首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Prediction of magnitude of the largest potentially induced seismic event   总被引:1,自引:0,他引:1  
We propose a method for determining the possible magnitude of a potentially largest induced seismic event derived from the Gutenberg–Richter law and an estimate of total released seismic moment. We emphasize that the presented relationship is valid for induced (not triggered) seismicity, as the total seismic moment of triggered seismicity is not bound by the injection. The ratio of the moment released by the largest event and weaker events is determined by the constants a and b of the Gutenberg–Richter law. We show that for a total released seismic moment, it is possible to estimate number of events greater than a given magnitude. We determine the formula for the moment magnitude of a probable largest seismic event with one occurrence within the recurrence interval (given by one volumetric change caused by mining or injecting). Finally, we compare theoretical and measured values of the moment magnitudes of the largest induced seismic events for selected geothermal and hydraulic fracturing projects.  相似文献   

2.
In this paper, we investigate production induced microseismicity based on modelling material failure from coupled fluid‐flow and geomechanical simulation. The model is a graben style reservoir characterized by two normal faults subdividing a sandstone reservoir into three compartments. The results are analysed in terms of spatial and temporal variations in distribution of material failure. We observe that material failure and hence potentially microseismicity is sensitive to not only fault movement but also fluid movement across faults. For sealing faults, failure is confined to the volume in and around the well compartment, with shear failure localized along the boundaries of the compartment and shear‐enhanced compaction failure widespread throughout the reservoir compartment. For non‐sealing faults, failure is observed within and surrounding all three reservoir compartments as well as a significant distribution located near the surface of the overburden. All shear‐enhanced compaction failures are localized within the reservoir compartments. Fault movement leads to an increase in shear‐enhanced compaction events within the reservoir as well as shear events located within the side‐burden adjacent to the fault. We also evaluate the associated moment tensor mechanisms to estimate the pseudo scalar seismic moment of failure based on the assumption that failure is not aseismic. The shear‐enhanced compaction events display a relatively normal and tight pseudo scalar seismic moment distribution centred about 106 Pa, whereas the shear events have pseudo scalar seismic moments that vary over three orders of magnitude. Overall, the results from the study indicate that it may be possible to identify compartment boundaries based on the results of microseismic monitoring.  相似文献   

3.
A method is presented to derive pure path attenuation coefficients of Rayleigh waves, in the period range 30–90 s, across the Tibet Plateau, using events located within Tibet and observed at teleseismic distances. This method uses data from 2 events and 2 stations simultaneously, these being aligned along a great circle path, and, for relatively small events, is practically free of errors due to inaccurate knowledge of the source radiation patterns.In spite of large standard errors due to the impossibility of separating effects of anclasticity from spurious effects on amplitudes such as scattering or multipathing, results seem to indicate an anelastic model of the crust and upper mantle compatible with shear velocity models derived independently, with a thick crust and in particular, a thick high Q lid and thin low Q zone consistent with a shield like upper mantle beneath Tibet.  相似文献   

4.
Forty-six mining-induced seismic events with moment magnitude between ?1.2 and 2.1 that possibly caused damage were studied. The events occurred between 2008 and 2013 at mining level 850–1350 m in the Kiirunavaara Mine (Sweden). Hypocenter locations were refined using from 6 to 130 sensors at distances of up to 1400 m. The source parameters of the events were re-estimated using spectral analysis with a standard Brune model (slope ?2). The radiated energy for the studied events varied from 4.7 × 10?1 to 3.8 × 107 J, the source radii from 4 to 110 m, the apparent stress from 6.2 × 102 to 1.1 × 106 Pa, energy ratio (E s/E p) from 1.2 to 126, and apparent volume from 1.8 × 103 to 1.1 × 107 m3. 90% of the events were located in the footwall, close to the ore contact. The events were classified as shear/fault slip (FS) or non-shear (NS) based on the E s/E p ratio (>10 or <10). Out of 46 events 15 events were classified as NS located almost in the whole range between 840 and 1360 m, including many events below the production. The rest 31 FS events were concentrated mostly around the production levels and slightly below them. The relationships between some source parameters and seismic moment/moment magnitude showed dependence on the type of the source mechanism. The energy and the apparent stress were found to be three times larger for FS events than for NS events.  相似文献   

