首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stratigraphic succession of the Pomici di Avellino Plinian eruption from Somma-Vesuvius has been studied through field and laboratory data in order to reconstruct the eruption dynamics. This eruption is particularly important in the Somma-Vesuvius eruptive history because (1) its vent was offset with respect to the present day Vesuvius cone; (2) it was characterised by a distinct opening phase; (3) breccia-like very proximal fall deposits are preserved close to the vent and (4) the pyroclastic density currents generated during the final phreatomagmatic phase are among the most widespread and voluminous in the entire history of the volcano. The stratigraphic succession is, here, divided into deposits of three main eruptive phases (opening, magmatic Plinian and phreatomagmatic), which contain five eruption units. Short-lived sustained columns occurred twice during the opening phase (Ht of 13 and 21.5 km, respectively) and dispersed thin fall deposits and small pyroclastic density currents onto the volcano slopes. The magmatic Plinian phase produced the main volume of erupted deposits, emplacing white and grey fall deposits which were dispersed to the northeast. Peak column heights reached 23 and 31 km during the withdrawal of the white and the grey magmas, respectively. Only one small pyroclastic density current was emplaced during the main Plinian phase. In contrast, the final phreatomagmatic phase was characterised by extensive generation of pyroclastic density currents, with fallout deposits very subordinate and limited to the volcano slopes. Assessed bulk erupted volumes are 21 × 106 m3 for the opening phase, 1.3–1.5 km3 for the main Plinian phase and about 1 km3 for the final phreatomagmatic phase, yielding a total volume of about 2.5 km3. Pumice fragments are porphyritic with sanidine and clinopyroxene as the main mineral phases but also contain peculiar mineral phases like scapolite, nepheline and garnet. Bulk composition varies from phonolite (white magma) to tephri-phonolite (grey magma).  相似文献   

2.
The 273 ka Poris Formation in the Bandas del Sur Group records a complex, compositionally zoned explosive eruption at Las Cañadas caldera on Tenerife, Canary Islands. The eruption produced widespread pyroclastic density currents that devastated much of the SE of Tenerife, and deposited one of the most extensive ignimbrite sheets on the island. The sheet reaches ~ 40-m thick, and includes Plinian pumice fall layers, massive and diffuse-stratified pumiceous ignimbrite, widespread lithic breccias, and co-ignimbrite ashfall deposits. Several facies are fines-rich, and contain ash pellets and accretionary lapilli. Eight brief eruptive phases are represented within its lithostratigraphy. Phase 1 comprised a fluctuating Plinian eruption, in which column height increased and then stabilized with time and dispersed tephra over much of the southeastern part of the island. Phase 2 emplaced three geographically restricted ignimbrite flow-units and associated extensive thin co-ignimbrite ashfall layers, which contain abundant accretionary lapilli from moist co-ignimbrite ash plumes. A brief Plinian phase (Phase 3), again dispersing pumice lapilli over southeastern Tenerife, marked the onset of a large sustained pyroclastic density current (Phase 4), which then waxed (Phase 5), covering increasingly larger areas of the island, as vents widened and/or migrated along opening caldera faults. The climax of the Poris eruption (Phase 6) was marked by widespread emplacement of coarse lithic breccias, thought to record caldera subsidence. This is inferred to have disturbed the magma chamber, causing mingling and eruption of tephriphonolite magma, and it changed the proximal topography diverting the pyroclastic density current(s) down the Güimar valley (Phase 7). Phase 8 involved post-eruption erosion and sedimentary reworking, accompanied by minor down-slope sliding of ignimbrite. This was followed by slope stabilization and pedogenesis. The fines-rich lithofacies with abundant ash pellets and accretionary lapilli record agglomeration of ash in moist ash plumes. They resemble phreatomagmatic deposits, but a phreatomagmatic origin is difficult to establish because shards are of bubble-wall type, and the moisture may have arisen by condensation within ascending thermal co-ignimbrite ash plumes that contained atmospheric moisture enhanced by that derived from the evaporation of seawater where the hot pyroclastic currents crossed the coast. Ash pellets formed in co-ignimbrite ash-clouds and then fell through turbulent pyroclastic density currents where they accreted rims and evolved into accretionary lapilli.Editorial Responsibility: J. Stix  相似文献   

