首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A regional study of the Veracruz Basin provided an excellent view of long-term deepwater sedimentation patterns from an evolving foreland-type basin. The regional seismic and well-log data set allows for an accurate reconstruction of slope and basin-floor depositional patterns, lithologic compositions, and paleogradients from a continuous succession of bathyal strata that span the Miocene to the lower Pliocene. Variations in Miocene and Pliocene deepwater reservoirs can be linked to prevailing slope characteristics. The Miocene basin had a high-gradient, tectonically generated slope, and the Pliocene basin had a low-gradient constructional slope. The Miocene basin owes its steep margin to the tectonic stacking of early Tertiary, Laramide-age thrust sheets. The Miocene margin shed a mixture of coarse elastic sediments (sands, gravels, and cobbles) and fines (silts and clays) that were transported into the deep basin via turbidity currents and debris flows. Channelized deposits dominate the Miocene slope, and reservoirs occur in long-lasting basement-confined canyons and shorter-lived shallower erosional gulleys. Thick and areally-extensive basin-floor fans exist outboard of the strongly channelized Miocene slope. Fan distribution is strongly controlled by synsedimentary contractional anticlines and synclines. In contrast, the latest Miocene to early Pliocene basin development was dominated by a strongly prograding wedge of shelf and slope deposits that was induced by volcanogenic uplift and increased sediment supply. During this phase, turbidite reservoirs are limited to narrow and sinuous deepwater channels that reside at the toe of the constructional clinoforms and areally limited, thinner basinal fans.  相似文献   

3.
冲绳海槽西部陆坡地震相模式与沉积体系   总被引:8,自引:3,他引:5  
对冲绳海槽西部陆坡上两个航次(95航次和99航次)共计2000多公里的单道地震资料进行分析和解译,对斜坡沉积环境下沉积体系发育、分布特征进行了研究。结果表明:a)冲绳海槽西部斜坡环境下,上新世以来的沉积层均不同程度的变形和错动;b)存在两种斜坡相地震反射模式——退覆模式和叠覆模式,这两种模式都反映了冲绳海槽西部陆坡得到充足的沉积物供给;c)斜坡环境下主要发育陆架边缘三角洲、重力流沉积和水道充填等沉积体系;d)沉积层发育特征表明,冲绳海槽西部陆坡具有北段坡度缓、沉积物供应丰富、构造相对不活跃,中段坡度陡、沉积物供应充足、构造活动强烈,南段坡度陡、沉积供应相对较少、构造和火山活动十分强烈3种主要沉积环境。西部陆坡的沉积特征也揭示了东海陆架向陆坡提供了大量碎屑沉积物质。  相似文献   

4.
The marine fill of ancient foreland basins is primarily recorded by depositional systems consisting of facies and facies associations deposited by a variety of sediment gravity flows in shallow-marine, slope and basinal settings. Tectonism and climate were apparently the main factors controlling the sediment supply, accommodation and depositional style of these systems. In marginal deltaic systems, sedimentation is dominated by flood-generated hyperpycnal flows that build up impressive accumulations of graded sandstone beds in front of relatively small high-gradient fan-deltas and river deltas. During periods of tectonically forced lowstands of sealevel, these systems may commonly shift basinward to shelfal and slope regions. Instability along the edges of these lowstand deltas and sand-laden hyperpycnal flows generate immature and coarse-grained turbidite systems commonly confined within structural depressions and generally encased in distal delta-front and prodeltaic deposits. Because of the close vertical and lateral stratigraphic relations between deltaic and turbidite-like facies, these marginal systems are herein termed ‘mixed depositional systems’. They are very common in the fill of foreland basins and represent the natural link between deltaic and basinal turbidite sedimentation.Basinal turbidite systems form in deeper water elongate highly subsiding troughs (foredeeps) that developed in front of advancing thrust systems. The impressive volumes of sheet-sandstones that form the fill of these troughs suggest that basinal turbidite systems are likely to form following periods of dramatic tectonic uplift of adjacent orogenic wedges and related high-amplitude tectonically-forced sealevel lowstands. In such deep basinal settings, sediment flux to the sea is dramatically increased by newly formed sediment in fluvial drainage basins and the subaerial and submarine erosion of falling-sealevel deltaic deposits generated during the uplift. Turbidity currents are very likely to be mainly triggered by floods, via hyperpycnal flows and related sediment failures, but can fully develop only in large-scale erosional conduits after a phase of catastrophic acceleration and ensuing bulking produced by bed erosion. This process leads to deepening and widening of the conduits and the formation of large-volume highly efficient bipartite currents whose energy dissipation is substantially reduced by the narrow and elongate basin geometry. These currents can thus carry their sediment load over considerable distances down the basin axis.  相似文献   

