首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
长江流域土地利用时空变化特征及其径流效应   总被引:1,自引:1,他引:0  
土地利用变化的径流效应是水循环研究中的重点内容之一。长江流域是中国最大的流域,土地利用变化及其径流效应分析是研究该流域径流演变、水旱灾害的基础。本文利用1980、1990、1995、2000、2005年五期土地利用数据,采用土地利用转移矩阵计算土地利用动态度、交换变量等指标,评价了长江流域土地利用的时空变化特征,识别关键变化区域及其变化原因。在此基础上,利用SCS模型的降水—径流方程,分析了土地利用变化的径流效应。研究结果表明:1980-2005年时期,长江流域土地转移活跃程度在第一(1980-1990年)和第四(2001-2005年)时期内明显高于1991-1995年和1996-2000年,中上游四川及其北部地区的活跃程度最大。1980-2005年期间水田、旱地、林地和草地面积变化幅度都在8%以内。但受不同时期环境保护和经济发展因素影响,耕地(水田和旱地)和林地、草地呈现相反的变化,而水域、未利用地和城镇用地相对变化较大;其中快速的城镇化导致城镇用地增幅最高,可达196.58%。土地利用变化直接导致流域的平均径流系数变大,变幅从-0.67%到0.80%,平均增幅0.05%,变化最显著的地区在城市化水平较高的长三角一带。径流系数的增加导致洪水发生的可能性增大。  相似文献   

2.
本文简要分析了南水北调东线输水工程实施后可能引起黄淮海平原土壤次生盐渍化的原因,并提出了相应的防止措施。  相似文献   

3.
 以典型的干旱内陆河流域城市武威市凉州区为研究对象,对水资源承载力、城市适度规模的内涵进行阐述;基于可利用水量、水权及水质三要素建立水资源承载能力及城市适度规模计算模型,构建了城市适度规模与实际人口的距离协调度评价模型,并给出评价区间标准;对未来可利用水量、未来可能配水量、未来城市适度规模、水资源超载度进行预测并分析。结果表明:近10 a凉州区的地表径流量变化幅度不大,相比20世纪50年代下降程度显著,凉州区水资源超载度逐年增长,城市适度规模与实际人口的距离协调度处于初级协调发展绿灯区向濒临失调衰退黄灯区过渡阶段。未来20 a水资源超载度增长率降低,基于水资源承载力的城市适度规模远小于预测的城市人口规模,城市适度规模与实际人口距离协调度进入轻度失调双黄灯警区。  相似文献   

4.
三江源区径流演变及其对气候变化的响应(英文)   总被引:2,自引:2,他引:0  
Runoff at the three time scales(non-flooding season,flooding season and annual period) was simulated and tested from 1958 to 2005 at Tangnaihai(Yellow River Source Region:YeSR),Zhimenda(Yangtze River Source Region:YaSR) and Changdu(Lancang River Source Region:LcSR) by hydrological modeling,trend detection and comparative analysis.Also,future runoff variations from 2010 to 2039 at the three outlets were analyzed in A1B and B1 scenarios of CSIRO and NCAR climate model and the impact of climate change was tested.The results showed that the annual and non-flooding season runoff decreased significantly in YeSR,which decreased the water discharge to the midstream and downstream of the Yellow River,and intensified the water shortage in the Yellow River Basin,but the other two regions were not statistically significant in the last 48 years.Compared with the runoff in baseline(1990s),the runoff in YeSR would decrease in the following 30 years(2010-2039),especially in the non-flooding season.Thus the water shortage in the midstream and downstream of the Yellow River Basin would be serious continuously.The runoff in YaSR would increase,especially in the flooding season,thus the flood control situation would be severe.The runoff in LcSR would also be greater than the current runoff,and the annual and flooding season runoff would not change significantly,while the runoff variation in the non-flooding season is uncertain.It would increase significantly in the B1 scenario of CSIRO model but decrease significantly in B1 scenario of NCAR model.Furthermore,the most sensitive region to climate change is YaSR,followed by YeSR and LcSR.  相似文献   

5.
岔巴沟流域次暴雨产沙统计模型   总被引:30,自引:2,他引:28  
流域综合治理规划、防治土壤侵蚀、合理利用水沙资源 ,无不需要掌握流域产沙情况。流域产沙统计模型结构简单 ,计算方便 ,是现有产沙预报的强有力工具。本文以陕西省岔巴沟流域及其支流实测降雨水文资料为基础 ,系统地分析了流域产沙的降雨、径流、地貌因子在流域产沙中的作用 ,进而将影响产沙的因素概括为径流深、洪峰流量、流域面积、流域沟道密度 ,并作为产沙预报的指标 ,建立了岔巴沟流域次暴雨产沙的统计模型。经检验 ,该预报公式具有一定的精度。  相似文献   

