首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Abstract During the Hakuho‐Maru KH03‐3 cruise and the Tansei‐Maru KT04‐28 cruise, more than 1000 rock samples were dredged from several localities over the Hahajima Seamount, a northwest–southeast elongated, rectangular massif, 60 km × 30 km in size, with a flat top approximately 1100 m deep. The rocks included almost every lithology commonly observed among the on‐land ophiolite outcrops. Volcanic rocks included mid‐oceanic ridge basalt (MORB)‐like tholeiitic basalt and dolerite, calc‐alkaline basalt and andesite, boninite, high‐Mg adakitic andesite, dacite, and minor rhyolite. Gabbroic rocks included troctolite, olivine gabbro, olivine gabbronorite (with inverted pigeonite), gabbro, gabbronorite, norite, and hornblende gabbro, and showed both MORB‐type and island arc‐type mineralogies. Ultramafic rocks were mainly depleted mantle harzburgite (spinel Cr? 50–80) and its serpentinized varieties, with some cumulate dunite, wehrlite and pyroxenites. This rock assemblage suggests a supra‐subduction zone origin for the Hahajima Seamount. Compilation of the available dredge data indicated that the ultramafic rocks occur in the two northeast–southwest‐oriented belts on the seamount, where serpentinite breccia and gabbro breccia have also developed, but the other areas are free from ultramafic rocks. Although many conical serpentinite seamounts 10 km in size are aligned along the Izu–Ogasawara (Bonin)–Mariana forearc, the Hahajima Seamount may be better interpreted as a fault‐bounded, uplifted massif composed of ophiolitic thrust sheets, resembling the Izki block of the Oman ophiolite in its shape and size. The ubiquitous roundness of the dredged rocks and their thin Mn coating (<2 mm) suggest that the Hahajima Seamount was uplifted above sealevel and wave‐eroded, like the present Macquarie Is., a rare example of ophiolite exposure in an oceanic setting. The Ogasawara Plateau on the Pacific Plate is adjacent to the east of the Hahajima Seamount, and collision and subduction of the plateau may have caused uplift of the forearc ophiolite body.  相似文献   

2.
Emilio  Saccani  Adonis  Photiades 《Island Arc》2005,14(4):494-516
Abstract Ophiolitic mélanges associated with ophiolitic sequences are wide spread in the Mirdita–Subpelagonian zone (Albanide–Hellenide Orogenic Belt) and consist of tectonosedimentary ‘block‐in‐matrix‐type’ mélanges. Volcanic and subvolcanic basaltic rocks included in the main mélange units are studied in this paper with the aim of assessing their chemistry and petrogenesis, as well as their original tectonic setting of formation. Basaltic rocks incorporated in these mélanges include (i) Triassic transitional to alkaline within‐plate basalts (WPB); (ii) Triassic normal (N‐MORB) and enriched (E‐MORB) mid‐oceanic ridge basalts; (iii) Jurassic N‐MORB; (iv) Jurassic basalts with geochemical characteristics intermediate between MORB and island arc tholeiites (MORB/IAT); and (v) Jurassic boninitic rocks. These rocks record different igneous activities, which are related to the geodynamic and mantle evolution through time in the Mirdita–Subpelagonian sector of the Tethys. Mélange units formed mainly through sedimentary processes are characterized by the prevalence of materials derived from the supra‐subduction zone (SSZ) environments, whereas in mélange units where tectonic processes prevail, oceanic materials predominate. In contrast, no compositional distinction between structurally similar mélange units is observed, suggesting that they may be regarded as a unique mélange belt extending from the Hellenides to the Albanides, whose formation was largely dominated by the mechanisms of incorporation of the different materials. Most of the basaltic rocks surfacing in the MOR and SSZ Albanide–Hellenide ophiolites are incorporated in mélanges. However, basalts with island arc tholeiitic affinity, although they are volumetrically the most abundant ophiolitic rock types, have not been found in mélanges so far. This implies that the rocks forming the main part of the intraoceanic arc do not seem to have contributed to the mélange formation, whereas rocks presumably formed in the forearc region are largely represented in sedimentary‐dominated mélanges. In addition, Triassic E‐MORB, N‐MORB and WPB included in many mélanges are not presently found in the ophiolitic sequences. Nonetheless, they testify to the existence throughout the Albanide–Hellenide Belt of an oceanic basin since the Middle Triassic.  相似文献   