5.
This paper presents a review of sediment dispersal processes in the Strait of Georgia, based on marine geological studies. Sediment from the Fraser River is dispersed around the Strait through a variety of transport pathways. Most sand and coarser silt fractions settle out and are deposited within a few 100 m of the channel mouths. Both channelled and non-channelled gravity flows probably transport sediment downslope and onto the basin floor. Asymmetric tidal currents force a predominantly northward sediment drift, resulting in a reworked slope off Roberts Bank and a finer-grained depositional slope off Sturgeon Bank. Far-field sediment accumulation is controlled by local morphology and sediment dynamics. Multibeam mapping and seismic profiling reveal that some parts of the basin floor are characterized by bottom sediment reworking and erosion. Given the complexities of sediment dispersal and seafloor reworking, generalizations about sediment dispersal paths and sedimentation rates are difficult. Future understanding will be advanced by the cabled observatory, VENUS, which will enable near real-time monitoring of key processes.  相似文献   

6.
The deposits of subaqueous sediment gravity flows can show evidence for abrupt and/or progressive changes in flow behaviour making them hard to ascribe to a single flow type (e.g. turbidity currents, debris flows). Those showing evidence for transformation from poorly cohesive and essentially turbulent flows to increasingly cohesive deposition with suppressed turbulence ‘at a point’ are particularly common. They are here grouped as hybrid sediment gravity flow deposits and are recognised as key components in the lateral and distal reaches of many deep-water fan and basin plain sheet systems. Hybrid event beds contain up to five internal divisions: argillaceous and commonly mud clast-bearing sandstones (linked debrite, H3) overlie either banded sandstones (transitional flow deposits, H2) and/or structureless sandstones (high-density turbidity currents, H1), recording longitudinal and/or lateral heterogeneity in flow structure and the development of turbulent, transitional and laminar flow behaviour in different parts of the same flow. Many hybrid event beds are capped by a relatively thin, well-structured and graded sand–mud couplet (trailing low-density turbulent cloud H4 and mud suspension fallout H5). Progressive bed aggradation results in the deposits of the different flow components stacked vertically in the final bed. Variable vertical bed character is related to the style of up-dip flow transformations, the distance over which the flows can evolve and partition into rheological distinct sections, the extent to which different flow components mutually interact, and the rate at which the flows decelerate, reflecting position (lateral versus distal) and gradient changes. Hybrid beds may inherit their structure from the original failure, with turbidity currents outpacing debris flows from which they formed via partial flow transformation. Alternatively, they may form where sand-bearing turbidity currents erode sufficient substrate to force transformation of a section of the current to form a linked debris flow. The incorporation of mud clasts, their segregation in near-bed layers and their disintegration to produce clays that can dampen turbulence are inferred to be key steps in the generation of many hybrid flow deposits. The occurrence of such beds may therefore identify the presence of non-equilibrium slopes up-dip that were steep enough to promote significant flow incision. Where hybrid event beds dominate the entire distal fan stratigraphy, this implies either the system was continually out of grade in order to freight the flows with mud clasts and clays, or the failure mechanism and transport path repeatedly allowed transmission of components of the initial slumps distally. Where hybrid beds are restricted to sections representing fan initiation, or occur more sporadically within the fan deposits, this could indicate shorter episodes of disequilibrium, due to an initial phase of slope re-adjustment, or intermittent tectonically or gravity-driven surface deformation or supply variations. Alternatively, changes between conventional and hybrid event beds may record changes in the flow generation mechanism through time. Thus the vertical distribution of hybrid event beds may be diagnostic of the wider evolution of the fan systems that host them.  相似文献   