5.
Over the last 25 years mining-induced seismicity in the Ruhr area has continuously been monitored by the Ruhr-University Bochum. About 1,000 seismic events with local magnitudes between 0.7 ≤ M L ≤ 3.3 are located every year. For example, 1,336 events were located in 2006. General characteristics of induced seismicity in the entire Ruhr area are spatial and temporal correlation with mining activity and a nearly constant energy release per unit time. This suggests that induced stresses are released rapidly by many small events. The magnitude–frequency distribution follows a Gutenberg–Richter relation which is a result from combining distributions of single longwalls that themselves show large variability. A high b-value of about 2 was found indicating a lack of large magnitude events. Local analyses of single longwalls indicate that various factors such as local geology and mine layout lead to significant differences in seismicity. Stress redistribution acts very locally since differences on a small scale of some hundreds of meters are observed. A regional relation between seismic moment M 0 and local magnitude M L was derived. The magnitude–frequency distribution of a single longwall in Hamm was studied in detail and shows a maximum at M L = 1.4 corresponding to an estimated characteristic source area of about 2,200 m2. Sandstone layers in the hanging or foot wall of the active longwall might fail in these characteristic events. Source mechanisms can mostly be explained by shear failure of two different types above and below the longwall. Fault plane solutions of typical events are consistent with steeply dipping fracture planes parallel to the longwall face and nearly vertical dislocation in direction towards the goaf. We also derive an empirical relation for the decay of ground velocity with epicenter distance and compare maximum observed ground velocity to local magnitude. This is of considerable public interest because about 30 events larger than M L ≥ 1.2 are felt each month by people living in the mining regions. Our relations, for example, indicate that an event in Hamm with a peak ground velocity of 6 mm/s which corresponds to a local magnitude M L between 1.7 and 2.3 is likely to be felt within about 2.3 km radius from the event.  相似文献   

6.
Several decades of faulty exploitation of salt through solution mining led to the creation of an underground cavern containing several million cubic meters of brine. To eliminate the huge hazard near a densely inhabited area, a technical solution was implemented to resolve this instability concern through the controlled collapse of the roof while pumping the brine out and filling the cavern with sterile. To supervise this, an area of over 1 km2 was monitored with a staggered array of 36 one-component, 15 Hz geophones installed in 12 boreholes about 160–360 m deep. A total of 2,392 seismic events with M w ?2.6 to 0.2 occurred from July 2005 to March 2006, located within an average accuracy of 18 m. The b-value of the frequency-magnitude distribution exhibited a time variation from 0.5 to 1 and from there to 1.5, suggesting that the collapse initiated as a linear fracture pattern, followed by shear planar fragmentations and finally a 3-D failure process. The brunching ratio of seismicity is indicative of a super-critical process, except for a short period in mid-February when temporary stability existed. Event relocation through the use of a collapsing technique outlines that major clusters of seismicity were associated with the main cavern collapse, whereas smaller clusters were generated by the fracturing of smaller size nearby caverns. It is shown that one-component recordings allow for stable and reliable point source event mechanism solutions through automatic moment tensor inversion using time domain estimates of low frequency amplitudes with first polarities attached. Detailed analysis of failure mechanism components uses 912 solutions with conditional number CN < 100 and a correlation coefficient r 2 > 0.5. The largest pure shear (DC) components characterize the events surrounding the cavern ceiling, which exhibit normal and strike-slip failures. The majority of mechanism solutions include up to 30% explosional failure components, which correspond to roof caving under gravitational collapsing. The largest vertical deformation rate relates closely to the cavern roof and floor, as well as the rest of the salt formation, whereas the horizontal deformation rate is most prominent in areas of detected collapses.  相似文献   