3.
Blueschist-bearing Osayama serpentinite melange develops beneath a peridotite body of the Oeyama ophiolite which occupies the highest position structurally in the central Chugoku Mountains. The blueschist-facies tectonic blocks within the serpentinite melange are divided into the lawsonite–pumpellyite grade, lower epidote grade and higher epidote grade by the mineral assemblages of basic schists. The higher epidote-grade block is a garnet–glaucophane schist including eclogite-facies relic minerals and retrogressive lawsonite–pumpellyite-grade minerals. Gabbroic blocks derived from the Oeyama ophiolite are also enclosed as tectonic blocks in the serpentinite matrix and have experienced a blueschist metamorphism together with the other blueschist blocks. The mineralogic and paragenetic features of the Osayama blueschists are compatible with a hypothesis that they were derived from a coherent blueschist-facies metamorphic sequence, formed in a subduction zone with a low geothermal gradient (~ 10°C/km). Phengite K–Ar ages of 16 pelitic and one basic schists yield 289–327 Ma and concentrate around 320 Ma regardless of protolith and metamorphic grade, suggesting quick exhumation of the schists at ca 320 Ma. These petrologic and geochronologic features suggest that the Osayama blueschists comprise a low-grade portion of the Carboniferous Renge metamorphic belt. The Osayama blueschists indicate that the 'cold' subduction type (Franciscan type) metamorphism to reach eclogite-facies and subsequent quick exhumation took place in the northwestern Pacific margin in Carboniferous time, like some other circum-Pacific orogenic belts (western USA and eastern Australia), where such subduction metamorphism already started as early as the Ordovician.  相似文献   

4.
Abstract In this paper, a summary of the tectonic history of the Mirdita ophiolitic nappe, northern Albania, is proposed by geological and structural data. The Mirdita ophiolitic nappe includes a subophiolite mélange, the Rubik complex, overlain by two ophiolite units, referred to as the Western and Eastern units. Its history started in the Early Triassic with a rifting stage followed by a Middle to Late Triassic oceanic opening between the Adria and Eurasia continental margins. Subsequently, in Early Jurassic time, the oceanic basin was affected by convergence with the development of a subduction zone. The existence of this subduction zone is provided by the occurrence of the supra‐subduction‐zone‐related magmatic sequences found in both the Western and Eastern units of the Mirdita ophiolitic nappe. During the Middle Jurassic, continuous convergence resulted in the obduction of the oceanic lithosphere, in two different stages – the intraoceanic and marginal stages. The intraoceanic stage is characterized by the westward thrusting of a young and still hot section of oceanic lithosphere leading to the development of a metamorphic sole. In the Late Jurassic, the marginal stage developed by the emplacement of the ophiolitic nappe onto the continental margin. During this second stage, the emplacement of the ophiolites resulted in the development of the Rubik complex. In the Early Cretaceous, the final emplacement of the ophiolites was followed by the unconformable sedimentation of the Barremian–Senonian platform carbonate. From the Late Cretaceous to the Middle Miocene, the Mirdita ophiolitic nappe was translated westward during the progressive migration of the deformation front toward the Adria Plate. In the Middle to Late Miocene, a thinning of the whole nappe pile was achieved by extensional tectonics, while the compression was still active in the westernmost areas of the Adria Plate. On the whole, the Miocene deformations resulted in the uplift and exposition of the Mirdita ophiolites as observed today.  相似文献   