3.
Impact of large-scale explosive eruptions largely depends on the dynamics of transport, dispersal and deposition of ash by the convective system. In fully convective eruptive columns, ejected gases and particles emitted at the vent are vertically injected into the atmosphere by a narrow, buoyant column and then dispersed by atmosphere dynamics on a regional scale. In fully collapsing explosive eruptions, ash partly generated by secondary fragmentation is carried and dispersed by broad co-ignimbrite columns ascending above pyroclastic currents. In this paper, we investigate the transport and dispersion dynamics of ash and lapillis during a transitional plinian eruption in which both plinian and co-ignimbrite columns coexisted and interacted. The 800 BP eruptive cycle of Quilotoa volcano (Ecuador) produced a well-exposed tephra sequence. Our study shows that the sequence was accumulated by a variety of eruptive dynamics, ranging from early small phreatic explosions, to sustained magmatic plinian eruptions, to late phreatomagmatic explosive pulses. The eruptive style of the main 800 BP plinian eruption (U1) progressively evolved from an early fully convective column (plinian fall bed), to a late fully collapsing fountain (dense density currents) passing through an intermediate transitional eruptive phase (fall + syn-plinian dilute density currents). In the transitional U1 regime, height of the convective plinian column and volume and runout of the contemporaneous pyroclastic density currents generated by partial collapses were inversely correlated. The convective system originated from merging of co-plinian and co-surge contributions. This hybrid column dispersed a bimodal lapilli and ash-fall bed whose grain size markedly differs from that of classic fall deposits accumulated by fully convective plinian columns. Sedimentological analysis suggests that ash dispersion during transitional eruptions is affected by early aggregation of dry particle clusters.  相似文献   

4.
 The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000 years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600–1900 m elevation, approximately 500 m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal–magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma–ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions. Received: 24 November 1997 / Accepted: 23 March 1999  相似文献   

5.
Pyroclastic density currents (PDCs) generated during the Plinian eruption of the Pomici di Avellino (PdA) of Somma–Vesuvius were investigated through field and laboratory studies, which allowed the detailed reconstruction of their eruptive and transportation dynamics and the calculation of key physical parameters of the currents. PDCs were generated during all the three phases that characterised the eruption, with eruptive dynamics driven by both magmatic and phreatomagmatic fragmentation. Flows generated during phases 1 and 2 (EU1 and EU3pf, magmatic fragmentation) have small dispersal areas and affected only part of the volcano slopes. Lithofacies analysis demonstrates that the flow-boundary zones were dominated by granular-flow regimes, which sometimes show transitions to traction regimes. PDCs generated during eruptive phase 3 (EU5, phreatomagmatic fragmentation) were the most voluminous and widespread in the whole of Somma–Vesuvius’ eruptive history, and affected a wide area around the volcano with deposit thicknesses of a few centimetres up to more than 25 km from source. Lithofacies analysis shows that the flow-boundary zones of EU5 PDCs were dominated by granular flows and traction regimes. Deposits of EU5 PDC show strong lithofacies variation northwards, from proximally thick, massive to stratified beds towards dominantly alternating beds of coarse and fine ash in distal reaches. The EU5 lithofacies also show strong lateral variability in proximal areas, passing from the western and northern to the eastern and southern volcano slopes, where the deposits are stacked beds of massive, accretionary lapilli-bearing fine ash. The sedimentological model developed for the PDCs of the PdA eruption explains these strong lithofacies variations in the light of the volcano’s morphology at the time of the eruption. In particular, the EU5 PDCs survived to pass over the break in slope between the volcano sides and the surrounding volcaniclastic apron–alluvial plain, with development of new flows from the previously suspended load. Pulses were developed within individual currents, leading to stepwise deposition on both the volcano slopes and the surrounding volcaniclastic apron and alluvial plain. Physical parameters including velocity, density and concentration profile with height were calculated for a flow of the phreatomagmatic phase of the eruption by applying a sedimentological method, and the values of the dynamic pressure were derived. Some hazard considerations are summarised on the assumption that, although not very probable, similar PDCs could develop during future eruptions of Somma–Vesuvius.  相似文献   

