首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed lithological, biogeochemical and molecular biological analyses of core sediments collected in 2002–2006 from the vicinity of the Malenky mud volcano, Lake Baikal, reveal considerable spatial variations in pore water chemical composition, with total concentrations of dissolved salts varying from 0.1 to 1.8‰. Values of methane δ13С in the sediments suggest a biogenic origin (δ13Сmin. ?61.3‰, δ13Сmax. ?72.9‰). Rates of sulphate reduction varied from 0.001 to 0.7 nmol cm?3 day?1, of autotrophic methanogenesis from 0.01 to 2.98 nmol CH4 cm?3 day?1, and of anaerobic oxidation of methane from 0 to 12.3 nmol cm?3 day?1. These results indicate that methanogenic processes dominate in gas hydrate-bearing sediments of Lake Baikal. Based on clone libraries of 16S rRNA genes amplified with Bacteria- and Archaea-specific primers, investigation of microbial diversity in gas hydrate-bearing sediments revealed bacterial 16S rRNA clones classified as Deltaproteobacteria, Gammaproteobacteria, Chloroflexi and OP11. Archaeal clone sequences are related to the Crenarchaeota and Euryarchaeota. Baikal sequences of Archaea form a distinct cluster occupying an intermediate position between the marine groups ANME-2 and ANME-3 of anaerobic methanotrophs.  相似文献   

2.
New data are reported on the sulfur isotope composition and concentration of sulfide and sulfate in the upper part of the Black Sea anoxic zone as a function of the potential water density. The observations were performed at a station with the coordinates 44.489° N and 37.869° E three times a week every two days. A local negative deficiency in sulfate concentration up to 1.7% related to the sulfate reduction processes was recorded. This anomaly in sulfate concentration was short-lived and did not affect the sulfur isotope composition. In the upper part of the anaerobic zone, the δ34S(SO4) value varied from 21.2 to 21.5‰, which could have occurred from mixing of water masses from the oxic zone (21.1‰) and the Bottom Convective Layer (23.0 ± 0.2‰). The sulfur isotope composition of sulfide ranged from ?40.8% at a depth of 250 m to ?39.4‰ at the upper boundary of the anoxic zone with a H2S content of only 2.7 μM. Two models (mass balance and fractionation of sulfur isotopes using the Rayleigh equation) are considered to explain the differences in δ34S(H2S) values observed.  相似文献   

3.
Authigenic carbonates are frequently associated with methane cold-seep systems, which extensively occur in various geologic settings worldwide. Of interest is the relation between the fluids involved in their formation and the isotopic signals recorded in the carbonate cements. Along the Northern Apennines foothills (Italy), hydrocarbons and connate waters still seeping nowadays are believed to be the primary sources for the formation of fossil authigenic carbonate found in Plio-Pleistocene marine sediments. Four selected outcrops of dolomitic authigenic carbonates were analysed to compare signature of seeping fluids with fractionation of stable carbon and oxygen isotopes recorded in the carbonate.Along the foothills, deep methane-rich fluids spontaneously rise to the surface through mud volcanoes or are exploited in wells drilled nearby to the fossil Plio-Pleistocene authigenic carbonates. The plumbing system providing fluids to present-day cold seeps was structurally achieved in Late Miocene and Plio-Pleistocene. δ13C values of methane, which vary from −51.9 to −43.0‰ VPDB, indicate that gas composition from the deep hydrocarbon reservoirs is relatively uniform along the foothills. On the contrary, δ13C in fossil authigenic carbonates strongly varies among different areas and also within the same outcrop.The different carbon sources that fed the investigated carbonates were identified and include: thermogenic methane from the deep Miocene reservoirs, 13C-enriched CO2 derived from secondary methanogenesis and microbial methane from Pliocene successions buried in the Po Plain. The δ13C variability documented among samples from a single outcrop testifies that the authigenic carbonates might represent a record of varying biogeochemical processes in the hydrocarbon reservoirs. The sources of stable oxygen isotopes in authigenic carbonates are often ascribed to marine water. Oxygen isotopic fractionation in the dolomite cements indicates that marine pore water couldn't be the sole source of oxygen. δ18O values provide a preliminary evidence that connate waters had a role in the carbonates precipitation. The concomitant occurrence of active cold seepages and fossil record of former plumbing systems suggests that generation and migration of hydrocarbons are long-lasting and very effective processes along the Northern Apennines foothills.  相似文献   