5.
Cretaceous subduction complexes surround the southeastern margin of Sundaland in Indonesia. They are widely exposed in several localities, such as Bantimala (South Sulawesi), Karangsambung (Central Java) and Meratus (South Kalimantan).
The Meratus Complex of South Kalimantan consists mainly of mélange, chert, siliceous shale, limestone, basalt, ultramafic rocks and schists. The complex is uncomformably covered with Late Cretaceous sedimentary-volcanic formations, such as the Pitap and Haruyan Formations.
Well-preserved radiolarians were extracted from 14 samples of siliceous sedimentary rocks, and K–Ar age dating was performed on muscovite from 6 samples of schist of the Meratus Complex. The radiolarian assemblage from the chert of the complex is assigned to the early Middle Jurassic to early Late Cretaceous. The K–Ar age data from schist range from 110 Ma to 180 Ma. Three samples from the Pitap Formation, which unconformably covers the Meratus Complex, yield Cretaceous radiolarians of Cenomanian or older.
These chronological data as well as field observation and petrology yield the following constraints on the tectonic setting of the Meratus Complex.
(1) The mélange of the Meratus Complex was caused by the subduction of an oceanic plate covered by radiolarian chert ranging in age from early Middle Jurassic to late Early Cretaceous.
(2) The Haruyan Schist of 110–119 Ma was affected by metamorphism of a high pressure–low temperature type caused by oceanic plate subduction. Some of the protoliths were high alluminous continental cover or margin sediments. Intermediate pressure type metamorphic rocks of 165 and 180 Ma were discovered for the first time along the northern margin of the Haruyan Schist.
(3) The Haruyan Formation, a product of submarine volcanism in an immature island arc setting, is locally contemporaneous with the formation of the mélange of the Meratus Complex.  相似文献   

6.

The geodynamic setting of the Bikou volcanic group is a critical question to trace the Precambrain tectonic framework and evolution for the Yangtze plate. This study has suggested that the Bikou volcanic group is composed of several residual oceanic crust units: MORB (mid-ocean ridge basalt), Alk-OIB (alkaline ocean island basalt) and Th-OIB (tholeiitic ocean island basalt) as well as subduction-related volcanic rocks. According to field observation, those distinct rocks occurred collectively in form of tectonic contact, implying that the Bikou volcanic group was an ophiolitic mélange. Coupled with geochronological data, a perished oceanic basin at the northern margin of the Yangtze block during Neoproterozoic was tested by this ophiolitic mélange. Meanwhile, the isogeochemical data suggest that the ocean occurred in the Southern Hemisphere identical to Indian, South Atlantic and South Pacific oceans in terms of their Dupal anomalies, and the original source of the rocks could be probably mixing by EMI and EMII component caused by dehydration melting of subducting oceanic crust during subduction process. On the basis of geochemical characteristics of the studied rocks, the Bikou volcanic group could imply that a partial breakup event occurred in the northern margin of Yangtze plate during the Neoproterozoic era.

  相似文献   

7.
Detailed studies indicate that Kangxian-Pipasi-Nanping tectonic zone is a complicated mélange zone which includes many tectonic slabs of different origins. Ophiolite (MORB-type basalt), oceanic island tholeiite and alkaline basalt have been identified. Moreover, this tectonic mélange zone is eastward connected with the Mianlüe suture zone. The deformation characteristics, consisting components and volcanic rock geochemical features for the Kangxian-Pipasi-Nanping tectonic mélange zone are much similar to those of the Mianlüe suture zone and Deerni ophiolite. Therefore, the Kangxian-Pipasi-Nanping tectonic mélange zone should be the westward extension part of the Mianlüe suture zone. It indicates that the Mianlüe suture zone had extended to the Nanping area.  相似文献   