7.
An ~22-m-thick saucer-shaped sill occurs near Mahad and is exposed as a curvilinear, miniature ridge within the Deccan Traps. The sill has variable dips (42–55°). It has a 7.1-km long axis and 5.3 km short axis (aspect ratio of 1.4) and is larger than the MV sill of the Golden Valley sill complex, South Africa and the Panton sill, Australia. The sill has distinct glassy upper and lower chilled margins with a coarse-grained highly jointed core. The samples from the margin are invariably fractured and iron stained because of deuteric alteration. The rock from the sill is plagioclase-phyric basalt. At least three thick sill-like apophyses emanate from the base of the main sill. The apophyses change direction because of bending and thinning from a horizontal concordant sheet at the top to a discordant inclined form that bends again to pass into a lower horizontal concordant sheet. We interpret such features as ‘nascent saucer-shaped sills’ that did not inflate to form nested sills. Geochemically, the sill consists of poorly differentiated tholeiitic basalt that has a restricted geochemical range. Critical trace element ratios and primitive mantle normalised trace and REE patterns indicate that the sills have geochemical affinities to the Poladpur chemical type and that the pahoehoe flow they intrude belongs to the Bushe Formation. Calculated magmatic overpressures during sill emplacement range from 8.4 to 11.3 MPa (for Young’s modulus E?=?5 GPa) and 16.7 to 22.5 MPa (for E=10 GPa) and depth to magma chamber ranges from 8.5 to 11.5 km (E?=?5 GPa) and 17.1 to 22.9 km (E?=?10 GPa), consistent with petrological and gravity modelling. The volume of the Mahad sill is approximately 276 km3 and is constant irrespective of the variations in the values of host-rock Young’s modulus. In 1980, Cox (J Petrol 21:629–650, 1980) proposed a conceptual model of the crust–mantle section beneath the Karoo CFB which is considered as the fundamental model for flood basalt volcanism. Our paper confirms the presence of a sill plus the inferred substructure beneath Mahad that are compatible with predictions of that model. In LIPS, saucer-shaped sills are formed in areas experiencing extensional tectonics where processes such as the Cook–Gordon delamination and Dundurs elastic extensional mismatch between layered sedimentary rocks or lava flows are responsible for the deflection of dykes into sills. A similar process is envisaged for the formation of the Mahad sill.  相似文献   

8.
—The 12 November 1996 M w 7.7 Peru subduction zone earthquake occurred off the coast of southern Peru, near the intersection of the South American trench and the highest topographical point of the subducting Nazca Ridge. We model the broadband teleseismic P-waveforms from stations in the Global Seismic Network to constrain the source characteristics of this subduction zone earthquake. We have analyzed the vertical component P-waves for this earthquake to constrain the depth, source complexity, seismic moment and rupture characteristics. The seismic moment determined from the nondiffracted P-waves is 3–5 × 1020 N·m, corresponding to a moment magnitude M w of 7.6–7.7. The source time function for the 1996 Peru event has three pulses of seismic moment release with a total duration of approximately 45–50 seconds. The largest moment release occurs at approximately 35–40 seconds and is located ~90km southeast of the rupture initiation. Approximately 70% of the seismic moment was released in the third pulse.¶We find that the 1996 event reruptured part of the rupture area of the previous event in 1942. The location of the 1996 earthquake corresponds to a region along the Peru coast with the highest uplift rates of marine terraces. This suggests that the uplift may be due to repeated earthquakes such as the 1996 and 1942 events.  相似文献   