6.
The ~5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin–medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water–magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a “magmatic horizon” of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW–SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.  相似文献   

7.
The volcanic eruptions which generate the greatest quantities of fine ash and dust are those of ignimbrite-forming, plinian, vulcanian and phreatomagmatic types; these are also the eruptions which produce the widest dispersal of this material, attributed to the superior height attained by their eruptive columns. However, much of the fine ash and dust may be rapidly flushed out of the eruptive plume by water, particularly in phreatomagmatic eruptions. Recent studies made on the dispersal and grain-size of pyroclastic deposits produced by examples of plinian and phreatomagmatic types, have yielded estimates of the quantities of material generated in each grain-size class, besides the extent of their dispersal. Not all of the fine volcanic particles are produced by fragmentation at the eruptive vent; in ignimbrite eruptions, there is good evidence for their large-scale generation in and loss from the moving ash flows.  相似文献   

8.
The combined use of field investigation and laboratory analyses allowed the detailed stratigraphic reconstruction of the Pollena eruption (472 AD) of Somma-Vesuvius. Three main eruptive phases were recognized, related either to changes in the eruptive processes and/or to relative changes of melt composition. The eruption shows a pulsating behavior with deposition of pyroclastic fall beds and generation of dilute and dense pyroclastic density currents (PDC). The eruptive mechanisms and transportation dynamics were reconstructed for the whole eruption. Column heights were between 12 and 20 km, corresponding to mass discharge rates (MDR) of 7×106 kg/s and 3.4×107 kg/s. Eruptive dynamics were driven by magmatic fragmentation of a phono-tephritic to tephri-phonolitic magma during Phases I and II, whereas phreatomagmatic fragmentation dominated Phase III. Magma composition varies between phonolitic and tephritic-phonolitic, with melt viscosity likely not in excess of 103 Pa s. The volume of the pyroclastic fall deposits, calculated by using of proximal isopachs, is 0.44 km3. This increases to 1.38 km3 if ash volumes are extrapolated on a log thickness vs. square root area diagram using one distal isopach and column height.Editorial responsibility: R Cioni  相似文献   

9.
A detailed compilation of distal tephrostratigraphy comprising the last 20,000 yrs is given for the Central Mediterranean region. A total of 47 distinct ash layers identified in the maar lake sediments of Lago Grande di Monticchio (Basilicata, Southern Italy) are compared with proximal and distal terrestrial-marine tephra deposits in the circum-central Mediterranean region. The results of these studies provide valuable information for reconstructing the Late Pleistocene and the Holocene dispersal of pyroclastic deposits from south Italian explosive volcanoes, in particular Somma-Vesuvius, the Campi Flegrei caldera, Ischia Island and Mount Etna. Prominent tephras are discussed with respect to their reliability as dating and correlation tools in sedimentary records. Ashes from Plinian eruptions of Somma-Vesuvius (i.e. Avellino, Mercato, Greenish, Pomici di Base), for instance, are well-defined by their distribution patterns and their unique composition. The widespread Y-1 tephra from Mount Etna, on the other hand, derived most likely from two distinct Plinian events with changing wind conditions, and therefore becomes a less reliable stratigraphic marker. Statistical–numerical calculations are presented in order to discriminate between Holocene tephras from the Campi Flegrei caldera (i.e. Astroni 1–3, Agnano Monte Spina, Averno 1, Lagno Amendolare), since these ashes are characterized by an almost indistinguishable chemical fingerprint. As a highlight, numerous Campanian eruptions of proposed low-intensity have been identified in the distal site of Monticchio suggesting a revision of existing tephra dispersal maps and re-calculation of eruptive conditions. In summary, the tephra record of Monticchio is one of the key successions for linking both, terrestrial records from Central-southern Italy and marine sequences from the Tyrrhenian, Adriatic and Ionian Seas.  相似文献   