7.
The existence of a slope equilibrium profile has been widely used to account for erosional and depositional processes on submarine slopes and turbidite systems. Profiles out-of-equilibrium are commonly observed in actively deforming areas where channels seem to be deflected or diverted by seafloor structures. In this study the concept of the submarine equilibrium profile is tested in an area of extensive surface faulting to examine whether channels adopt an equilibrium-type profile through time. The study area is on the slope of the Nile Delta, which is disrupted by a number of surface-rupturing normal faults. Prior to fault linkage, several submarine channels flowed down the slope and either utilised relay ramps or flowed through fault scarps of the fault array. Where a relay ramp had been utilised, post fault linkage, the channels of the area either avulsed or converged into one major channel in response to a change in the deformed slope profile to a more concave shape. The thalweg of the post fault linkage channel and two slope profiles either side of it are measured in the area of the fault array, to understand how the channel evolved in response to the active faulting. When fault displacement is relatively small the combination of channel erosion and aggradation results in a channel thalweg profile near-equilibrium with predictable modifications of channel dimensions (depth and width) even if sediment supply was infrequent and episodic. It is concluded that turbidite channels can conform to the concept of equilibrium and submarine base level if it is the most energy efficient route for submarine gravity flows downslope. The most energy efficient route will be one where flows bypass the slope without eroding or depositing and move in a direct downslope course towards base level.  相似文献   

8.
A series of submarine canyons on the southwest slope of Orphan Basin experienced complex failure at 7–8 cal ka that resulted in the formation of a large variety of mass-transport deposits (MTDs) and sediment gravity flows. Ultra-high-resolution seismic-reflection profiles and multiple sediment cores indicate that evacuation zones and sediment slides characterize the canyon walls, whereas the canyon floors and inner-banks are occupied by cohesive debris-flow deposits, which at the mouths of the canyons on the continental rise form large, coalescing lobes (up to 20 m thick and 50 km long). Erosional channels, extending throughout the length of the study area (<250 km), are observed on the top of the lobes. Piston cores show that the channels are partially filled by poorly sorted muddy sand and gravel, capped by inversely to normally graded gravel and sand. Such deposits are interpreted to originate from multi-phase gravity flows, consisting of a lower part behaving as a cohesionless debris flow and an upper part that was fully turbulent.The Holocene age and the widespread synchronous occurrence of these failures indicate a large magnitude earthquake as their possible triggering mechanism. The large debris-flow deposits on the continental rise originated from large failures on the upper continental slope, involving proglacial sediments. Retrogression of these failures led to the eventual failure of marginal sandy till deposits on the upper slope and outer shelf, which due to their low cohesion disintegrated into multi-phase gravity flows. The evacuation zones and slide deposits on the canyon walls were triggered either by the earthquake, or from erosion of the canyon walls by the debris flows. The slides, debris-flows, and multi-phase gravity flows observed in this study are petrographically different, indicating different sediment sources. This indicates that not all failures lead through flow transformation to the production of a multi-phase gravity flow, but only when the sediment source contains ample coarse-grained material. The spatial segregation of the slide, debris-flow, and multi-phase gravity-flow deposits is attributed to the different mobility of each transport process.  相似文献   

9.
Sand-sized terrigenous material from 450 samples representing 24 piston cores is used to compare slope, perched slope basin, and trench apron, plain and margin depositional environments within the Hellenic Trench west of the Peloponnesus. Recognition of three stratigraphically defined layers in the core sections served as a basis for evaluating changes in time. Statistical testing showed that within the upper defined layer (0–5700 yrs. B.P.) terrigenous grains are distributed rather uniformly throughout the slope and basin complexes in contrast to distributions in underlying layers (5700–17,000 and 17,000–45,000 yrs. B.P., respectively. These distributions reflect intense reworking by gravitative processes as evidenced by sediment structures, incomplete slope sections, high accumulation rates, and dilution of sapropels. The homogeneity of the upper layer is explained by failure and downslope transport of sediments that were deposited on the slope during lower stands of sea level. The quantitative analyses performed highlight the rapidity by which land-derived sediments by-pass high-relief slopes, temporarily reside in perched basins on the slope, and ultimately are dispersed to distal trench apron and basin environments by sporadic gravity flows.  相似文献   