9.
We consider the results of reconstructing the stress-strain state of the Earth’s crust in South Baikal from the focal mechanism data for the Kultuk earthquake of August 27, 2008 (M w = 6.3) and its aftershocks. The source parameters of the main shock were determined by calculating the seismic moment tensor. The focal mechanism solutions of 32 aftershocks (M w ≥ 2.3) were obtained through the deployment of a local seismic network at South Baikal. It is found that the main shock and first aftershocks (August–September) gave rise to the activation of latitudinal fragments of the segmented near-edge fault, and the sources of the consequent aftershocks were dominated by the NW-striking planes related to the small intrabasin structures. The calculations of seismotectonic deformations based on the data on the focal mechanisms of the earthquakes show that the area of activation is dominated by the transtension regime (with deformation in the form of extension with shear). The epicentral and hypocentral fields of the aftershocks and the mechanisms of their sources reflect the complex tectonic structure of the source zone of the Kultuk earthquake, which exhibits a clear subvertical zonality of the local seismically active volume and a wedge-shaped area of crustal destruction.  相似文献   

10.
An analysis of local seismicity within the Avacha–Koryakskii Volcanic Cluster during the 2000–2016 period revealed a sequence of plane-oriented earthquake clusters that we interpret as a process of dike and sill emplacement. The highest magmatic activity occurred in timing with the 2008–2009 steam–gas eruption of Koryakskii Volcano, with magma injection moving afterwards into the cone of Avacha Volcano (2010–2016). The geometry of the magma bodies reflects the NF geomechanical conditions (tension and normal faults, \(S_V>S_{H_{\text{max}}}>S_{h_{\text{min}}}\)) at the basement of Koryakskii Volcano dominated by vertical stresses S v , with the maximum horizontal stress \(S_{h_{\text{max}}}\) pointing north. A CFRAC simulation of magma injection into a fissure under conditions that are typical of those in the basement of Koryakskii Volcano (the angle of dip is 60°, the size is 2 × 2 km2, and the depth is –4 km abs.) showed that when the magma discharge is maintained at the level of 20000 kg/s during 24 hours the fissure separation increases to reach 0.3 m and the magma injection is accompanied by shear movements that occur at a rate as high as 2 × 10–3 m/s, thus corresponding to the conditions of local seismic events with Mw below 4.5. We are thus able to conclude that the use of planeoriented clusters of earthquakes for identification of magma emplacement events is a physically sound procedure. The August 2, 2011 seismicity increase in the area of the Izotovskii hot spring (7 km from the summit of Koryakskii Volcano), which is interpreted as the emplacement of a dike, has been confirmed by an increase in the spring temperature by 10–12°C during the period from October 2011 to July 2012.  相似文献   

11.
Located in northern Québec, the Lac Shortt Mine was a small gold mine consisting of a thin subvertical orebody which was mined in three main phases. High stress and rockbursting conditions were experienced when ore was extracted in the upper zone between the surface and a depth of 500 metres during the first two phases of mining. Severe rockbursts were experienced in late 1989 near the shaft and in the footwall development following a deepening of the mine shaft to a depth of 830 m and partial development of footwall drift access for the third phase of mining (the mining of the lower zone starting at a depth of 830 m moving upward toward a depth of 500 m). A 16-channel Electrolab MP250 microseismic system, with a Queen's University Full-Waveform piggy-back system, was installed underground at the site due to these problems.It was expected that the thinning sill would be subjected to an ever-increasing load as the thickness of the 500 m sill pillar decreased in the face of the mining excavation from below. A monitoring program consisting of the microseismic monitoring system, a range of conventional geomechanics monitoring tools as well as the undertaking of periodic seismic tomography surveys to assess the ongoing state of stress and rock mass condition within the sill was therefore warranted.The anomalously high-magnitude stress field and the brittle rockmass created a situation in which rockmass failure was common and violent. In the creation and thinning of the sill pillar, the location of banded microseismic activity was crucial in tracing rockmass failure and the associated ground control problems. Reliable source-location determination enabled the identification of areas of stress increase. The movement of the rockmass failure front could be followed, and was responsible for stope dilution, footwall and orebody development deterioration, and caving.Source-mechanism analyses gave accurate double-couple solutions for approximately forty percent of these events having at least ten recognizable polarities. Results suggested movement along vertical north-south striking or vertical east-west striking features. Underground observation of damaged access points showed that vertical north-south striking joints were experiencing failure.The microseismic activity, which was consistently concentrated close to the southwest and northeast corners of current production stopes, could be explained by a stress field oriented obliquely to the strike of the orebody, as measured prior to shrinkage of the sill pillar byin situ stress measurements and observed borehole overbreaks. The orientations of theP andT axes for the microseismic activity further confirmed that the stress field oriented obliquely to strike.While an increase in compressional-wave velocity of 2.3 percent, corresponding to a measured stress increase of approximately 10 MPa could be measured by repeated tomographic surveys, it was relatively small and only a factor of two or so above the velocity measured uncertainty. The relative insensitivity of thein situ rock mass modulus to the applied stress is believed to be largely due to the rockmass discontinuities being relatively closed prior to stress increase, as substantiated by the small deformations seen by the extensometer and borehole camera. This situation existed because of the very high pre-mining stress level.The experimental demonstration that the rock could not absorb substantially increased load through the mechanism of discontinuity closure or tightening (which would be reflected in the modulus) may be evidence in itself of potentially burst-prone ground, such as encountered at Lac Shortt.  相似文献   