10.
Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.  相似文献   

11.
New volcanological studies allow reconstruction of the eruption dynamics of the Pomici di Mercato eruption (ca 8,900 cal. yr B.P.) of Somma-Vesuvius. Three main Eruptive Phases are distinguished based on two distinct erosion surfaces that interrupt stratigraphic continuity of the deposits, indicating that time breaks occurred during the eruption. Absence of reworked volcaniclastic deposits on top of the erosion surfaces suggests that quiescent periods between eruptive phases were short perhaps lasting only days to weeks. Each of the Eruptive Phases was characterised by deposition of alternating fall and pyroclastic density current (PDC) deposits. The fallout deposits blanketed a wide area toward the east, while the more restricted PDC deposits inundated the volcano slopes. Eruptive dynamics were driven by brittle magmatic fragmentation of a phonolitic magma, which, because of its mechanical fragility, produced a significant amount of fine ash. External water did not significantly contribute either to fragmentation dynamics or to mechanical energy release during the eruption. Column heights were between 18 and 22 km, corresponding to mass discharge rates between 1.4 and 6 × 107 kg s−1. The estimated on land volume of fall deposits ranges from a minimum of 2.3 km3 to a maximum of 7.4 km3. Calculation of physical parameters of the dilute pyroclastic density currents indicates speeds of a few tens of m s−1 and densities of a few kg m−3 (average of the lowermost 10 m of the currents), resulting in dynamic pressures lower than 3 kPa. These data suggest that the potential impact of pyroclastic density currents of the Pomici di Mercato eruption was smaller than those of other Plinian and sub-Plinian eruptions of Somma-Vesuvius, especially those of 1631 AD and 472 AD (4–14 kPa), which represent reference values for the Vesuvian emergency plan. The pulsating and long-lasting behaviour of the Pomici di Mercato eruption is unique in the history of large explosive eruptions of Somma-Vesuvius. We suggest an eruptive scheme in which discrete magma batches rose from the magma chamber through a network of fractures. The injection and rise of the different magma batches was controlled by the interplay between magma chamber overpressure and local stress. The intermittent discharge of magma during a large explosive eruption is unusual for Somma-Vesuvius, as well as for other volcanoes worldwide, and yields new insights for improving our knowledge of the dynamics of explosive eruptions.  相似文献   