10.
冲绳海槽西部陆坡碎屑沉积物的搬运方式:滑塌和重力流   总被引:9,自引:3,他引:6  
通过对冲绳海槽2000多公里的实测单道地震资料(95和99航次)和沉积物柱状样(92航次)分析,认为滑塌和重力流是冲绳海槽西部陆坡(东海陆坡)碎屑沉积物向海槽搬运的重要方式;分析结果表明,西部陆坡这两种作用是广泛存在的。陆坡沉积物堆积速率、地形坡度和构造活动、地震、海啸等因素造成了陆坡南、北和中段之间的滑塌和重力流发育程度存在差异。海底滑塌和重力流这两种作用可以同时发生,也可以单独发生,但柱状样揭示重力流发生得更频繁。从空间分布上看,海底滑塌主要分布于上陆坡的断裂带附近,平行海槽呈带状延伸;而重力流沉积主要分布于断裂带向下一直到槽底的部位。重力流沉积主要有4种表现形式:1)沉积物重力蠕动;2)浊积平原;3)透镜状浊积体;4)沿斜坡的碎屑流沉积。上述研究表明,滑塌和重力流不仅是陆架向海槽输送物质的重要方式,也对陆坡沉积结构的塑造起了重要的作用。  相似文献   

11.
The deep lacustrine gravity-flow deposits are widely developed in the lower Triassic Yanchang Formation, southeast Ordos Basin, central China. Three lithofacies include massive fine-grained sandstone, banded sandstone, and massive oil shale and mudstone. The massive fine-grained sandstones have sharp upper contacts, mud clasts, boxed-shaped Gamma Ray (GR) log, but no grading and Bouma sequences. In contrast, the banded sandstones display different bedding characteristics, gradational upper contacts, and fine-upward. The massive, fine-grained sandstones recognized in this study are sandy debrites deposited by sandy debris flows, while the banded sandstones are turbidites deposited by turbidity currents not bottom currents. The sediment source for these deep gravity-flow sediments is a sand-rich delta system prograding at the basin margin. Fabric of the debrites in the sandy debris fields indicates initial formation from slope failure caused by the tectonic movement. As the sandy debris flows became diluted by water and clay, they became turbidity currents. The deep lacustrine depositional model is different from the traditional marine fan or turbidite fan models. There are no channels or wide lobate sand bodies. In the lower Triassic Yanchang Formation, layers within the sandy debrites have higher porosity (8–14%) and permeability (0.1–4 mD) than the turbidites with lower porosity (3–8%) and permeability (0.04–1 mD). Consequently, only the sandy debrites constitute potential petroleum reservoir intervals. Results of this study may serve as a model for hydrocarbon exploration and production for deep-lacustrine reservoirs from gravity-flow systems in similar lacustrine depositional environments.  相似文献   

12.
Shallow 3D seismic data show contrasting depositional patterns in Pleistocene deepwater slopes of offshore East Kalimantan, Indonesia. The northern East Kalimantan slope is dominated by valleys and canyons, while the central slope is dominated by unconfined channel–levee complexes. The Mahakam delta is immediately landward of the central slope and provided large amounts of sediments to the central slope during Pleistocene lowstands of sea level. In the central area, the upper slope contains relatively straight and deep channels. Sinuous channel–levee complexes occur on the middle and lower slope, where channels migrated laterally, then aggraded and avulsed. Younger channel–levee complexes avoided bathymetric highs created by previous channel–levee complexes. Levees decrease in thickness down slope. Relief between channels and levees also decreases down slope.North of the Mahakam delta, siliciclastic sediment supply was limited during the Pleistocene, and the slope is dominated by valleys and canyons. Late Pleistocene rivers and deltas were generally not present on the northern outer shelf. Only one lowstand delta was present on the northern shelf margin during the upper Pleistocene, and sediments from that lowstand delta filled a pre-existing slope valley complex and formed a basin-floor fan. Except for that basin-floor fan, the northern basin floor shows no evidence of sand-rich channels or fans, but contains broad areas with chaotic reflectors interpreted as mass transport complexes. This suggests that slope valleys and canyons formed by slope failures, not by erosion associated with turbidite sands from rivers or deltas. In summary, amount of sediment coming onto the slope determines slope morphology. Large, relatively steady input of sediment from the Pleistocene paleo-Mahakam delta apparently prevented large valleys and canyons from developing on the central slope. In contrast, deep valleys and canyons developed on the northern slope that was relatively “starved” for siliciclastic sediment.  相似文献   