6.
This study determines the spatial and temporal variability of in-channel storage within a small semiarid drainage basin in equatorial East Africa, and establishes a tentative sediment budget for coarse (>200 μm) in-channel sediments. Detailed measurements of in-channel sediment storage (mass) within third and fourth-order ephemeral channels were obtained using channel-pit excavations and probing with metal rods. Eighty-seven monumented cross-sections were established in February 1986 and resurveyed in December 1986, following the last runoff event of the year. These provided data on change in sediment storage on a 30-m channel reach basis. In addition, measurements of bankfull channel width, mean depth, cross-sectional area, wetted perimeter, hydraulic radius, channel slope and distance from the basin outlet were measured at each cross section. Total in-channel sediment storage was approximately 8640 t with 83% of this total stored within the Main (fourth-order) Channel. Stepwise multiple regression of In-transformed data indicated that bankfull channel width and distance from the outlet (which is strongly related with slope) were significantly related to in-channel storage. The variation in the ratio of stream power:critical power along the Main Channel may explain the distribution of in-channel sediments. Net aggradation of 50 to 60 t during 1986 was minor in relation to the total in-channel storage reservoir, but indicates that a static equilibrium condition cannot be assumed. Bedload output during 1986 was approximately 125 t, and the computed input of coarse sediments to the major channels within the basin was approximately 185 t. The sediment delivery ratio for the coarse material was approximately 68%, which indicates a relatively efficient transport system. [Key words: geomorphology, sediment budget, in-channel sediment storage, semiarid, drainage basin.]  相似文献   

7.
Land-use change in urbanizing areas can significantly alter the hydrology of a watershed and can have serious impacts on wetland water balances, downstream flooding, and groundwater recharge. Most currently available models used in determining the hydrologic impacts of urbanization are not well suited to long-term hydrologic analysis or are too complex and data intensive for widespread practical application. The Long-Term Hydrologic Impact Assessment (LTHIA) model run on a Geographic Information System (GIS) is a relatively simple, user-friendly model that uses the Curve Number method to estimate changes in surface runoff between different stages of development. Application of the model to a large, rapidly urbanizing watershed near Indianapolis, Indiana, suggests that average annual runoff depths increased by more than 60% from 1973 to 1991, with even greater increases for some individual sub-basins. These results are consistent with runoff changes estimated from historical stream flow data in the watershed. A sensitivity analysis to determine minimum data requirements shows that a precipitation record length of 15 years or more is required to produce consistent results with LTHIA and that the highest possible resolution land-use and soils data should be used. The LTHIA model is now available on the Internet at http://www.ecn.purdue.edu/runoff. [Key words: hydrology, urbanization, modeling, GIS.]  相似文献   

8.
Stream channel changes are often assumed to propagate downstream of the disturbed or urbanized reach, especially where the main controlling variables of discharge and sediment load vary regularly in the downstream direction. A survey of bankfull cross-sectional sizes at 10 stations along a tropical stream shows that downstream propagation of the disturbance may not always occur. Serial regression analysis suggests that a reduction in channel size induced by urbanization did not extend beyond the urbanized reach. Furthermore, local channel change did not alter the downstream log linear trend between channel size and basin area. Apparently, the storage of floodwaters and sediments on floodplains reduced the downstream effects of urbanization.  相似文献   

9.
黄河中游流域环境要素对水沙变异的影响   总被引:15,自引:7,他引:15  
目前 ,黄河中游地区流域的水沙变化主要以水文法和水保法研究为主。由于黄河中游具有明显的自然地带性分布特征 ,流域系统的水沙过程受到环境要素的综合影响。本文根据黄河中游河口镇至龙门区间已控一级支流的测站资料 ,采用地理环境要素法分析水沙变异及成因。研究表明 ,河龙区间流域径流量和输沙量与地理环境因子的影响密切相关。 2 0世纪 70年代以来 ,降雨减水减沙作用不断减小 ,随着水土保持措施的提高 ,人类活动减水减沙所占比重不断增大。 70年代与 80年代气候波动和人类活动影响的平均减水减沙作用分别为5 3 4 %、 2 8 6 %和 4 6 6 %、 71 4 %。  相似文献   

