration of faulting towards the centre of the graben, alternatively, rifting may have been entirely accommodated by dyke emplacement.  相似文献   

19.
In September 2001, an extensive active-seismic investigation (Serapis experiment) was carried out in the Gulfs of Naples and Pozzuoli, with the aim of investigating and reconstructing the shallow crustal structure of the Campi Flegrei caldera, and possibly identifying its feeding system at depth. The present study provides a joint analysis of the very shallow seismic reflection data and tomographic images based on the Serapis dataset. This is achieved by reflection seismic sections obtained by the 3D data gathering and through refined P-velocity images of the shallowest layer of Pozzuoli Gulf (z < 1,000 m). From the refined Vp model, the overall picture of the velocity distribution confirms the presence of a complex arc-shaped anomaly that borders the bay offshore. The deeper part of the anomaly (beneath 700 m, with Vp > 3,500 m/s) correlates with units made up of agglomerate tuffs and interbedded lava, which form the southern edge of the caldera, which was probably formed following the two large ignimbritic eruptions that marked the evolutionary history of the area under study. The upper part of the anomaly that tends to split into two parallel arcs is correlated with dikes, volcanic mounds and hydrothermal alteration zones noted in previous shallow reflection seismic analyses. The depth of the transition between the upper and lower parts of the anomaly is characterized by an abrupt Vp increase on the one-dimensional (1D) profiles extracted from the 3D tomographic model and by the presence of a strong reflector located at about 0.6/0.7 s Two Way Time (TWT) on Common Mid Point gathers. The move-out velocity analysis and stack of the P–P and P–S reflections at the layer bottom allowed to estimate relatively high Vp/Vs values (3.7 ± 0.9). This hypothesis has been tested by a theoretical rock physical modeling of the Vp/Vs ratio as a function of porosity suggesting that the shallow layer is likely formed by incoherent, water saturated, volcanic and marine sediments that filled Pozzuoli Bay during the post-caldera activity.  相似文献   

20.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号