8.
During late Mesozoic subduction of paleo‐Pacific lithospheric plates, numerous gold vein deposits formed in the Dabie–Sulu Belt of east‐central China plus its east‐Asian extensions, and in the Klamath Mountains plus Sierran Foothills of northern California. In eastern Asia, earlier transpression and continental collision at about 305–210 Ma generated a high pressure–ultrahigh pressure orogen, but failed to produce widespread intermediate to felsic magmatism or abundant hydrothermal gold deposits. Similarly in northern California, strike‐slip ± minor transtension–transpression over the interval of about 380–160 Ma resulted in the episodic stranding of oceanic terranes, but generated few granitoid magmas or Au ore bodies. However, for both continental margin realms, nearly head‐on Cretaceous destruction of oceanic lithosphere involved sustained underflow; reaching magmagenic depths of about 100 km, the descending mafic‐ultramafic plates dewatered, producing voluminous calc‐alkaline arc magmas. Ascent of these plutons into the middle and upper crust released CO2 ± S‐bearing aqueous fluids and/or devolatilized the contact‐metamorphosed wall rocks. Such hydrothermal fluids transported gold along fractures and fault zones, precipitating it locally in response to cooling, fluid mixing, and/or reactions with wall rocks of contrasting compositions (e.g. serpentinite, marble). In contrast, where sialic crust was subducted to depths of about 100 km, only minor production of granitoid melts occurred, and few major coeval Au vein deposits formed. The mobilization of precious metal‐bearing fluids in continental margin and island arc environments apparently requires long‐continued, nearly orthogonal descent of oceanic, not continental, lithosphere.  相似文献   

9.
The Yarlung–Tsangpo Suture Zone (YTSZ), as the southernmost and youngest among the sutures that subdivides the Tibetan Plateau into several east–west trending blocks, marks where the Neo‐Tethys was consumed as the Indian continent moved northward and collided against the Eurasian continent. Mélanges in the YTSZ represent the remnants of the oceanic plate through subduction and collision. Mélanges are characterized by a highly sheared volcanoclastic or siliceous mudstone matrix including blocks of chert, claystone, and basalt. Detailed radiolarian analyses are conducted on the mélange near Zhongba County. Macroscopic, mesoscopic, and microscopic observations are combined in order to elucidate the relationships among age, lithology, and structure of blocks in the mélange. Reconstructed ocean plate stratigraphy includes Lower Jurassic limestone within the chert sequence accumulated at a depth near the CCD (Unit 2), Upper Jurassic thin‐bedded chert interbedded with claystone deposited in the wide ocean basin (Unit 3), and Lower Cretaceous chert with siliceous mudstone (Units 4 and 5), representing the middle parts of ocean plate stratigraphy. The results highlight the fabric of brecciated chert on mesoscopic scale, which is thought to be due to localized overpressure. The formation of mesoscopic and microscopic block‐in‐matrix fabrics in the mélange is proposed for the chert and siliceous mudstone bearing different extents of consolidation and competence during the progressive deformation of accreted sediments at shallow‐level subduction.  相似文献   

10.
A middle Paleozoic subduction-collision orogenic belt between the Siberian and North China Plates has been recognized in Xilinhot-the south of Sonid Left Banner-Erdaojing area, northern Inner Mongolia, China. It comprises five subunits: mélange belt, foreland deformation belt, molasse and littoral basin, are diorite series and syncollision granitoid series. Evolution history of the orogenic belt can be divided into subduction stage (500-400 Ma) and collision stage (400-320 Ma). The formation of the orogenic belt caused the convergence between the Siberian and North China Plates during the late Devonian. Suture zone corresponding to the mélange belt extends from Erdaojing, Qagan Ura to Honggor. Project supported by Fok Ying Tung Education Foundation in Hong Kong.  相似文献   

11.
Ryota  Mori  Yujiro  Ogawa 《Island Arc》2005,14(4):571-581
Abstract   Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mélange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench–trench–trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south.  相似文献   

