首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of stratification on very long-period waves trapped on a straight continental shelf of constant depth is examined for a two-layer model. There are 4 modes in this system. The characteristics of the mode with the largest phase velocity can be approximated by the barotropic mode. The mode corresponding to the barotropic shelf-wave mode is modified by the baroclinic motions significantly, and in the limit of very narrow shelf width, the mode characteristics are transformed from those of the barotropic shelf-wave to the baroclinic Kelvin wave if the long-shore wave length is larger than the internal deformation radius. In this case, the stratification has an apparent effect of increasing phase velocity of barotropic shelf-waves. The remaining two modes are dominated by baroclinic motions with significant contribution from barotropic motions: among which the one has a shelf-wave characteristics for small values of the shelf width and approaches the mode corresponding to the baroclinic Kelvin wave in shallower water for large shelf width and the other is a stationary mode. If the long-shore wave length is much shorter than the internal deformation radius, the motions in the upper and lower layers are decoupled: the surface and bottom modes analogous to those discussed byRhines (1970) appears.If the interface is deeper than the shelf depth, the stationary mode is absent and the characteristics of the third mode approaches those of the baroclinic double Kelvin wave mode as the shelf width increases.  相似文献   

2.
The generation of internal tidal wave fields by barotropic tidal flow past a representative seamount is computed by modelling the seamount as a pillbox, and linearising the equations for internal wave dynamics. This is justifiable for mid-ocean seamounts, which constitute steep topography for internal waves of tidal frequency. For linearly polarised barotropic tidal flow, the resulting flow field consists of conical beams radiating from the region above the seamount, with largest velocities aligned with the barotropic flow. These beams vary with azimuthal angle but resemble the corresponding beams from two-dimensional steep topography, particularly in the barotropic flow direction. They are primarily forced by the barotropic flow over the seamount, which is amplified by the topography and is independent of the stratification if the radius of the seamount is sufficiently large. In a barotropic tidal flow of 1 cm/s amplitude, energy fluxes from individual seamounts are of order 106 W. Summing this over all seamounts higher than 1 km gives baroclinic energy generation of order 5.109 W, a number that is less than estimates of baroclinic energy flux from the continental slopes and the Hawaiian ridge, but is comparable with them.  相似文献   

3.
We document the accuracy and convergence of solutions for a z-coordinate primitive-equation model of internal tide generation and propagation. The model, which is based on MOM3 numerics, is linearized around a state of rest to facilitate comparison with analytic estimates of baroclinic generation at finite-amplitude topography in a channel forced by barotropic tidal flow at its boundaries. Unlike the analytical model, the numerical model includes mixing of both buoyancy and momentum, and several definitions of “baroclinic conversion” are possible. These are clarified by writing out the energetics of the linearized equations in terms of barotropic kinetic energy, baroclinic kinetic energy, and available potential energy. The tidal conversion computed from the model, defined as the rate of conversion of barotropic kinetic energy into available potential energy, agrees well with analytical predictions. A comparison of different treatments of bottom topography (full-cells, partial-cells, and ghost-cells) indicates that the partial-cell treatment is the most accurate in this application. Convergence studies of flow over a smooth supercritical ridge show that the dissipation along tidal characteristics is, apparently, an integrable singularity. When the ocean bottom is not smooth, the accuracy and convergence of the model depend on the power spectrum of the topography. A numerical experiment suggests that the power spectrum of the resolved topography must roll off faster than k−2 to obtain convergent results from a linear numerical model of this type.  相似文献   

4.
Current measurements were made at five moored stations over the continental shelf off the San'in coast of the Japan Sea for a month in the summer of 1980 to study the vertical structure of the nearshore branch of the Tsushima Current. The time-mean current for the observational period is 20 to 25 cm sec–1 eastward near the surface and about 10 cm sec–1 westward near the sea bottom except at the shallowest station. The time-mean current,i.e. the nearshore branch of the Tsushima Current is mainly due to the baroclinic modes. The currents are less variable in the first half of the observational period, but fluctuate with a several-day period in the latter half. The obtained current data were decomposed into barotropic and baroclinic modes to investigate the detailed characteristics of the fluctuations. In the latter half, the current fluctuations of the two modes with about a 5-day period are well correlated with each other, as the baroclinic mode lagging behind the barotropic mode by 12 hr. The barotropic current fluctuation is correlated to the sea level, with the former leading the latter by about 12 hr. The baroclinic current is correlated to the temperature at the subsurface layer with a shorter time lag.  相似文献   