12.
The method of surface-wave amplitude spectra inversion for the seismic moment tensor (SMT) is implemented and tested in the Pribaikalye region. The SMTs are calculated for 39 events with M w = 4.4–6.3, which occurred in the region in 2000–2011. Based on the obtained data, the seismotectionic deformations of the crust are estimated in two seismically active areas-the Northern Pribaikalye and northeastern Baikal rift zone. It is found that on a level of moderate-magnitude events, the region is dominated by the regimes of subhorizontal northwestern extension and strike-slip faulting, which reflects the long-term trends in the stress field of the crust in these parts of the rift.  相似文献   

13.
A Seismic Model of Casing Failure in Oil Fields   总被引:1,自引:0,他引:1  
—We develop a seismic model that characterises the sudden tensional failure of oil-well casings. The energy released by the rupture of a well casing is transformed into heat and seismic energy. The upper bound of the seismic efficiency of this process is estimated at about 3%. The static situation at the completion of a casing failure episode is modelled by calculating the static displacement field generated by two opposing forces separated by an arm. The azimuthal patterns of these displacements and the change in the strain and stress fields caused by the force couple are described. The dynamics of the failure episode are modelled as a dipole with a seismic moment equivalent to the product of the average drop in shear stress, the failure surface, and an arm. The radiated P and S waves have mean-square radiation pattern coefficients of 1/5 for P waves and 2/15 for S waves. The displacement field as a function of time during rupture and the spectral properties in the far field are derived. The most promising seismic parameters that can be used for distinguishing between casing failure events and other possible events are polarisation properties of S waves and S/P amplitude ratios. S-wave polarisation distinguishes between shear events and casing failure events. S/P amplitude ratios distin guish between tensile events and casing failure events.  相似文献   

14.

The three-dimensional (3D) geoelectric model of the Kuznetsk-Alatau folded area is reconstructed by magnetotelluric inversion using 3D fitting. It is established that the zones of ore mineralization within the Batenevsky massif are confined to the subvertical faults characterized by the electric resistivity of 100–300 Ω m. Blocks with ρ ≈ 10−100 Ω m are identified at a depth below 10 km in the western part of the model. The blocks are located close to the areas marked by the increased thermal flux, reduced seismic velocities, and elevated Moho boundary. This is probably associated with the presence of the rift zone in this area.