10.
湿地是人类生存和发展的主要环境之一,城镇化进程严重影响了湿地生态系统。从城镇化对湿地的景观格局、水文、生物多样性影响方面综述了城镇化对湿地生态系统影响的研究进展。研究发现城镇化改变了湿地的景观格局,使湿地面积不断减少,景观破碎化,湿地异质性增大,连通性降低。城镇化改变了湿地的水文条件,使天然调蓄能力减弱,径流系数增强,洪峰流量增大,水土流失加重,河网和水系结构特征改变,水质受到严重影响。城镇化降低了湿地生物多样性,使物种丰富度和分布降低,珍稀物种因丧失生境而灭绝,生物入侵增强,进而导致种群组成和生态系统的功能发生变化。最后提出了在全球变化背景下城镇化对湿地影响研究的新方向及其保护措施建议。  相似文献   

11.
Mediterranean environments have been subject to major land cover change since the end of the second world war. Housing, agricultural activities, forests, green spaces and other land uses have shifted due to urbanisation and tourism. These changes influence runoff, and municipal authorities often cannot estimate the net impact of complex land cover transitions. During this period, elected representatives have become increasingly sensitive to the risks of flooding and have implemented a number of channel management strategies. The main objective of this case study was to analyse the impact of land cover change on total storm runoff between 1950 and 2003 in a Mediterranean catchment near St Tropez, France. A secondary objective was to compare these changes to the impacts of channel management on bankfull discharge. Aerial photographs were used to classify land cover in 3 urban categories, vineyards and bare soil, forests, and green spaces. Stream discharge was estimated using a distributed event based total runoff approach. After validating the model for a large winter event (114 mm) for 1982, runoff was calculated for the same event for 1950 and 2003. Land cover changes occurred mainly in the alluvial plain area. Total gauge catchment urban area increased from 30.1 ha to 393.8 between 1950 and 2003 at the expense mainly of agricultural land, but this was compensated in part by an increase in grassed area. Some of the loss in vineyards was replaced by clearing forested land on the first hills close to the plain. Bank stabilisation and channel maintenance since the 1980’s reduced surface roughness and increased channel area, thereby greatly increasing bankfull discharge. While the impact of urbanisation on runoff was small, channel management effects increased bankfull discharge substantially. Flood damage from extreme events was not studied here.  相似文献   

12.
This research evaluates the impact of rural-to-urban land use conversion on channel morphology and riparian vegetation for three streams in the Central Redbed Plains geomorphic province (central Great Plains ecoregion) of Oklahoma. The Deep Fork Creek watershed is largely urbanized; the Skeleton Creek watershed is largely rural; and the Stillwater Creek watershed is experiencing a rapid transition from rural to urban land cover. Each channel was divided into reaches based on tributary junctions, sinuosity, and slope. Field surveys were conducted at transects in a total of 90 reaches, including measurements of channel units, channel cross-section at bankfull stage, and riparian vegetation. Historical aerial photographs were available for only Stillwater Creek watershed, which were used to document land cover in this watershed, especially changes in the extent of urban areas (impervious cover).The three streams have very low gradients (< 0.001), width-to-depth ratios < 10, and cohesive channel banks, but have incised into red Permian shales and sandstone. The riparian vegetation is dominated by cottonwoods, ash, and elm trees that provide a dense root mat on stream banks where the riparian vegetation is intact. Channels increased in width and depth in the downstream direction as is normally expected, but the substrate materials and channel units remained unchanged. Statistical analyses demonstrated that urbanization did not explain spatial patterns of changes in any variables. These three channels in the central Redbed Plains are responding as flumes during peak flows, funneling runoff and the wash-load sediment downstream in major runoff events without any effect on channel dimensions. Therefore, local geological conditions (similar bedrock, cohesive substrates and similar riparian vegetation) are mitigating the effects of urbanization.  相似文献   