13.
Tanan sub-basin is an active-fault bounded basin. The spatial distribution and temporal evolution of depositional systems were significantly influenced by tectonics. Fault movement and stages of basin development controlled the subsidence rates and the potential for erosion and the rate of sediment supply. Distinct stages of rift evolution during the early Cretaceous can be recognized, namely the early syn-rift, rift climax and late syn-rift stages. Three types of lacustrine sequence, consisting of distinctive depositional systems, are distinguished: (1) the early syn-rift sequences (SQ1 + SQ2), which are composed mainly of fan delta and shallow lacustrine depositional systems; (2) the rift climax sequences (SQ3) which developed in response to rapid and differential tectonic subsidence rates, and consist of fan delta, deep lacustrine and sublacustrine fan depositional systems; and (3) the late syn-rift sequences (SQ4) which are comprised of braided-delta and shallow lacustrine depositional systems. Each of the three lacustrine sequence architectures stands for a particular stage of basin fill and reflects variable rates of basin subsidence. Within each sequence, depositional systems and their stacking patterns are interpreted to have been a function of the interaction between tectonics and sediment supply. Differential subsidence across the basin, related to rotation of fault blocks, resulted in the formation of distinct paleomorphologies in different structural settings. These settings were fault-scarp zones controlling the development of fan-deltas, fault-terrace zones controlling the development of fan-delta and sublacustrine fans, half-graben dip-slope zones controlling the development of braided river and braided deltas, and intra-basinal fault-break zones controlling the development of sublacustrine fans. During the late syn-rift stage, active tectonism, displacement on the boundary faults had ceased. At this stage the depositional systems and their stacking patterns were dominantly related to the sediment supply rates, and not to tectonic activity.  相似文献   

14.
The Plio-Pleistocene stratigraphic record of the Peri-Adriatic basin (eastern central Italy) is well exposed along the uplifted western margin of the basin and consists of a series of coarse-grained slope canyon fills encased in a thick succession of hemipelagic mudstones. This study deals with the detailed sedimentology, stratal architecture, and sequence-stratigraphic interpretation of two of these submarine canyon-fills (namely CMC1 and CMC2) exposed at Colle Montarone. These strata contain widespread evidence of gravity-driven sedimentation processes, with high- and low-density turbidity currents, slumps and cohesive debris flows being responsible for most of the sediment transport and deposition. Beds are organised into four recurrent lithofacies, each corresponding to a specific deep-water depositional element: (i) clast-supported conglomerates (channel complexes); (ii) thin-bedded sandstones and mudstones (levee-overbank); (iii) very thinly-bedded mudstones (tributary channels); (iv) pebbly mudstones and chaotically bedded mudstones (mass-transport complexes).  相似文献   

15.
Facies types and depositional models for thick gravity-flow deposits are inferred from Cretaceous Pyrenean examples occurring in different sedimentary settings: basin-plain during relative low sea level stand; slope-apron or deep valleys during relative sea level rise; and slope during relative sea level rise. The depositional units are interpreted as debrites, debrite-turbidite couplets, and megaturbidites. They are a function of transport distance and hydraulic jump by liquefaction and phase separation in large subaqueous flows.  相似文献   

