首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yield of alkanes released from three coals by liquefaction in tetralin at 400°C is 6–8 times greater than the yield obtained by Soxhlet extraction with the azeotropic micture of benzene and ethanol. The alkanes are dominated by a series of n alkanes, in most cases in the range C14-C34, together with major amounts of pristane and phytane. Homologous series of pentacyclic triterpanes are also present, according to GC/MS analyses. These consist almost entirely of hydrocarbons of the hopane and moretane series (17αH, 21βH and 17βH, 21αH), in the range C27-C34 (C28 being absent). Several members of the series are found in S and R epimeric pairs. Differences in several aspects of alkane distribution between extract and liquefaction products were carefully examined. taking an overall view, the distributions in extract and product oil from any one coal were quite closely similar. It is concluded that the additional alkanes yielded by liquefaction had most probably been physically trapped inside the macromolecular network of the coals, and releasable only on disruption of that network.  相似文献   

2.
Based on gas chromatography and gas chromatography-mass spectrometry analyses, an amazing amount of hopanoids was detected in the peat deposits in the Dajiuhu National Wetland Park in central China. The hopanoids identified included hopanes (C27-C31 αβ, C27-C32 ββ, C29 βα), hopenes (hop-22(29)-ene, 22,29,30-trinorhop-17(21)-ene, hop-17(21)-ene, hop-13(18)-ene, etc.), hopanoic acids (C31-C34 ββ, C32-C33 βα, C32 αβ), hopanols (C32 ββ and αβ) and hopanone (22,29,30-trinorhop-21-one). C31 αβ-22R hopane was found to be the dominant hopanoid, more abundant than individual nalkanes derived from higher plants. These hopanoids, exclusive of some hopenes, are proposed to be primarily from bacteria. The dominant C31 αβ-22R hopane in young sediments, without any thermal maturation, might be formed through microbial epimerization under acidic conditions in the peatland as suggested before, or directly from aerobic bacteria. This finding highlights the importance of microbes in the formation of peatland as well as in the reconstruction of paleoenvironments.  相似文献   

3.
四川南桐地区二叠系龙潭煤层具有良好的生油潜力。其生物标记物包括正构和异构烷烃,类异戊二烯烷烃,倍半萜烷,二萜烷,三环萜烷,藿烷,一种未知结构的五环三萜烷(C30),甾烷,4-甲基甾烷等。煤层生物标记物特征表明在其形成过程中有藻类和细菌等微生物物质的加入。  相似文献   

4.
Two C28H48-pentacyclic triterpanes were isolated from Monterey shale. X-ray crystallography of a crystal containing both compounds proved their structures as 17β,18α,21α(H)-28,30-bisnorhopane and 17β,18α,21β(H)-28,30-bisnorhopane. Several differences are found between 28,30-bisnorhopanes and the regular hopanes. Unlike the regular hopane epimers, for practical purposes the three epimeric 28,30-bisnorhopanes [17α,21β(H)-, 17β,21α(H)-, and 17β,21β(H)-]cannot be distinguished by their mass spectra. Special conditions are needed to separate them by gas chromatography. The diagenetically first-formed epimer is thought to be 17α,21β(H)- because it predominates in immature shales. The order of thermodynamic stability is 17β,2lα(H) < > 17α,21β(H) > 17β,21β(H), and all three epimers are present in petroleum. 25,28,30-Trisnorhopanes can be analyzed in similar fashion and are found to have similar thermodynamic characteristics. The percent of the ring D/E cis epimer of 28,30-bisnorhopane and/or 25,28,30-trisnorhopane is a useful maturation parameter similar to the 20S/20R sterane ratio. Evidence indicates 25-demethylation of 28,30-bisnorhopane to 25,28,30-trisnorhopane during advanced stages of biodegradation. Hence, percent ring DEcis 25,28,30-trisnorhopane has an application to maturation assessment in heavily biodegraded oils.  相似文献   