  相似文献   

15.
Parameters of split shear waves from local earthquakes in the area of the PET IRIS station (town of Petropavlovsk-Kamchatski) were measured over the period 1993–2002 for the study of anisotropic properties of rocks in the subduction zone and variations in the fast azimuth of the fast shear wave (?). The dominating fast shear wave polarization directions were oriented in 1993–2002 along N90°E ± 20° in agreement with the direction of the Pacific plate motion. The normalized shear wave delay times δt SS increase to a depth of 150 km. The values of δt SS are largest (up to 20 ms/km) for earthquakes at depths of 50–60 and 90–150 km and smallest (up to 6 ms/km) for earthquakes at depths greater than 200 km. The fast azimuths for events with H < 80 km are described in terms of a horizontal transversely isotropic (HTI) model of the medium, with the axis oriented northward. Temporal variations in the fast azimuths with an amplitude of up to 90° and a predominant period of about 400–600 days are observed for events at depths of 80–120 km. The anisotropy of rocks is described by effective models of the orthorhombic and HTI symmetries. The predominant fast shear wave fast azimuths from events at depths of 120–310 km vary with time: the polarization axis was oriented to the north in 1993–1995, to the north and east in 1996–1998, to the east in 1999–2000, and to the northeast and southeast in 2001–2002. The anisotropy of rocks can be described in terms of the HTI model with the symmetry axis subparallel to the focal zone dip.  相似文献   

16.
Universality of the Seismic Moment-frequency Relation   总被引:1,自引:0,他引:1  
—We analyze the seismic moment-frequency relation in various depth ranges and for different seismic regions, using Flinn-Engdahl's regionalization of global seismicity. Three earthquake lists of centroid-moment tensor data have been used the Harvard catalog, the USGS catalog, and the Huang et al. (1997) catalog of deep earthquakes. The results confirm the universality of the β-values and the maximum moment for shallow earthquakes in continental regions, as well as at and near continental boundaries. Moreover, we show that although fluctuations in earthquake size distribution increase with depth, the β-values for earthquakes in the depth range of 0–500 km exhibit no statistically significant regional variations. The regional variations are significant only for deep events near the 660 km boundary. For declustered shallow earthquake catalogs and deeper events, we show that the worldwide β-values have the same value of 0.60 ± 0.02. This finding suggests that the β-value is a universal constant. We investigate the statistical correlations between the numbers of seismic events in different depth ranges and the correlation of the tectonic deformation rate and seismic activity (the number of earthquakes above a certain threshold level per year). The high level of these correlations suggests that seismic activity indicates tectonic deformation rate in subduction zones. Combined with the universality of the β-value, this finding implies little if any variation in maximum earthquake seismic moment among various subduction zones. If we assume that earthquakes of maximum size are similar in different depth ranges and the seismic efficiency coefficient, χ, is close to 100% for shallow seismicity, then we can estimate χ for deeper earthquakes for intermediate earthquakes χ≈ 5%, and χ≈ 1% for deep events. These results may lead to new theoretical understanding of the earthquake process and better estimates of seismic hazard.  相似文献   

17.
A major swarm of intraplate earthquakes at the southeastern end of the Gilbert Islands Chain (3.5°S, 177.5°E) commenced in December 1981 and lasted through March 1983. No seismicity had been reported in the historical record in this region prior to 1981, but during the swarm 217 events with mb ? 4.0 were located by the NEIS, with 86 events having mb ? 5.0. The source region is quite remote, and the uniform detection level for the NEIS is for mb ? 4.8. A b-value of 1.35 is found for the swarm using the maximum likelihood method. Four events in the sequence were large enough (mb = 5.6?5.9) to determine focal mechanisms teleseismically using body- and surface-wave analysis. These events are found to have a range of mechanisms, from predominantly thrust with a significant oblique component, to purely strike-slip. The compression axes are consistent for all four events, with horizontal orientation trending NNE-SSW. This orientation is perpendicular to the direction of plate motion. The events are located at depths between 15 and 20 km placing them deep in the oceanic crust or in the upper mantle. No obvious bathymetric feature can be related to the fault plane orientations, though there is an offset in the island chain near the epicenters. While some characteristics of the swarm suggest a magmatic origin, the nature of the focal mechanisms, the location of the swarm, and the large accumulated moment release of the sequence favor a tectonic origin.  相似文献   