5.
An internal gravity wave model was employed to simulate the generation of internal solitary waves(ISWs) over a sill by tidal flows. A westward shoaling pycnocline parameterization scheme derived from a three-parameter model was adopted, and then 14 numerical experiments were designed to investigate the influence of the pycnocline thickness, density difference across the pycnocline, westward shoaling isopycnal slope angle and pycnocline depth on the ISWs. When the pycnocline thickness on both sides of the sill increases, the total barotropic kinetic energy, total baroclinic energy and ratio of baroclinic kinetic energy(KE) to available potential energy(APE) decrease, whilst the depth of isopycnal undergoing maximum displacement and ratio of baroclinic energy to barotropic energy increase. When the density difference on both sides of the sill decreases synchronously, the total barotropic kinetic energy, ratio of baroclinic energy to barotropic energy and total baroclinic energy decrease, whilst the depth of isopycnal undergoing maximum displacement increases. When the westward shoaling isopycnal slope angle increases, the total baroclinic energy increases whilst the depth of turning point almost remains unchanged. When the depth of westward shoaling pycnocline on both sides of the sill reduces, the ratio of baroclinic energy to barotropic energy and total baroclinic energy decrease, whilst the total barotropic kinetic energy and ratio of KE to APE increase. When one of the above four different influencing factors was increased by 10% while the other factors keep unchanged, the amplitude of the leading soliton in ISW Packet A was decreased by 2.80%, 7.47%, 3.21% and 6.42% respectively. The density difference across the pycnocline and the pycnocline depth are the two most important factors in affecting the characteristics and energetics of ISWs.  相似文献   

6.
The geographical distribution of barotropic to baroclinic transfer of tidal energy by baroclinic wave drag in the abyssal ocean is estimated. Using tidal velocities from a state-of-the-art numerical tidal model, the total loss of barotropic tidal energy in the deep ocean (between 70°S and 70°N and at depths greater than 1000 m) is estimated to be about 0.7 TW (M2) corresponding to a mean value of the energy flux (e) of 2.4×10−3 W/m2. The distribution of e is however highly skewed with a median of about 10−6 W/m2. Only 10% of the area is responsible for more than 97% of the total energy transfer.To assess the possible influence of the relatively coarse bathymetry representation upon the present estimate, complementary calculations using better resolved sea floor topography are carried out over a control area around the Hawaiian Ridge. There are no major differences between the results achieved using the two different bathymetry databases. Fluxes of about 16 GW or 6×10−3 W/m2 are computed in both cases, and the main contributions to the total fluxes originate in the same range of e-values and cover equally large parts of the total area.It is not clear whether the present model is valid at flat or subcritical bottom slopes. However, for the Hawaiian region, only 2% of the total energy flux as calculated in the present study originates in areas of critical and subcritical slopes.  相似文献   

7.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   

8.
本文基于南海东北部观测的抛物线型背景流,设计了8种形式的抛物线型背景流,利用IGW模式研究了其对内孤立波(ISW)的特征和能量学的影响。研究结果表明:背景流对波包中ISW数目没有影响,但减小了ISW的相速度;对于下边界在主温跃层附近或在其上的抛物线型背景流,ISW振幅和最大位移深度均增加;随着抛物背景流曲率减小,ISW振幅、斜压与正压能比值减小,同时ISW相速度、正压能、斜压能、KE/APE都增加;如果抛物背景流底部延伸至海底,且曲率减小,则ISW振幅、相速度减小,同时正压能、斜压能、KE/APE增加;在整个深度上的背景流,随着下层曲率减小和上层曲率增大,ISW振幅、相速度、斜压与正压能比值、斜压能、KE/APE均增加。  相似文献   