12.
A study of pyroclastic deposits from the 1815 Tambora eruption reveals two distinct phases of activity, i.e., four initial tephra falls followed by generation of pyroclastic flows and the production of major co-ignimbrite ash fall. The first explosive event produced minor ash fall from phreatomagmatic explosions (F-1 layer). The second event was a Plinian eruption (F-2) correlated to the large explosion of 5 April 1815, which produced a column height of 33 km with an eruption rate of 1.1 × 108 kg/s. The third event occurred during the lull in major activity from 5 to 10 April and produced minor ash fall (F-3). The fourth event produced a 43-km-high Plinian eruption column with an eruption rate of 2.8 × 108 kg/s during the climax of activity on 10 April. Although very energetic, the Plinian events were of short duration (2.8 h each) and total erupted volume of the early (F-1 to F-4) fall deposits is only 1.8 km3 (DRE, dense rock equivalent). An abrupt change in style of activity occurred at end of the second Plinian event with onset of pyroclastic flow and surge generation. At least seven pyroclastic flows were generated, which spread over most of the volcano and Sanggar peninsula and entered the ocean. The volume of pyroclastic flow deposits on land is 2.6 km3 DRE. Coastal exposures show that pyroclastic flows entering the sea became highly fines depleted, resulting in mass loss of about 32%, in addition to 8% glass elutriation, as indicated by component fractionation. The subaqueous pyroclastic flows have thus lost about 40% of mass compared to the original erupted mixture. Pyroclastic flows and surges from this phase of the eruption are stratigraphically equivalent to a major ash fall deposit (F-5) present beyond the flow and surge zone at 40 km from the source and in distal areas. The F-5 fall deposit forms a larger proportion of the total tephra fall with increasing distance from source and represents about 80% of the total at a distance of 90 km and 92% of the total tephra fall from the 1815 eruption. The field relations indicate that the 20-km3 (DRE) F-5 deposit is a co-ignimbrite ash fall, generated largely during entrance of pyroclastic flows into the ocean. Based on the observed 40% fines depletion and component fractionation from the flows, the large volume of the F-5 co-ignimbrite ash requires eruption of 50 km3 (DRE, 1.4 × 1014 kg) pyroclastic flows.  相似文献   

13.
The 1886 eruption of Tarawera, New Zealand, was unusual for a Plinian eruption because it involved entirely basaltic magma, originated in a 17-km-long fissure, and produced extremely overthickened proximal deposits with a complex geometry. This study focuses on an 8-km-long segment cutting across Mount Tarawera where over 50 point-source vents were active during the 5.5-h eruption. A detailed characterization of the proximal deposits is developed and used to interpret the range of styles and intensities of the vents, including changes with time. We identify the four vents that contributed most heavily to the Plinian fall and evaluate the extent to which current volcanic plume models are compatible with the depositional patterns at Tarawera. Three proximal units are mapped that have phreatomagmatic, magmatic, and phreatomagmatic characteristics, respectively. Within the magmatic proximal unit, beds of like character are grouped into packages and delineated on scaled cross sections. Package dispersal is quantified by measuring the linear thickness half-distance (t1/2) in the planes of the fissure walls. Most packages have localized dispersals (low t1/2), indicating that Strombolian-style activity dominated most vents. The more widely dispersed packages (high t1/2) reflect contributions from additional transport regimes that were more vigorous but still contributed considerable material to the proximal region. We conclude that the geometry of the observed proximal deposits requires three modes of fall transport: (1) fallout from the upper portions of the Plinian plumes produced principally by vents in four craters; (2) sedimentation from the margins of the lower portions of the Plinian plumes including the jets and possibly the lower convective regions; and (3) ejection by weak Strombolian-style explosions from vents that did not contribute significant volumes of particles to the high plume. We suggest that the curvature of the velocity profile across the jet region of each plume (1–4 km height) was important, and that the lower velocity at the margins allowed proximal deposition of a large volume of material with a wide grain-size range.  相似文献   

14.
Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallaj?kull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38?%) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7?days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2?mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallaj?kull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment can help those who devise procedures to minimise the impact of these long-lasting low-intensity volcanic events on civil aviation.  相似文献   