18.
Abstract. A simple, fast, moment-tensor inversion method using bandpass-filtered P-amplitudes was used to study the moment-tensor statistics of Long Valley caldera microearthquakes. The events were recorded in the summer of 1997, during a swarm in the caldera. The swarm was associated with geodetic extension, uplift, and subsequent moderate earthquake activity. The moment tensor solutions for 1,993 events were calculated using the new method. The majority of the resulting focal mechanisms appear to be explained in terms of double couple mechanisms. Since some events did exhibit considerable deviation from double-couples, the moment data were studied for their statistical significance. The moments of the actual data were compared to the moments of synthetic data with varying degrees of random noise in their spectra. The results of this study suggested that unless data from more than 20 stations are used and the earthquake epicenter is located inside or very close to the network area, moment-tensor inversion does not correctly resolve the non-double-couple components of microearthquakes. Analysis of the inversion residuals shows that the average noise in the P-wave spectra was close to 20%. The fluctuations of the volumetric components of the moment-tensor are in good agreement with those of the synthetic pure double-couples with 20% of added noise. Thus the moment-tensor statistics suggests that little if any volume change is required to explain the observed seismic energy release in the swarm. However, the statistics do show that a significant compensated-linear-vector-dipole component maybe present in the bulk of the seismicity. Given the network used in this study, such a component could not be precisely resolved for individual earthquakes. This possibility deserves further investigation because of its bearing on the nature of fluid-fault-earthquake processes in swarms.  相似文献   

19.
Broadband data from the P?íbram seismological network was used to investigate the source of two earthquakes, with magnitudes M w ?=?0.2 and 0.4 respectively, occurring in the period of October–November 2009 in the Háje natural gas storage area (Czech Republic). Both events were located inside the limits of the storage area and at depths similar to those of the underground caverns where the gas is stored. We applied an inversion technique using the software ISOLA for moment tensor retrieval in order to assess the source process of both events and recognize whether a significant isotropic component existed that could be interpreted as a possible cavern collapse. We also performed an uncertainty analysis so as to confirm the reliability of the focal mechanism solutions and we controlled the consistency between the inverted focal mechanisms and those calculated using the P-waves first motions. Our results showed that the nodal plane orientation, the centroid depth, and the magnitude remained stable. Furthermore, we calculated synthetic waveforms for collapse-type ruptures and compared them with the original records. The match between the synthetic and the original data was very poor supporting the interpretation of the shear character of the events. The combination of the inversion results, which indicated significant double-couple components and of the synthetic tests, which supported the inexistence of an isotropic component at the source, led to the conclusion that the possibility of rocks falling from the ceiling of the caverns or a cavern collapse is highly unlikely.  相似文献   

20.
The role of water depth and bottom boundary layer turbulence upon lee-wave generation in sill regions is examined. Their effect upon vertical mixing is also considered. Calculations are performed using a non-hydrostatic model in cross-section form with a specified tidal forcing. Initial calculations in deeper water and a sill height such that the sill top is well removed from the surrounding bed region showed that downstream lee-wave generation and associated mixing increased as bottom friction coefficient k increased. This was associated with an increase in current shear across the sill. However, for a given k, increasing vertical eddy viscosity A v reduced vertical shear in the across sill velocity, leading to a reduction in lee-wave amplitude and associated mixing. Subsequent calculations using shallower water showed that for a given k and A v, lee-wave generation was reduced due to the shallower water depth and changes in the bottom boundary layer. However, in this case (unlike in the deepwater case), there is an appreciable bottom current. This gives rise to bottom mixing which in shallow water extends to mid-depth and enhances the mid-water mixing that is found on the lee side of the sill. Final calculations with deeper water but small sill height showed that lee waves could propagate over the sill, thereby reducing their contribution to mixing. In this case, bottom mixing was the major source of mixing which was mainly confined to the near bed region, with little mid-water mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号