9.
Tidal observations on the West Coast,South Island,New Zealand   总被引:1,自引:1,他引:0  
Harmonic tidal constants, calculated from sea surface elevation observations at Jackson Bay on the West Coast of the South Island, are consistent with available semi‐diurnal and diurnal tidal phase distributions. Current observations taken over a 111 day period at mid‐depth in 1505 m of water on the southern flank of the Challenger Plateau and over a 240 day period in 1430 m of water on the South Island western coast continental slope, are subject to tidal analysis. At both sites there is a component of energy flux directed across the isobaths and only at the northern site for the M2 tide is the phase consistent with a dominant progressive barotropic tide. The successive 30 day harmonic constants at the southern continental slope site exhibit a trend in the M2 tidal ellipse speed and ellipticity suggesting the presence of a regular internal tide. Superposition of ‘internal tidal’ and barotropic tidal flows, as prescribed from progressive‐ and standing‐wave elevations, to fit the observations indicates that the ‘internal tide’ is probably associated with the first baroclinic mode. At the current‐meter depths the speeds of the ‘internal tide’ for the M2 tide are about the same as the barotropic speeds, whereas, the S2 ‘internal tide’ speeds are larger than those of the barotropic tide. The consistency of the trend in ellipse parameters lends support to the theoretical progressive trapped barotropic tidal flows being a good approximation to the actual barotropic tide. Some support for the hypothesis that the S2 tide on the West Coast of New Zealand has a substantial standing wave contribution is given by the northern observations, where the ratio of the S2: M2 internal tidal ellipse current amplitudes are substantially larger than the ratio of the elevations, the internal tide being generated by across‐isobath flows.  相似文献   

10.
采用海洋再分析结果,研究了海洋涡旋和锋面波动对台湾以东黑潮锋的影响,结果表明,Rossby波第一斜压模态形成的冷涡(暖涡),减弱(增强)台湾以东黑潮温度锋强度,减小(加大)锋的宽度.在再分析结果中,捕获到1991年1-2月台湾以东的一次黑潮锋面波动.锋面波动的波槽(波脊)到达时,该温度锋强度减弱(增强),宽度和厚度减小...  相似文献   

11.
横穿黑潮锋断面的流场结构   总被引:2,自引:0,他引:2  
基于一组简化了的运动方程组,在充分考虑底Ekman层作用的情况下,提出一种横穿锋面的断面上流场结构的计算方法。应用该方法对东海横穿黑潮锋的不同断面上的流场(1989-1990年资料)进行计算。结果表明,黑潮锋左侧(向岸侧)存在较强的上升流,而锋区右侧(离岸侧)表现为海水的下降运动。垂直流速为(1-20)×10-3cm/s的量级,而横穿锋面方向的水平流速为1-3cm/s,其中以夏、秋季跃层附近最强。在陆架坡折处,上升流转向陆架。同时,还分析了正压场和斜压场对这种流场的不同贡献,认为在黑潮区,正压场起主要作用;而在内陆架区,斜压场则变得重要。将计算的流场与硝酸盐的分布比较表明,两者有较好的对应关系。  相似文献   

12.
Within the framework of a two-layer model, we consider the process of, formation of livel in a closed basin under the action of a source with constant flow rate located on its boundary in the upper layer. The response of the level of the basin to the inflow of liquid is observed in the form of the baroclinic and barotropic modes. The baroclinic mode, has the form of an edge wave for which the deviation of level is positive for the upper layer and negative for the lower layer. The barotropic component of the level is almost spatially homogeneous and its intensity increases with time. The increase in the volume of the upper layer caused by the inflow of liquid on the boundary is almost completely attained in the barotropic mode. In the lower layer, the increase in the volume attained in the barotropic mode is completely compensated by the baroclinic edge wave. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