12.
The Cretaceous accretionary complexes of the Idonnappu Zone in the Urakawa area are divided into five lithological units, four of which contain greenstone bodies. The Lower Cretaceous Naizawa Complex consists of two lithologic units. The Basaltic Unit (B‐Unit) is a large‐scale tectonic slab of greenstone, consisting of depleted tholeiite similar to that of the Lower Sorachi Ophiolite (basal forearc basin ophiolite) in the Sorachi‐Yezo Belt. The Mixed Unit of Naizawa Complex (MN‐Unit) contains oceanic island‐type alkaline greenstones which occur as slab‐like bodies and faulted blocks with tectonically dismembered trench‐fill sediments. Repeated alternations of the two units in the Naizawa Complex may have been formed by the collision of seamounts with forearc ophiolitic body (Lower Sorachi Ophiolite) in the trench. The Upper Cretaceous Horobetsugawa Complex structurally underlies the Naizawa Complex in its original configuration, and it also contains greenstone bodies. Greenstones in the MH‐Unit occur as blocks and sedimentary clasts in a clastic matrix, and exhibit depleted tholeiite and oceanic‐island alkaline basalt/tholeiite chemistry. This unit is interpreted as submarine slide and debris flow deposits. Greenstones in the PT‐Unit occur at the base of several chert‐clastic successions. Most of the greenstones are severely sheared and show normal‐type mid‐ocean ridge basalt composition. The PT‐Unit greenstones are considered to have been derived from abyssal basement peeled off during accretion. The different accretion mechanism of the greenstones in the Naizawa and Horobetsugawa complexes reflects temporal changes in subduction zone conditions. Seamount accretion and tectonic erosion were dominant in the Early Cretaceous, due to highly oblique subduction of the old oceanic crust and minimal sediment supply. Whereas, thick sediments with minor mid‐ocean ridge basalt and olistostrome accreted in the Late Cretaceous, due to near‐orthogonal subduction of young oceanic crust with voluminous sediment supply.  相似文献   

13.
The Turpan-Hami basin (as the Tu-Ha basin here-after) and the Santanghu basin, as the late Paleozoic– Mesozoic-Cenozoic reworked and superimposed sedi-mentary basins with the similar evolution history 1, 2), are located in between the Tianshan and the Altay moun-tains in northeastern Xinjiang. As the major oil-and gas-bearing basins in Xinjiang, study of both the ba-sins through their complicated tectonic evolution his-tory is scientifically significant for exploring conti-nental geology …  相似文献   

14.
Makran is one of the largest accretionary prisms on Earth, formed by the closure of the Neotethys ocean which is now represented by its remnant, the Gulf of Oman. Tectonic evolution of the Makran island‐arc system is explored within the context of a north dipping subduction zone, with temporal variations in slab dip arrangement. In a Middle Jurassic–Early Paleocene steep slab dip arrangement, the Mesozoic magmatic arc and the Proto‐Jaz Murian depression, which was an intra‐arc extensional basin, were developed. This was associated with development of outer‐arc ophiolitic mélange and oceanward migration of the Bajgan–Durkan continental sliver, which is the continuation of the Sanandaj–Sirjan zone of the Zagros orogenic belt into the Makran region. In a Late Paleocene to Late Pliocene moderate to shallow slab dip arrangement, compression and tectonic inversion of the Proto‐Jaz Murian extensional basin into the Jaz Murian compressive basin was associated with the uplift of the southern part of the Jaz Murian Depression along the South Jaz Murian Fault, and emplacement of the Paleogene–Neogene magmatic arc, behind the Jaz Murian compressive basin. A shallow slab dip arrangement in the Quaternary led to the emplacement of a third magmatic arc inland, over the southern part of the Yazd–Tabas–Lut micro‐continental block. It is envisioned that the Makran island‐arc system will pass through similar tectonic events in the future, as the Zagros island‐arc system did in the past. However, a future remnant and/or residual basin similar to the present Gulf of Oman will continue to survive to the east.  相似文献   

15.
Many major ophiolite bodies can best be explained by detachment and initiation of subduction at a spreading axis in a narrow oceanic basin bordered on the external side by a passive continental foreland margin, followed by subduction of the remnant ocean basin and syn-collision emplacement of the ophiolite and overlying arc system onto the foreland. Evidence from Burma and the Philippines suggests that detachment and subduction at a spreading axis were related to regional compressive stress within an earlier collision belt on the internal side of the ophiolite. In Burma, detachment of a Jurassic ophiolite was in response to foreland thrusting in a Triassic collision belt to the east, while in the western Philippines, detachment of a Palaeocene ophiolite can most easily be explained as a response to back-thrusting in a late Cretaceous collision belt in Mindanao.  相似文献   