4.
On the passive margin of the Nile deep-sea fan, the active Cheops mud volcano (MV; ca. 1,500 m diameter, ~20–30 m above seafloor, 3,010–3,020 m water depth) comprises a crater lake with hot (up to ca. 42 °C) methane-rich muddy brines in places overflowing down the MV flanks. During the Medeco2 cruise in fall 2007, ROV dives enabled detailed sampling of the brine fluid, bottom lake sediments at ca. 450 m lake depth, sub-surface sediments from the MV flanks, and carbonate crusts at the MV foot. Based on mineralogical, elemental and stable isotope analyses, this study aims at exploring the origin of the brine fluid and the key biogeochemical processes controlling the formation of these deep-sea authigenic carbonates. In addition to their patchy occurrence in crusts outcropping at the seafloor, authigenic carbonates occur as small concretions disseminated within sub-seafloor sediments, as well as in the bottom sediments and muddy brine of the crater lake. Aragonite and Mg-calcite dominate in the carbonate crusts and in sub-seafloor concretions at the MV foot, whereas Mg-calcite, dolomite and ankerite dominate in the muddy brine lake and in sub-seafloor concretions near the crater rim. The carbonate crusts and sub-seafloor concretions at the MV foot precipitated in isotopic equilibrium with bottom seawater temperature; their low δ13C values (–42.6 to –24.5‰) indicate that anaerobic oxidation of methane was the main driver of carbonate precipitation. By contrast, carbonates from the muddy lake brine, bottom lake concretions and crater rim concretions display much higher δ13C (up to –5.2‰) and low δ18O values (down to –2.8‰); this is consistent with their formation in warm fluids of deep origin characterized by 13C-rich CO2 and, as confirmed by independent evidence, slightly higher heavy rare earth element signatures, the main driver of carbonate precipitation being methanogenesis. Moreover, the benthic activity within the seafloor sediment enhances aerobic oxidation of methane and of sulphide that promotes carbonate dissolution and gypsum precipitation. These findings imply that the coupling of carbon and sulphur microbial reactions represents the major link for the transfer of elements and for carbon isotope fractionation between fluids and authigenic minerals. A new challenge awaiting future studies in cold seep environments is to expand this work to oxidized and reduced sulphur authigenic minerals.  相似文献   

5.
Mangrove sediments play a pivotal role in the nutrient biogeochemical processes by behaving as both source and sink for nutrients and other materials. Surface and core sediments were collected from various locations of the Pichavaram mangrove (India) and analyzed for grain size distribution, nutrients and stable N isotope (δ15N) signatures in order to understand the spatial and vertical distribution of nutrients and biogeochemical processes of the C, N, P and S in this ecosystem. Sand is the dominant fraction followed by silt and clay. Spatial distribution of nutrients is controlled by the external and internal loadings, whereas vertical distribution is largely driven by the in situ microbial activities. Interior mangrove sediments contain higher concentrations of organic carbon (OC) than the estuarine sediments reflecting high rates of organic matter retention. Finer fractions of sediment hold ∼60% OC due to high surface area. At some sampling points, moderately high δ15N signatures were observed and this may be because of agricultural runoff and aquaculture effluents.  相似文献   