5.
Organic matter from the Lower Paleozoic strata on the northern margin of the Tarim Basin of China contains abundant alkylcyclohexanes.The n-alkylcyclohexanes show the even(C16-C20) and odd (C17-C21) carbon number predominance and smooth distribution,and the methyl-n-alkylcycolhexanes the odd carbon number predominance(C17-C21) and smooth distribution,which may be related to their depositional environments and organic precursors.There are some differences in carbon number distribution between the two series of monocyclic alkanes and the n-alkanes marked by smooth distribution.The genetic relationship between the three series of compounds needs to be further studied.  相似文献   

6.
The thermodynamic stability of selected alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers in the C27, C28, C29, C30 and C31 families were calculated using molecular mechanics (MM2) methods and, where possible, calculated equilibrium ratios of certain isomers were compared with observed ratios of isomers in thermally mature crude oil samples. Those calculated and observed ratios having similar values include: (1) the relative distributions among 17β(H)/17α(H) and 21β(H)/21α(H)-hopanes including the absence of the 17β(H),21β(H)- and 17α(H),21α(H)-hopanes; (2) the 22R/22S ratios in 30-methyl-17α-hopane and 30-methyl-17β-moretane; (3) the relative distributions among 17α(H)/17β(H)- and 21α(H)/21β(H)-28,30-bisnorhopanes and among 25,28,30-trisnorhopanes, including the relatively greater stability of 17β(H) isomers in contrast to the regular hopane series; and (4) the ratios of 28(18−17S)abeo hopanes with respect to their unrearranged counterparts including the C27 compounds, Ts/Tm.  相似文献   

7.
A benzene-methanol extract of an Australian Permo-Carboniferous torbanite from New South Wales was analyzed by a computerized gas chromatographic-mass spectrometric system. Acidic and neutral fractions of the extract contained C12_C27 straight chain, saturated acids; C13-C29 straight chain hydrocarbons; cyclohexyl alkanes; pentacyclic triterpanes; naphthalene, anthracene, biphenyl, benzanthracene, terphenyl, and perylene, and many methyl substituted analogs of these polycyclic aromatic systems. It is concluded that nearly all of these compounds were derived from Botryococcus braunii, a major contributor to the biomass of Australian torbanite.  相似文献   

8.
Earlier studies have shown that an unusual C27 triterpane is abundant in sediments from the Norwegian Continental Shelf and the North Sea. This compound was assigned the tentative structures 24,28,30-trisnormoretane or 25,28,30-trisnormoretane, but we have now shown from detailed retention time measurements and a reinterpretation of the mass spectral data that its correct structure is 17α(H),18α (H),21β(H)-25,28,30-trisnorhopane. Two other triterpanes, 25,28,30-trisnormoretane and 28,30-bisnormoretane, have also been identified as minor constituents of extracts of sediments from the North Sea. Possible origins for these compounds are discussed.  相似文献   

9.
Novel side chain methylated and hexacyclic hopanes have been identified in coals and oils from around the world. Extended hopanes (>C32) with an additional methyl in the side chain (“isohopanes”) were identified by comparison with synthetic standards. The major C33-C35 isohopanes are 31-methylbishomohopanes, 32-methyltrishomohopanes and 33-methyltetrakishomohopanes. Extended hopanes methylated at C-29 were not detected. The 17α(H),21β(H)-31-methyltrishomohopanes show four peaks on gas chromatography because of the extra asymmetric carbon at C-31. Like regular hopanes, the isohopanes extend beyond C35. Low concentrations of novel hexacyclic hopanes having 35 or more carbons were also detected in oils and coal extracts. The C35 hexacyclic hopanes were identified as 29-cyclopentylhopanes. Isohopanes are released from the kerogen by hydrous pyrolysis and hydropyrolysis. The 22S/(22S + 22R) ratio for 31-methylbishomohopanes and other isohopanes is around 0.60 at equilibrium in geological samples. They isomerize slightly more slowly than regular C33 hopanes. Isohop-17(21)-enes, 2α-methylisohopanes and two series of rearranged isohopanes were tentatively identified. Isohopanes can be biodegraded to form the corresponding 25-norhopanes. When 25-norhopanes are not formed, the isohopanes are much more resistant to biodegradation than regular hopanes. In biodegraded oil seeps from Greece, 30-norisohopanes were tentatively assigned. The composition and relative abundance of C33 and C34 isohopanes in a worldwide set of coals and crude oils was determined. Isohopanes are abundant in coal and coal-generated oils, where they can account for more than 5% of all extended hopanes, and low in abundance in oils from source rocks deposited under anoxic conditions.  相似文献   