13.
The generation process of internal waves by strong tidal flow over a continental shelf slope is reproduced using a multi-level numerical model. On the basis of the numerical results, the crucial role of the tidal advection effect in the generation process of internal waves is demonstrated. The close relation between the resulting internal waveform and the strength of the tidal advection effect is also examined. The barotropic forcing on the internal wave actually works within a relatively small horizontal scale over the top of the continental shelf slope. When the maximum internal Froude number at the shelf break (Frm) is less than about 0.6, the amplitude of the resulting internal wave is almost proportional to Frm. When Frm is more than about 0.6, however, the amplitude of the resulting internal wave becomes larger than predicted by linear theory. In particular, when Frm is more than unity, the time period during which the shoreward propagating internal wave stays in the barotropic forcing region becomes much longer. Consequently, the internal wave is significantly amplified with the horizontal scale approaching that of the barotropic forcing, which concentrates in a relatively small region over the top of the continental shelf slope. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
This paper discusses, in terms of the geometrical optics approximation, how large-scale bottom irregularities influence the propagation of Rossby waves in the ocean. To describe the major peculiarities of the phenomenon, a two-layer model is applied, with the depth of the upper layer being considerably smaller than that of the lower layer. However, even with the bottom topography being allowed for, the wave motion is described by two Rossby wave modes, namely, a barotropic mode and a baroclinic mode. It is demonstrated that barotropic mode transformation caused by large irregularities of the sea-floor may lead to wave interaction, resulting in their anomalous distribution. Translated by Vladimir A. Puchkin.  相似文献   

15.
Transmission and reflection coefficients are calculated for Rossby waves incident on a bottom topography with constant slope in a continuously stratified ocean. The characteristics of the coefficients are interpreted in terms of the quasigeostrophic waves on the slope. In the parameter range where only the barotropic Rossby waves can propagate in the region outside the slope, the bottom trapped wave plays the same role as the topographic Rossby wave in a homogeneous ocean, and hence the transmission is weak unless phase matching takes place. When both of the barotropic and baroclinic Rossby waves can propagate outside the slope, the total transmission can be strong. The bottom trapped wave affects the transmission and reflection, and it leads to the possibility that the Rossby wave is transmitted as a mode different from the incident mode. When the number of the wavy modes on the slope is smaller than that of the Rossby wave modes outside the slope, strong reflection occurs.The results for an ocean with linear distribution of the squared Brunt-Väisälä frequency are compared to those in a uniformly stratified ocean. The weakening of the stratification near the bottom is almost equivalent to reducing the effect of the slope.  相似文献   

16.
The global distributions of the major semidiurnal (M2 and S2) and diurnal (K1 and O1) baroclinic tide energy are investigated using a hydrostatic sigma-coordinate numerical model. A series of numerical simulations using various horizontal grid spacings of 1/15–1/5° shows that generation of energetic baroclinic tides is restricted over representative prominent topographic features. For example, nearly half of the diurnal (K1 and O1) baroclinic tide energy is excited along the western boundary of the North Pacific from the Aleutian Islands down to the Indonesian Archipelago. It is also found that the rate of energy conversion from the barotropic to baroclinic tides is very sensitive to the horizontal grid spacing as well as the resolution of the model bottom topography; the conversion rate integrated over the global ocean increases exponentially as the model grid spacing is reduced. Extrapolating the calculated results in the limit of zero grid spacing yields the estimate of the global conversion rate to be 1105 GW (821, 145, 102, 53 GW for M2, S2, K1, and O1 tidal constituents, respectively). The amount of baroclinic tide energy dissipated in the open ocean below a depth of 1000 m, in particular, is estimated to be 500–600 GW, which is comparable to the mixing energy estimated by Webb and Suginohara (Nature 409:37, 2001) as needed to sustain the global overturning circulation.  相似文献   