6.
《Oceanologica Acta》1998,21(4):551-561
The Prévost lagoon (Mediterranean coast, France), was subject to annual dystrophic crises caused by the biodegradation of opportunistic macroalgae (Ulva lactuca) in the past. These crises result in anoxic waters with subsequent blooms of Purple Sulphur Bacteria (red waters) which, by oxidizing sulphide, contribute to the reestablishment of oxic conditions in the water column. Mechanical dredging of the macroalgal biomass has been carried out in the lagoon since 1991 with the aim of preventing the ecological and economic disturbances caused by such crises. Dredging began just before the phototrophic bloom when the water was already hypoxic (O2 = 0.7 mg·L−1) and contained sulphilde (H2S = 7.3 mg·L−1) and purple patches of phototrophic bacteria (Thiocapsa sp.) that were beginning to develop on decaying macroalgae at the sediment surface. The dredging prevented red water formation and drastically modified both phototrophic community structure and activity and biogeochemical sulphur cycling. The dredging permitted the reestablishment of oxic conditions for a short period only (1–13 August). Resuspension of the superficial sediment layers disturbed the phototrophic bacterial community, whose numbers decreased by one order of magnitude (from 2 × 106 to 3.9 × 105 CFU.mL−1). The phototrophic community was no longer effective in reoxidizing the reduced sulphur compounds remaining in the sediments, as shown by a drastic sulphate depletion in the superficial sediment layers. Moreover, the increase in the specific bacteriochlorophyll a concentration of the phototrophic purple bacteria and the rapid development of Green Sulphur Bacteria (Prosthecochloris-like microorganisms) indicated that the phototrophic community was growing under severe light-limiting conditions due to the resuspension of sediment particles in the water. These conditions did not allow the phototrophic bacterial community to efficiently reoxidize the reduced sulphur compounds originating from the sediments. In consequence, hypoxic conditions (O2 = 4.7 to 4.8 mg·L−1) and low sulphide concentrations (H2S = 0.4 to 0.7 mg·L−1) were detected in the water column until September. The ecological balance in the lagoon was reestablished only in October, whereas, in previous years it had been restored in August.  相似文献   

7.
Two authigenic carbonate chimneys were recovered from the Shenhu area in the northern South China Sea at approximately 400 m water depth. The chimneys’ mineralogy, isotopic composition, and lipid biomarkers were studied to examine the biogeochemical process that induced the formation of the chimneys. The two chimneys are composed mostly of dolomite, whereas the internal conduits and semi-consolidated surrounding sediments are dominated by aragonite and calcite. The specific biomarker patterns (distribution of lipids and their depleted δ13C values) indicate the low occurrence of methanotrophic archaea ANME-1 responsible for the chimneys’ formation via anaerobic oxidation of methane. A significant input of bacteria/planktonic algae and cyanobacteria to the carbon pool during the precipitation of the carbonate chimneys is suggested by the high contributions of short-chain n-alkanes (69% of total hydrocarbons) and long-chain n-alcohols (on average 56% of total alcohols). The oxygen isotopic compositions of the carbonate mixtures vary from 3.1‰ to 4.4‰ in the dolomite-rich chimneys, and from 2.1‰ to 2.5‰ in the internal conduits, which indicates that they were precipitated from seawater-derived pore waters during a long period covering the last glacial and interglacial cycles. In addition, the mixture of methane and bottom seawater dissolved inorganic carbon could be the carbon sources of the carbonate chimneys.  相似文献   

8.
226Ra and 228Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226Ra to increase with increasing salinities up to 20‰. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228Ra measured in the Yangtse River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228Ra is added to the water column by diffusion from bottom sediments, while 226Ra concentrations decrease from dilution. Diffusion of 228Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay (< 22‰ water) where fine grained sediments predominate. A diffusive flux for 228Ra of 0·33 dpm cm?2 year was determined for Delaware Bay.  相似文献   