16.
Gravity flow deposits form a significant component of the stratigraphic record in ancient and modern deep-water basins worldwide. Analyses of high-resolution 3D seismic reflection data in a predominantly slope setting, the southern slope of Qiongdongnan Basin, South China Sea, reveal the extensive presence of gravity flow depositional elements in the Late Pliocene−Quaternary strata. Three key elements were observed: (1) mass transport deposits (MTDs) including slumps and debris flows, (2) turbidity current deposits including distributary channel complexes, leveed channel complexes and avulsion channel complexes, and (3) deep-water drapes (highstand condensed sections). Each depositional element displays a unique seismic expression and internal structures in seismic profiles and attribute maps. Based on seismic characteristics, the studied succession is subdivided into six units in which three depositional cycles are identified. Each cycle exhibits MTDs (slump or debris) at the base, overlain by turbidities or a deep-water drape. The genesis of these cycles is mainly controlled by frequent sea-level fluctuations and high sedimentation rates in the Late Pliocene–Quaternary. Moreover, tectonics, differential subsidence, and paleo-seafloor morphology may have also contributed to their formation processes. The present study is aimed to a better understanding of deep-water depositional systems, and to a successful hydrocarbon exploration and engineering-risk assessment.  相似文献   

17.
This study focuses on the interpretation of stratigraphic sequences through the integration of biostratigraphic, well log and 3D seismic data. Sequence analysis is used to identify significant surfaces, systems tracts, and sequences for the Miocene succession.The depositional systems in this area are dominantly represented by submarine fans deposited on the slope and the basin floor. The main depositional elements that characterize these depositional settings are channel systems (channel-fills, channel-levee systems), frontal splays, frontal splay complexes, lobes of debrites and mass-transport complexes.Five genetic sequences were identified and eleven stratigraphic surfaces interpreted and correlated through the study area. The Oligocene-lower Miocene, lower Miocene and middle Miocene sequences were deposited in bathyal water depths, whereas the upper Miocene sequences (Tortonian and Messinian) were deposited in bathyal and outer neritic water depths. The bulk of the Miocene succession, from the older to younger deposits consists of mass-transport deposits (Oligocene-lower Miocene); mass transport deposits and turbidite deposits (lower Miocene); debrite deposits and turbidite deposits (middle Miocene); and debrite deposits, turbidite deposits and pelagic and hemipelagic sediments (upper Miocene). Cycles of sedimentation are delineated by regionally extensive maximum flooding surfaces within condensed sections of hemipelagic mudstone which represent starved basin floors. These condensed sections are markers for regional correlation, and the maximum flooding surfaces, which they include, are the key surfaces for the construction of the Miocene stratigraphic framework. The falling-stage system tract forms the bulk of the Miocene sequences. Individual sequence geometry and thickness were controlled largely by salt evacuation and large-scale sedimentation patterns. For the upper Miocene, the older sequence (Tortonian) includes sandy deposits, whereas the overlying younger sequence (Messinian) includes sandy facies at the base and muddy facies at the top; this trend reflects the change from slope to shelf settings.  相似文献   

18.
The Var turbidite system is a small sandy system located in the Ligurian Basin. It was deposited during the Pliocene-Quaternary in a flat-floored basin formed during the Messinian salinity crisis. The system was fed through time by the Var and Paillon canyons that connect directly to the Var and Paillon rivers. It is still active during the present sea-level highstand. Two main mechanisms are responsible for gravity-flow triggering in the Var turbidite system: (1) mass-wasting events affect mainly the upper part of the continental slope, in areas where volumes of fresh sediment delivered by rivers are highest, and result from the under-consolidation state of slope sediments and earthquakes, and (2) high-magnitude river floods resulting from melting of snow and convective rainfall during fall and spring seasons, and generating hyperpycnal turbidity currents at river mouths when the density of freshwater transporting suspended particles exceeds that of ambient seawater. Failure- and flood-induced gravity flows are involved through time in the construction of the Var Sedimentary Ridge, the prominent right-hand levee of the Var system, and sediment waves. Processes of construction of both the Var Ridge and sediment waves are closely connected. Sandy deposits are thick and abundant in the eastern (downchannel) part of the ridge. Their distribution is highly constrained by the strong difference of depositional processes across the sediment waves, potentially resulting through time in the individualization of large and interconnected sand bodies.  相似文献   