13.
气候变化和人类活动对信江流域径流影响模拟   总被引:1,自引:0,他引:1  
邓晓宇  张强  孙鹏  方朝阳 《热带地理》2014,34(3):293-301
以1960―1990年为基准期、1991―2005年为影响期,使用HSPF(Hydrological Simulation Program-Fortran)水文模型定量分析了影响期气候变化和人类活动对信江流域径流的影响及其各自的贡献率。结果表明:1)相对于1960―1990年,1991―1995、1996―2000年的年平均径流深分别增加了271.9和246.3 mm,2001―2005年的年平均径流深减少64.1 mm。其中,气候变化对径流的影响分量在65.6%~88.0%之间,人类活动对径流的影响分量在12.0%~34.4%之间。2)人类活动对极值流量有影响。在影响期,年最大7 d平均流量和最大15 d平均流量模拟值大于对应的实测极值流量。3)在气候变化因子中,流域降水量的增加,是引起20世纪90年代信江流域径流显著增大的主要原因,其次是蒸发量的下降;人类活动包括植树造林、城市化以及水利工程修建,是影响流域径流变化的次要原因。  相似文献   

14.
建立节水型社会是中国的一项基本政策,也是解决渭干河流域水资源可持续利用问题的战略选择。渭干河流域是典型的灌溉农业区,农业灌溉大部分仍采用粗放型的土渠输水、大水漫灌方式,水资源流失严重,灌溉定额偏高,渠系入渗量高达14.01亿m3,农业节水潜力很大。在现有水量不可能增加的情况下,调整农业内部种植结构,发展节水农业是解决区域水资源短缺的有力措施。通过对2015年和2020年工业、城市化和生态用水进行预测,确定农田灌溉可用水量。选取渭干河流域9种种植面积最大的农作物,参考作物蒸散量及作物系数,得出各类农作物的实际需水量,并与现有灌溉量比较,发现现有灌溉量远大于作物的实际需水量,通过节水灌溉和水渠改造,可节约用水10.59亿m3。而且研究区的粮食种植面积亦远大于需求,即使未来10年不再扩大粮食种植面积,也比需求面积多出近2万hm2,如根据实际需求去调整,可节约1.05亿m3的水量,能极大缓解水资源紧缺的局面,将灌溉量控制在可用水量范围内,为加快城市化和工业化进程,保护区域生态提供充足的水资源保证。  相似文献   

15.
傅国斌  刘昌明 《地理学报》1991,46(3):277-288
自1985年世界气象组织(WMO)在奥地利召开全球气候增暖的专门会议之后,全球气候变暖对水资源及陆地生态系统的影响成为非常活跃的研究领域。本文利用水量平衡模型,采取假定气候方案方法,分析了万泉河流域水资源状况对全球增暖的响应。结果表明:温度升高将明显导致区域径流量减少、年径流系列的不稳定性增强、土壤蓄水降低,同时径流年内分配也发生变化。为未来全球变暖状况下,区域水资源管理提供依据。  相似文献   

16.
利用聚类分析,将径流序列分为不同类型的子径流序列,对这些子序列建立神经网络模型,采用Elman动态神经网络对沂沭河流域上游临沂子流域日径流量进行预测分析,通过与不加分类的总体神经网络的模拟结果进行对比分析。确定性系数、相关系数、平均相对误差和平均相对均方根误差4个统计指数及流域径流过程线和次洪误差分析结果都表明:Elman动态神经网络能够对日径流量进行较好模拟,但基于径流分类的降雨—径流模型表现出更优良性能,能较大程度提高径流模拟精度。  相似文献   

17.
《Basin Research》2018,30(2):302-320
The Holocene stratigraphy of Sylhet basin, a tectonically influenced sub‐basin within the Ganges‐Brahmaputra‐Meghna delta (GMBD), provides evidence for autogenic and allogenic controls on fluvial system behaviour. Using Holocene lithology and stratigraphic architecture from a dense borehole network, patterns of bypass‐dominated and extraction‐enhanced modes of sediment transport and deposition have been reconstructed. During a ~3‐kyr mid‐Holocene occupation of Sylhet basin by the Brahmaputra River, water and sediment were initially (~7.5–6.0 ka) routed along the basin's western margin, where limited downstream facies changes reflect minimal mass extraction and bypass‐dominated transport to the basin outlet. Sediment‐dispersal patterns became increasingly depositional ~6.0–5.5 ka with the activation of a large (~2250 km2) splay that prograded towards the basin centre while maintaining continued bypass along the western pathway. Beginning ~5.0 ka, a second splay system constructed an even larger (~3800 km2) lobe into the most distal portions of the basin along the Shillong foredeep. This evolution from a bypass‐dominated system to one of enhanced mass extraction is well reflected in (i) the rapid downstream fining of deposited sand and (ii) a change in facies from amalgamated channel deposits to mixed sands and muds within discrete depositional lobes. The persistence of sediment bypass suggests that seasonal flooding of the basin by local runoff exerts a hydrologic barrier to overbank flow and is thus a principal control on river path selection. This control is evidenced by (i) repeated, long‐term preference for occupying a course along the basin margin rather than a steeper path to the basin centre and (ii) the persistence of an under‐filled, topographically low basin despite sediment load sufficient to fill the basin within a few hundred years. The progradation of two 10–20‐m thick, sandy mega‐splays into the basin interior reflects an alternative mode of sediment dispersal that appears to have operated only in the mid‐Holocene (~6.0–4.0 ka) during a regional weakening of the summer monsoon. The reduced water budget at that time would have lowered seasonal water levels in the basin, temporarily lessening the hydrologic barrier effect and facilitating splay development into the basin interior. Overall, these results place basin hydrology as a first‐order control on fluvial system behaviour, strongly modifying the perceived dominance of tectonic subsidence. Such coupling of subsidence, fluvial dynamics and local hydrology have been explored through tank experiments and modelling; this field study demonstrates that complex, emergent behaviours can also scale to the world's largest fluvial system.  相似文献   