9.
《Marine Chemistry》1987,20(3):245-253
The distribution of barite in sediments from D.S.D.P. sites 424 and 424A at the Galapagos hydrothermal mounds field is determined and the process of its formation is deduced. Barite in these deposits is associated with calcareous sediments and is completely absent from the hydrothermal material (manganese crusts and nontronite). Its concentrations tend to increase in the deeper sediments. Since manganese crusts contain significant amounts of Ba, a lack of barite in them is probably due to low concentrations of SO42 in the sediment-seawater interface where they form. The formation of barite occurs within buried sediments, the interstitial waters of which are saturated with SO42. The most probable source of SO42− is the oxidation of H2S which is released from the hydrothermal fluids percolating upwards through the sediments. Although nontronite is formed within buried sediments the environmental conditions occurring during its formation (reducing) prevent barite formation.The association of barite with calcareous sediments is due to the release of Ba by calcareous microorganisms and/or to high concentrations of Ca in the pore waters which maintain a high pH and hence SO42− is stable.  相似文献   

10.
The isotope characteristics (δD, δ18О) of Kara Sea water were studied for quantitative estimation of freshwater runoff at stations located along transect from Yamal Peninsula to Blagopoluchiya Bay (Novaya Zemlya). Freshwater samples were studied for glaciers (Rose, Serp i Molot) and for Yenisei and Ob estuaries. As a whole, δD and δ18O are higher in glaciers than in river waters. isotope composition of estuarial water from Ob River is δD =–131.4 and δ18O =–17.6‰. Estuarial waters of Yenisei River are characterized by compositions close to those of Ob River (–134.4 and–17.7‰), as well as by isotopically “heavier” compositions (–120.7 and–15.8‰). Waters from studied section of Kara Sea can be product of mixing of freshwater (δD =–119.4, δ18O =–15.5) and seawater (S = 34.9, δD = +1.56, δ18O = +0.25) with a composition close to that of Barents Sea water. isotope parameters of water vary significantly with salinity in surface layer, and Kara Sea waters are desalinated along entire studied transect due to river runoff. concentration of freshwater is 5–10% in main part of water column, and <5% at a depth of >100 m. maximum contribution of freshwater (>65%) was recorded in surface layer of central part of sea.  相似文献   

11.
Sediment cores were taken from the Gulf of California, and pore waters recovered by mechanical squeezing. The chemistry and isotopic abundance of sulfur in these pore fluids were compared with coexisting solid phases to deduce the mechanisms involved in pyrite formation. The results suggest that burrowing activities of benthonic organisms supply sulfate sulfur to sediments to depths of approximately 0.5 m from the surface. This is inferred from essentially constant pore water concentration profiles of dissolved ions in horizons where sulfate reduction is demonstrated by the presence of iron sulfides.For a core from Pescadero Basin, it is estimated that beneath the mixed zone, diffusion adds 0.4% sulfur by dry weight of sediment, whereas burial of sulfate adds less than 0.1% sulfur. It is shown that diffusion can add isotopically light sulfur to sediments, due to more rapid relative addition of 32SO42? compared to 34SO42? down a concentration gradient maintained by bacterial processes. The overall net isotopic value of the sulfate so added is δ34S = ?4.5‰. The depth distribution of S-isotope in sulfur is controlled by the balance between a bacterial kinetic isotope effect preferentially removing 32S relative to 34S, and the supply of sulfate by diffusion. The isotopic fractionation factor, α, calculated by a mathematical formulation which takes diffusion into account, is larger (1.060±0.010) than when sulfate reduction is assumed to occur in a closed system (1.035). The larger value is supported by the sulfur isotope distribution in metastable iron sulfide. Essentially, the same open-system α was calculated for a core from Carmen Basin.  相似文献   