16.
Studying subduction zone fluid at shallow seismogenic depths is important to understand the nature of fault rocks at the updip limit of the seismogenic zone because fluid–rock interactions affect heat and mass transfer, and fault strength. In this study, we conducted detailed analyses of distribution of shear veins, and estimation of pressure–temperature conditions for shear vein formation for the Yokonami mélange, Shikoku, Southwest Japan, which is tectonic mélange zone in an on‐land accretionary complex. We found a seismogenic fault at the upper boundary of the Yokonami mélange, indicating that the Yokonami mélange was active at seismogenic depth. The field‐transect distribution of shear veins was examined. The frequency, the total and mean thicknesses of the shear veins were about 3.7 per meter, about 10 mm per meter, and about 3 mm per shear vein, respectively. Quartz within the shear veins shows elongate‐blocky textures, suggesting precipitation from advective flow. The pressure and temperature conditions for shear vein formation were examined by fluid inclusion analysis, ranging 175–225°C and 143–215 MPa, respectively. The temperature is almost consistent with the paleotemperature determined from vitrinite reflectance, suggesting that the shear veins were formed at up to the maximum depth. The depth might be consistent with that where the seismogenic fault was formed. On the basis of the pressure and temperature conditions and the distribution of shear veins, we estimated the minimum volumetric ratio of fluid to host rocks, assuming that the shear veins had precipitated from advective flow. The estimated amount of fluid is about 106 m3 per cubic meter of host rocks. The results suggest that a large amount of fluid migrates through mélange zones at shallow seismogenic depths. This fluid possibly originates from the dehydration of clay minerals from underthrusted sediments and an altered subducting slab.  相似文献   

17.
Fu-Yuan  Wu  Jin-Hui  Yang  Ching-Hua  Lo  Simon A.  Wilde  De-You  Sun  Bor-Ming  Jahn 《Island Arc》2007,16(1):156-172
Abstract The tectonic setting of the Eastern Asian continental margin in the Jurassic is highly controversial. In the current study, we have selected the Heilongjiang complex located at the western margin of the Jiamusi Massif in northeastern China for geochronological investigation to address this issue. Field and petrographic investigations indicate that the Heilongjiang complex is composed predominately of granitic gneiss, marble, mafic‐ultramafic rocks, blueschist, greenschist, quartzite, muscovite‐albite schist and two‐mica schist that were tectonically interleaved, indicating they represent a mélange. The marble, two‐mica schist and granitic gneiss were most probably derived from the Mashan complex, a high‐grade gneiss complex in the Jiamusi Massif with which the Heilongjiang Group is intimately associated. The ultramafic rocks, blueschist, greenschist and quartzite (chert) are similar to components in ophiolite. The sensitive high mass‐resolution ion microprobe U‐Pb zircon age of 265 ± 4 Ma for the granitic gneiss indicates that the protolith granite was emplaced coevally with Permian batholiths in the Jiamusi Massif. 40Ar/39Ar dating of biotite and phengite from the granitic gneiss and mica schist yields a late Early Jurassic metamorphic age between 184 and 174 Ma. Early components of the Jiamusi Massif, including the Mashan complex, probably formed part of an exotic block from Gondwana, affected by late Pan‐African orogenesis, and collided with the Asian continental margin during the Early Jurassic. Subduction of oceanic crust between the Jiamusi block and the eastern part of the Central Asian Orogenic Belt resulted in the formation of a huge volume of Jurassic granites in the Zhangguangcai Range. Consequently, the collision of the Jiamusi Massif with the Central Asian Orogenic Belt to the west can be considered as the result of circum‐Pacific accretion, unrelated to the Central Asian Orogenic Belt. The widespread development of Jurassic accretionary complexes along the Asian continental margin supports such an interpretation.  相似文献   