15.
Two groups of poorly sorted ash-rich beds, previously interpreted as rain-flushed ashes, occur in the ca. AD 180 Hatepe Plinian pumice fall deposit at Taupo volcano, New Zealand. Two ash beds with similar dispersal patterns and an aggregate thickness of up to 13 cm make up the lowermost group (A). Group A beds extend 45 km north-east of the vent and cover 290 km2. In the southern part of the group A distribution area, a coarse ash to lapilli-size Plinian pumice bed (deposit B) separates the two group A beds. The scarcity of lapilli (material seen elsewhere from the still-depositing pumice fall) in group A beds indicates that they were rapidly transported and deposited. However, this rapid transportation and deposition did not produce cross-bedding, nor did it erode the underlying deposits. It is proposed that thick (>600 m) but dilute gravity currents generated from the collapsing outer margin of the otherwise buoyant Hatepe Plinian eruption column deposited the group A beds. The upper ash beds (group C) consist of one to seven layers, attain an aggregate thickness of 35 cm, and vary considerably in thickness and number of beds with respect to distance from vent. Group C beds contain variable amounts of ash mixed with angular Plinian pumices and are genuine rain-flushed ashes. Several recent eruptions at other volcanoes (Ukinrek Maars, Vulcan, Rabaul, La Soufrère de Guadeloupe and Soufrière, St Vincent) have produced gravity currents similar in style, but much smaller than those envisaged for group A deposits. The overloaded margins of otherwise buoyant eruption plumes generated these gravity currents. Laboratory studies have produced experimental gravity current analogues. Hazards from dilute gravity currents are considerable but often overlooked, thus the recognition of gravity current deposits will contribute to more thorough volcanic hazard assessment of prehistoric eruption sequences.  相似文献   

16.
The explosive rhyolitic eruption of Öræfajökull volcano, Iceland, in AD 1362 is described and interpreted based on the sequence of pyroclastic fall and flow deposits at 10 proximal locations around the south side of the volcano. Öræfajökull is an ice-clad stratovolcano in south central Iceland which has an ice-filled caldera (4–5 km diameter) of uncertain origin. The main phase of the eruption took place over a few days in June and proceeded in three main phases that produced widely dispersed fallout deposits and a pyroclastic flow deposit. An initial phase of phreatomagmatic eruptive activity produced a volumetrically minor, coarse ash fall deposit (unit A) with a bi-lobate dispersal. This was followed by a second phreatomagmatic, possibly phreatoplinian, phase that deposited more fine ash beds (unit B), dispersed to the SSE. Phases A and B were followed by an intense, climactic Plinian phase that lasted ∼ 8–12 h and produced unit C, a coarse-lapilli, pumice-clast-dominated fall deposit in the proximal region. At the end of Plinian activity, pyroclastic flows formed a poorly-sorted deposit, unit D, presently of very limited thickness and exposed distribution. Much of Eastern Iceland is covered with a very fine distal ash layer, dispersed to the NE. This was probably deposited from an umbrella cloud and is the distal representation of the Plinian fallout. A total bulk fall deposit volume of ∼ 2.3 km3 is calculated (∼ 1.2 km3 DRE). Pyroclastic flow deposit volumes have been crudely estimated to be < 0.1 km3. Maximum clast size data interpreted by 1-D models suggests an eruption column ∼ 30 km high and mass discharge rates of ∼ 108 kg s− 1. Ash fall may have taken place from heights around 15 km, above the local tropopause (∼ 10 km), with coarser clasts dispersed below that under a different wind regime. Analyses of glass inclusions and matrix glasses suggest that the syn-eruptive SO2 release was only ∼ 1 Mt. This result is supported by published Greenland ice-core acidity peak data that also suggest very minor sulphate deposition and thus SO2 release. The small sulphur release reflects the low sulphur solubility in the 1362 rhyolitic melt. The low tropopause over Iceland and the 30-km-high eruption column certainly led to stratospheric injection of gas and ash but little sulphate aerosol was generated. Moreover, pre-eruptive and degassed halogen concentrations (Cl, F) indicate that these volatiles were not efficiently released during the eruption. Besides the local pyroclastic flow (and related lahar) hazard, the impact of the Öræfajökull 1362 eruption was perhaps restricted to widespread ash fall across Eastern Iceland and parts of northern Europe.  相似文献   