12.
The speciation of sedimentary sulfur (pyrite, acid volatile sulfides (AVS), S0, H2S, and sulfate) was analyzed in surface sediments recovered at different water depths from the northwestern margin of the Black Sea. Additionally, dissolved and dithionite-extractable iron were quantified, and the sulfur isotope ratios in pyrite were measured. Sulfur and iron cycling in surface sediments of the northwestern part of the Black Sea is largely influenced by (1) organic matter supply to the sediment, (2) availability of reactive iron compounds and (3) oxygen concentrations in the bottom waters. Biologically active, accumulating sediments just in front of the river deltas were characterized by high AVS contents and a fast depletion of sulfate concentration with depth, most likely due to high sulfate reduction rates (SRR). The δ34S values of pyrite in these sediments were relatively heavy (−8‰ to −21‰ vs. V-CDT). On the central shelf, where benthic mineralization rates are lower, re-oxidation processes may become more important and result in pyrite extremely depleted in δ34S (−39‰ to −46‰ vs. V-CDT). A high variability in δ34S values of pyrite in sediments from the shelf-edge (−6‰ to −46‰ vs. V-CDT) reflects characteristic fluctuations in the oxygen concentrations of bottom waters or varying sediment accumulation rates. During periods of oxic conditions or low sediment accumulation rates, re-oxidation processes became important resulting in low AVS concentrations and light δ34S values. Anoxic conditions in the bottom waters overlying shelf-edge sediments or periods of high accumulation rates are reflected in enhanced AVS contents and heavier sulfur isotope values. The sulfur and iron contents and the light and uniform pyrite isotopic composition (−37‰ to −39‰ vs. V-CDT) of sediments in the permanently anoxic deep sea (1494 m water depth) reflect the formation of pyrite in the upper part of the sulfidic water column and the anoxic surface sediment. The present study demonstrates that pyrite, which is extremely depleted in 34S, can be found in the Black Sea surface sediments that are positioned both above and below the chemocline, despite differences in biogeochemical and microbial controlling factors.  相似文献   

13.
The biogeochemical processes participating in the transformation of the particulate matter into sediment along the Yenisei River-St. Anna Trough (Kara Sea) meridional profile were studied using hydrochemical, geochemical, microbiological, radioisotope, and isotope methods. The water-sediment contact zone consists of three subzones: the suprabottom water, the fluffy layer, and the surface sediment. The total number, biomass, and integral activity of the microorganisms (dark 14CO2 assimilation) in the fluffy layer are usually higher than in the suprabottom water and sediment. The fluffy layer shows a decrease in the oxygen content and the growth of the dissolved biogenic elements. It was provided by the particulate organic matter supporting the vital activity of the heterotrophs from the overlying water column and by the flux of reduced compounds (NH4, H2S, CH4, Fe2+, Mn2+, and others) from the underlying sediments. The Corg isotopic composition of the fluffy layer and the sediments is 2–4 ‰ heavier than that of the particulate matter and sediment due to the presence of the isotopically heavy biomass of microorganisms. A change in the isotopic composition of the Corg in the fluffy layer and surface sediment as compared to the Corg of the particulate matter is a widespread phenomenon in the Arctic shelf seas and proves the leading role of microorganisms in the transformation of the particulate matter into sediment.  相似文献   

14.
Seventy-nine δ13C analyses of oceanic particulate matter (> 0·μ) from semi-tropical (Gulf of Mexico, Caribbean and Atlantic) and polar (South Indian Ocean) waters showed that the carbon isotope composition of the particulate matter from the cold polar surface waters was lighter (?24·7 to ?26·0‰) than that from the surface in the semi-tropical regions (?19·8 to ?22·3 ‰), reflecting the temperature effect on the photosynthetic fixation of carbon. δ13C for deep samples (> 330 m) were generally more negative than the surface samples, except in some well-mixed polar areas.A difference both in organic carbon isotopic composition and percentage organic carbon in the POM and the tops of sediment cores was also apparent; a loss of approximately 95 % of incoming carbon and an increase in 13C of several per mille being observed during deposition of particulate matter. This indicates that after settling on the bottom there is extensive diagenesis of the POM by organisms, indicating the non-refractory nature of the organic matter.  相似文献   