18.
Abstract Pressure and temperature (P–T) conditions of mélange formation are estimated from fluid inclusions within “syn‐mélange” veins developed in the necks of boudins of sandstone blocks in the mélange of the Shimanto accretionary complex, south‐west Japan. The mélange records décollement‐zone processes. P–T conditions are in the range of 81 (+15) to 235 (±18) MPa and 150 (±25) to 220 (±31)°C. Assuming a constant fluid‐pressure to lithostatic‐pressure ratio for each data set, we estimate a P–T gradient of between 10.0°C/km (+0.2/?1.5) (lithostatic pressure) and 4.2°C/km (+0.1/?0.9) (hydrostatic pressure) from these results. The estimated lithostatic P–T gradient is much lower than that calculated from the age of the subducting oceanic plate. The estimated P–T conditions suggest that the mélange was formed within the seismogenic zone (hypothesized from thermal modeling), although the deformation mechanism of mélange (i.e. dominant diffusive mass transfer mainly in shale matrix with minor brittle breakage mainly in sandstone blocks) does not show evidence of seismic deformation. In addition, at the time of syn‐mélange vein formation, a shale matrix of mélange has injected into the vein, which indicates a ductile deformation of shale. A possible explanation for this discrepancy is that the mélange was formed during the interseismic period.  相似文献   

19.
The largest volumes of peralkaline silicic rocks are found in areas of epeirogenic uplift and rift formation on the continents, but they may also form in several other tectonic settings, such as the oceanic islands, during the later stages of orogenic cycles, as isolated occurrences in active mobile belts, and in areas of extensional tectonics at or near continental plate margins. Their emplacement is effected during periods of dominantly tensional stresses. The peralkaline silicic rocks are typically members of the transitional, mildly aikaline basalt-trachyte association. Associated salic rocks are commonly feld-spathoidal and/or anorthite-normative, as well as peralkaline. Two main types of association are distinguished: firstly, provinces where the peralkaline rocks are mainly of comenditic type, where the salic rocks are in relatively low abundance compared to basic, and where the intermediate (Daly) composition gap is not present; secondly, provinces of pantelleritic or mixed pantelleritic-comenditic volcanism, where the basic : acid volume relationships are reversed and where the Daly gap is usually markedly developed.  相似文献   

20.
James  Hibbard  Daniel  Karig Asahiko  Taira 《Island Arc》1992,1(1):133-147
Abstract The Late Oligocene-Early Miocene Nabae Sub-belt of the Shimanto Accretionary Prism was created coevally (ca 25-15 Ma) with the opening of the Shikoku back-arc basin, located to the south of the southwest Japan convergent margin. The detailed geology of the sub-belt has been controversial and the interaction of the Shimanto accretionary prism and the opening of the Shikoku Basin has been ambiguous. New structural analysis of the sub-belt has led to a new perception of its structural framework and has significant bearing on the interpretation of the Neogene tectonics of southwest Japan. The sub-belt is divided into three units: the Nabae Complex; the Shijujiyama Formation; and the Maruyama Intrusive Suite. The Nabae Complex comprises coherent units and mélange, all of which show polyphase deformation. The first phase of deformation appears to have involved landward vergent thrusting of coherent units over the mélange terrane. The second phase of deformation involved continued landward vergent shortening. The Shijujiyama Formation, composed mainly of mafic volcanics and massive sandstone, is interpreted as a slope basin deposited upon the Nabae Complex during the second phase of deformation. The youngest deformational pulse involved regional flexing and accompanying pervasive faulting. During this event, mafic rocks of the Maruyama Intrusive Suite intruded the sub-belt. Fossil evidence in the Nabae Complex and radiometric dates on the intrusive rocks indicate that this tectonic scheme was imprinted upon the sub-belt between ~23 and ~14 Ma. The timing of accretion and deformation of the sub-belt coincides with the opening of the Shikoku Basin; hence, subduction and spreading operated simultaneously. Accretion of the Nabae Sub-belt was anomalous, involving landward vergent thrusting, magmatism in newly accreted strata and regional flexing. It is proposed that this complex and anomalous structural history is largely related to the subduction of the active Shikoku Basin spreading ridge and associated seamounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号