19.
The Laingsburg depocentre of the SW Karoo Basin, South Africa preserves a well-exposed 1200 m thick succession of upper Permian strata that record the early filling of a basin during an icehouse climate. Uniformly fine-grained sandstones were derived from far-field granitic sources, possibly in Patagonia, although the coeval staging and delivery systems are not preserved. Early condensed shallow marine deposits are overlain by distal basin plain siltstone-prone turbidites and volcanic ashes. An order of magnitude increase in siliciclastic input to the basin plain is represented by up to 270 m of siltstone with thin sandstone turbidites (Vischkuil Formation). The upper Vischkuil Formation comprises three depositional sequences, each bounded by a regionally developed zone of soft sediment deformation and associated 20-45 m thick debrite that represent the initiation of a major sand delivery system. The overlying 300 m thick sandy basin-floor fan system (Unit A) is divisible into three composite sequences arranged in a progradational-aggradational-retrogradational stacking pattern, followed by up to 40 m of basin-wide hemipelagic claystone. This claystone contains Interfan A/B, a distributive lobe system that lies 10 m beneath Unit B, a sandstone-dominated succession that averages 150 m thickness and is interpreted to represent a toe of slope channelized lobe system. Unit B and the A/B interfan together comprise 4 depositional sequences in a composite sequence with an overall basinward-stepping stacking pattern, overlain by 30 m of hemipelagic claystone. The overlying 400 m thick submarine slope succession (Fort Brown Formation) is characterized by 10-120 m thick sand-prone to heterolithic packages separated by 30-70 m thick claystone units. On the largest scale the slope stratigraphy is defined by two major cycles interpreted as composite sequence sets. The lower cycle comprises lithostratigraphic Units B/C, C and D while the upper cycle includes lithostratigraphic Units D/E, E and F. In each case a sandy basal composite sequence is represented by an intraslope lobe (Units B/C and D/E respectively). The second composite sequence in each cycle (Units C and E respectively) is characterized by slope channel-levee systems with distributive lobes 20-30 km down dip. The uppermost composite sequence in each cycle (Units D and F respectively) are characterised by deeply entrenched slope valley systems. Most composite sequences comprise three sequences separated by thin (<5 m thick) claystones. Architectural style is similar at individual sequence scale for comparable positions within each composite sequence set and each composite sequence. The main control on stratigraphic development is interpreted as late icehouse glacio-eustasy but along-strike changes associated with changing shelf edge delivery systems and variable bathymetry due to differential substrate compaction complicate the resultant stratigraphy.  相似文献   

20.
The Golo Margin in eastern Corsica is dissected by four canyons and two gullies which fed turbidite systems. Study of the dispersal of surficial sediments and flow dynamic in the Golo system is based on Kullenberg and interface cores interpreted in relation to a previously published seismic dataset. Cores were described in detail and interpreted within a sedimentary and stratigraphic framework. During the last 42,000 years, gravity processes which occurred in the large systems with a canyon source were mainly slide-induced, differentiated turbulent surges and hyperpycnal flows. Processes occurring in the small system with a gully source are mainly hyperconcentrated and concentrated flows. Deposits from the Corsican Margin can intercalate with products of processes triggered on the Pianosa Ridge located in the eastern part of the basin. During relative sea-level lowstands or during periods of rapid or high-amplitude sea-level fall, only large canyons (South and North Golo) are supplied by carbonate-rich hyperconcentrated and concentrated flows which are channelled in incised valleys on the shelf. During periods of slow or low-amplitude sea-level fall and during sea-level rise, sediments are trapped on a shelf delta and intensely winnowed by shelf hydrodynamic processes. Sand-rich hyperconcentrated and concentrated flows occur. All the systems fed by a canyon are active simultaneously. Gullies form and are active only during periods of sea-level rise. During relative highstands of sea level (Holocene), all the system is draped by hemipelagic sediments. Relative sea-level changes and canyon location relative to river mouths have a strong influence on the nature of sediment input, and the initiation and type of gravity flows which, in turn, control morphology and geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号