15.
A fully automated method for the analysis of dissolved sulphate was tested for saline and brackish waters. A small sample volume of ? 2 ml is required, making the method very suitable for analysis of interstitial waters. The method was calibrated for samples from natural waters in the Dutch delta region, containing up to 2500 mg l?1 of sulphate, and with a salinity of 30‰.  相似文献   

16.
17.
We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of –61.6‰ V-PDB and –285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C–δD classification for hydrate-bound gas in either freshwater or marine environments.  相似文献   

18.
Deuterium values obtained for humic acids isolated from marine sediments from the NE Pacific are in the range of δD = (?105 ± 5)‰, corresponding to values obtained for marine plankton from the same area. Soil humic acids have a much broader range of δD values (?57 to ?97‰), depending on the isotopic values of the precipitation and the isotopic composition of the parent plant precursor.Data obtained on hydrogen isotope distribution confirms previous hypotheses based on chemical analysis and on carbon isotopes, which indicated the authigenic nature of marine humates.  相似文献   

19.
Relationships between organic carbon, total nitrogen and organic nitrogen concentrations and variations in δ13Corg and δ15Norg are examined in surface sediments from the eastern central Arctic Ocean and the Yermak Plateau. Removing the organic matter from samples with KOBr/KOH and determining residual as well as total N shows that there is a significant amount of bound inorganic N in the samples, which causes TOC/Ntotal ratios to be low (4–10 depending on the organic content). TOC/Norg ratios are significantly higher (8–16). This correction of organic TOC/N ratios for the presence of soil-derived bound ammonium is especially important in samples with high illite concentrations, the clay mineral mainly responsible for ammonium adsorption. The isotopic composition of the organic N fraction was estimated by determining the isotopic composition of the total and inorganic nitrogen fractions and assuming mass-balance. A strong correlation between δ15Norg values of the sediments and the nitrate concentration of surface waters indicates different relative nitrate utilization rates of the phytoplankton in various regions of the Arctic Ocean. On the Yermak Plateau, low δ15Norg values correspond to high nitrate concentrations, whereas in the central Arctic Ocean high δ15Norg values are found beneath low nitrate waters. Sediment δ13Corg values are close to −23.0‰ in the Yermak Plateau region and approximately −21.4‰ in the central Arctic Ocean. Particulate organic matter collected from meltwater ponds and ice-cores are relatively enriched in 13C (δ13Corg=−15.3 to −20.6‰) most likely due to low CO2(aq) concentrations in these environments. A maximum terrestrial contribution of 30% of the organic matter to sediments in the central Arctic Ocean is derived, based on the carbon isotope data and various assumptions about the isotopic composition of the potential endmembers.  相似文献   

20.
Because organic matter originating in the euphotic zone of the ocean may have a distinctive nitrogen isotope composition (15N/14N), as compared to organic matter originating in terrestrial soils, it may be used to evaluate the relative nitrogen contribution to marine and estuarine sediment. The nitrogen isotope ratios of 42 sediment samples of total nitrogen and 38 dissolved pore-water ammonium samples from Santa Barbara Basin sediment cores were measured. The range of δ15N values for total nitrogen was +2.89 – +9.4‰ with a mean of +6.8‰ and for pore water ammonium, +8.2 – +12.4‰ with a mean of 10.2‰.The results suggest that the dissolved ammonium in the pore water is produced from bacterial degradation of marine organic matter. The range of δ15N values for total nitrogen in the sediment is interpreted as resulting from an admixture of nitrogen derived from marine (+10‰) and terrestrial (+2‰ marines. The marine component of this mixture, composed principally of calcium carbonate with smaller amounts of opal and organic matter, contains ~ 1.0% nitrogen. The terrestrial component, which comprises over 80% of the sediment, contains ~ 0.1% organically bound nitrogen and accounts for > 25% of the total nitrogen in Santa Barbara Basin sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号