17.
We studied the distribution of tephra deposits discharged by the basaltic (52–54% SiO2) explosive eruption of 1973 on Tyatya Volcano (Kunashir I., Kuril Islands). We made maps showing lines of equal tephra thickness (isopachs) and lines of maximum size of pyroclastic particles (isopleths). These data were used to find the parameters of explosive activity using the standard techniques for each of the two phases of this eruption separately. The first, phreatomagmatic, phase discharged 0.008 km3 of tephra during the generation of maars on the volcano’s northern slope. The tephra mostly consisted of fragmented host rocks with admixtures of fragments of low vesiculated juvenile basalt. The phase lasted 20 hours, the rate of pyroclastic discharge was 2 × 105 kg/s; the eruptive plume reached heights of 4–6 km with wind speeds within 10 m/s. The second, magmatic, phase discharged 0.07 km3 of tephra during the generation of the Otvazhnyi scoria cone on the volcano’s southeastern slope. The tephra mostly consisted of juvenile basaltic scoria. The highly explosive Plinian part of this phase lasted 36 hours, the rate of pyroclastic discharge was 8 × 105 kg/s; the eruptive plume reached heights of 6–8 km with wind speeds of 10–20 m/s. The total tephra volume discharged by the eruption was approximately 0.08 km3; the total amount of ejected pyroclastic material (including the resulting monogenic edifices) was 0.11 km3; the volume of erupted magma was 0.05 km3 (the conversion was based on 2800 kg/m3 density); the volcanic explosivity index, or VEI, was 3. The production rate of the Tyatya plumbing system is estimated as 3 × 105 m3 magma per annum.  相似文献   

18.
Basal layered deposits of the large-volume Peach Springs Tuff occur beneath the main pyroclastic flow deposit over a minimum lateral distance of 70 km in northwestern Arizona (USA). The basal deposits are interpreted to record initial blasting and pyroclastic surge events at the beginning of the eruption; the pyroclastic surges traveled a minimum of 100 km from the (as yet unknown) source. Changes in bedding structures with increasing flow distance are related to the decreasing sediment load of the surges. Some bed forms in the most proximal part of the study area (Kingman, Arizona) can be interpreted as being shock induced, reflecting a blast origin for the surges. Component analyses support a hydrovolcanic origin for some of the blasting and subsequent pyroclastic surges. The eruption apparently began with magmatic blasts, which were replaced by hydrovolcanic blasts. Hydrovolcanic activity may be partially related to failure of the conduit walls that temporarily plugged the vent. A single large-volume pyroclastic flow immediately followed the blast phase, and no evidence has been observed for a Plinian eruption column. The stratigraphic sequence indicates that powerful hydrovolcanic blasting rapidly widened the vent, thus bypassing a Plinian fallout phase and causing rapid evolution to a collapsing eruption column. Similar processes may occur in other large-volume ignimbrite eruptions, which commonly lack significant Plinian fallout deposits.  相似文献   

19.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

20.
A detailed stratigraphic analysis of the Avellino plinian deposit of the Somma-Vesuvius volcano shows a complicated eruptive sequence controlled by a combination of magmatic and hydromagmatic processes. The role of external water on the eruptive dynamics was most relevant in the very early phase of the eruption when the groundwater explosively interacted with a rising, gas-exolving magma body creating the first conduit. This phase generated pyroclastic surge and phreatoplinian deposits followed by a rapidly increasing discharge of a gas-rich, pure magmatic phase which erupted as the most violent plinian episode. This continuing plinian phase tapped the magma chamber, generating about 2.9 km3 of reverse-graded fallout pumice, more differentiated at the base and more primitive at the top (white and gray pumice). A giant, plinian column, rapidly grew up reaching a maximum height of 36 km.The progressive magma evacuation at a maximum discharge rate of 108 kg/s that accompanied a decrease of magmatic volatile content in the lower primitive magma allowed external water to enter the magma chamber, resulting in a drastic change in the eruptive style and deposit type. Early wet hydromagmatic events were followed by dry ones and only a few, subordinated magmatic phases. A thick, impressive sequence of pyroclastic surge bedsets of over 430 km2 in area with a total volume of about 1 km3 is the visible result of this hydromagmatic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号