18.
城市化对西安市降水及河流水文过程的影响   总被引:1,自引:1,他引:0  
为探究城市化对西安市降水机制及城市河流灞河下游水文过程的影响,根据西安市及灞河1970-2015年水文气象资料以及由遥感影像解译得到的土地利用数据,在分析西安市降水、土地利用特征及灞河下游降水、径流变化特征的基础上,运用水文特征参数时间序列法分析城市化对西安市降水的影响以及灞河水文过程的影响。结果表明:1970-2015灞河降水量呈不显著下降趋势,而径流量呈显著下降趋势;西安市土地利用程度较高,土地利用变化表现为耕地及林地向建设用地转移;受城市化影响,西安市降水机制发生了改变,强降水频次呈增加趋势,且城区增幅大于郊区;降水年内分配不均匀,越来越集中于夏季,增加了城市内涝的威胁;城市化对灞河下游降水-径流关系产生了影响,降水对径流的影响呈减弱趋势,而城市化对径流的影响呈增强趋势;此外,受城市化影响,灞河下游径流量年内波动趋缓,特别是汛期;城市化是影响径流变化的主要因素(61.5%),降水变化是影响径流变化的次要因素(38.5%);灞河下游径流量的减流主要是水利工程的作用及过量开采傍河地下水。  相似文献   

19.
基于遥感的黄土高原林草植被变化对河川径流的影响分析   总被引:11,自引:1,他引:10  
从黄土高原不同地貌区降雨产流机制入手,分析了林草植被影响流域水循环的可能环节;利用20世纪70年代以来不同时期的土地利用和植被盖度解译成果,以及同期实测的降雨和径流数据、供用水数据等,引入林草植被覆盖率、径流系数、产洪系数和基流系数等概念,从流域尺度上构建了林草植被覆盖率与河川径流的定量响应关系,结果发现,在半湿润或半干旱的黄土区,径流系数和产洪系数都将随林草植被的改善而减少,气候越干旱、径流或洪量减少越多;与同气候带的黄土区相比,盖沙黄土区林草植被改善所导致的减水量更大。不过,当林草植被覆盖率大于60%后,产洪系数变化减缓;最终河川径流将稳定在大于基流的某阈值附近。  相似文献   

20.
洞庭湖环境系统变化对水文情势的响应   总被引:11,自引:2,他引:9  
为全面揭示洞庭湖近数十年的水情异常与成因,将湖区视作一个大系统来研究。经水位~流量关系等多种方法研究表明:(1)入湖四水尾闾同水位流量减少1 200~2 800 m3/s,同流量水位抬高0.49~1.28 m;(2) 荆江三口分水比减少19.2%,分沙比减少25.1%;(3) 澧水、松滋、南洞庭湖等主洪道的水位流量关系均发生了较大变化;(4) 天然调蓄能力下降40%,湖口同流量水位抬高1.80~2.50 m;(5) 7~8月湖垸关系常处于危急状态。其主要原因是泥沙淤积恶性循环,导致了湖泊环境系统功能的变化,而由下荆江3处裁弯所引起的江湖水沙调整则加速了其变化过程。这些变化过程对水情的复合响应是:入湖水沙呈逐渐减少趋势变化,洪水位普遍抬高1.50~1.80 m,湖口有时出现江水倒流,洪水涨率增大,高洪水位持续时间长等异常水文现象,且给湖区造成了巨大的洪水压力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号