17.
Previous observations in the Gareloch, a Scottish silled fjord, have identified yet failed to explain the baroclinic circulation pattern. Additional fieldwork was carried out in April 2005, showing the loch to be stratified with two distinct layers and currents in each layer 180° out of phase at the M2 frequency. The currents did not display the expected sinusoidal signal that is characteristic of the tide and instead were pulsated and stronger than predicted by barotropic forcing. Fourier analysis showed that the flow was dominated by short period non-linear oscillations that were harmonics of the semi-diurnal tide. Two hydrostatic estuarine models were applied to the Gareloch: a 2D vertical model (SLICE) and a 3D model (ECOMSED). Both models were capable of reproducing the observed (2005) baroclinic circulation at the M2 time scale but failed to simulate the higher frequency, non-linear oscillations. However, each model generated higher harmonics in idealised scenarios. Because lateral motion was negligible and SLICE was an order of magnitude more efficient than ECOMSED, the 2D model was used to simulate the higher harmonics and showed that their generation was attributed to the non-linear distortion of the internal tide. When the internal Froude number (determined by barotropic velocity, stratification and water depth) was increased from a sub-critical value, non-linear advection became more important and higher harmonics were generated. The internal tide was further modified by wave reflection and interaction off steep boundaries, and by flow over the sill.  相似文献   

18.
The problem of the dynamics of surface and internal waves M 2 in the Kara Sea is solved within the QUODDY-4 3D finite-element hydrostatic model. It is shown that the conventional concept of surface-tide wave generation due to the interaction of two tidal waves (one arrives from the Barents Sea and the other is generated in the Arctic Ocean (AO) and propagates southward along the west coasts of Severnaya Zemlya) is only partially valid: the east branch of the tidal wave generated in the AO actually exists, but there is also a west branch that propagates along the St. Anna trough and another tidal wave that penetrates in the Kara Sea from the Laptev Sea through the Vilkitsky Strait. Simulated spatial distributions of the tidal velocities, amplitudes of internal tidal waves at the pycnocline depth, and some components of the budgets of barotropic and baroclinic tidal energy are discussed.  相似文献   

19.
南海北部海流观测结果及其谱分析   总被引:3,自引:1,他引:2       下载免费PDF全文
为了掌握南海北部海区的海流及潮流情况,利用2000年8-11月在南海北部海区75天的ADCP定点流速观测资料,对海流的观测结果、海流前进矢量图、海流的日平均流速、海流随时间和深度的变化情况、正压流速的矢量旋转谱和斜压流速的二维矢量频率波数谱以及正压潮流进行了分析研究。结果表明,此处海流主要为逆时针方向旋转,并且K1和M2为主要分量。这说明南海北部海区的海流及潮流变化比较复杂,需要大范围的长期观测才能更好她掌握其特征与变化规律。  相似文献   

20.
Mode-1 internal tides were observed the western North Atlantic using an ocean acoustic tomography array deployed in 1991–1992 centered on 25°N, 66°W. The pentagonal array, 700-km across, acted as an antenna for mode-1 internal-tides. Coherent internal-tide waves with O(1 m) displacements were observed traveling in several directions. Although the internal tides of the region were relatively quiescent, they were essentially phase locked over the 200–300 day data record lengths. Both semidiurnal and diurnal internal waves were detected, with wavenumbers consistent with those calculated from hydrographic data. The M2 internal-tide energy flux was estimated to be about 70 W m−1, suggesting that mode-1 waves radiate 0.2 GW of energy, with large uncertainty, from the Caribbean island chain at this frequency. A global tidal model (TPXO 5) suggested that 1–2 GW is lost from the M2 barotropic tide over this region, but the precise value was uncertain because the complicated topography makes the calculation problematic. In any case, significant conversion of barotropic to baroclinic tidal energy does not occur in the western North Atlantic basin. It is apparent, however, that mode-1 internal tides have very weak decay and retain their coherence over great distances, so that ocean basins may be filled up with such waves. Observed diurnal amplitudes were an order of magnitude larger than expected. The amplitude and phase variations of the K1 and O1 constituents observed over the tomography array were consistent with the theoretical solutions for standing internal waves near their turning latitude. The energy densities of the resonant diurnal internal waves were roughly twice those of the barotropic tide at those frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号