10.
The isoprenoid alkanes present in a seep oil from Costa Rica have been examined using gas chromatography and mass spectrometry. In addition to the predominance of the C16 and C18-C20 regular isoprenoid alkanes, the C21 and C23-C25 regular isoprenoid alkanes were identified. The C26, C28 and C30 regular isoprenoid alkanes were tentatively identified. No evidence for the regular C17, C22 or C27 isoprenoid alkanes was found. The compounds 3,7,11- trimethyltetradecane and 3,7,11-trimethylhexadecane were tentatively identified. It is suggested that a higher regular isoprenoid structure (or structures) is required in addition to phytol to account for the distribution of isoprenoid alkanes.  相似文献   

11.
A pair of isomeric C28-bisnorlupanes was detected in high abundance in the saturated hydrocarbon fractions of Tertiary sediments from West Greenland and the Gulf of Suez. The compounds were isolated by preparative gas chromatography and the isomers separated by liquid chromatography. On the basis of mass spectrometric and nuclear magnetic resonance data the structures were assigned to be 17α(H)- and 17ß(H)-23,28-bisnorlupane, respectively. The significance of nuclear demethylated triterpanes is discussed in terms of their generally high abundance, their uneven distribution within a given facies, and their worldwide occurrence.  相似文献   

12.
The Coalport (Shropshire, U.K.) Tar Tunnel bitumen has been known since 1787 and the first geochemical data are reported here. The bitumen was analyzed for molecular markers useful for correlational studies. Gas chromatographic analysis of aliphatic and aromatic hydrocarbons failed to detect any specific major components normally used for genetic correlational and maturational studies. A search for minor and trace components by gas chromatographic-mass fragmentographic analysis showed the presence of triterpenoid hydrocarbons primarily of the 17α (H)-hopane series (C27 to C35, ex. C28) and a C26 to C31 series of ring A/B demethylated hopanes. Two homologous sterane series (C27 to C29) of the 5α, 14β, 17β (H)-sterane and 13β, 17α (H)-diasterane type were also detected. Pophyrins of the DPEP and etio series (C27 to C41, DPEP/etio > 1) were also found. Characterization of their alkyl substitution pattern demonstrated C1, C2 and C3 substituents on the pyrole moieties of the parent petroporphyrins.The molecular markers detected in this bitumen indicate its biogenic origin and show evidence of diagenetic and geothermal maturation processes. The overall geochemical characteristics of the Coalport Tar Tunnel bitumen suggest that it corresponds to a well matured crude oil, which was heavily altered by in-reservoir biodegradation or close to surface exposure.  相似文献   

13.
The black shale samples collected from two Neogene formations in the Klias Peninsula area, West Sabah, have been assessed and characterized in details by gas chromatography, gas chromatography-mass spectrometry and a variety of organic geochemical parameters. The aims of this study are to describe the characteristics of organic matter of these sediments in terms of source/type of the organic matter, assess its thermal maturity and paleoenvironment of deposition, based primarily on biomarker distributions. The results of both formations do not reveal significant differences within the rock extracts. The gas chromatograms of the saturated hydrocarbon fractions of the Setap Shale and the Belait formations displayed monomodal n-alkane distributions and nearly identical regular sterane compositions with a predominance of C27 regular steranes. These are consistent with open marine depositional environments dominated by marine biological matter. Another related feature of these rock extracts is the presence of a high relative abundance of gammacerane, indicating anoxic marine hypersaline source depositional environment. The relatively high abundance of common land plant-derived biomarkers, such as bicadinanes and oleananes, is a clear indication of a major terrigenous input to the source of the extractable organic matter. The predominance of oleanane biomarkers in both formations is indicative of angiospermis input and Tertiary source rocks. The high C29/C30 hopane ratios, moderate development of C33–C35 hopanes, high abundance of tricyclic terpanes and a slight predominance of C27 regular sterane over C28 and C29 steranes are characteristic features tending to suggest a significant marine influence on these source rocks, thereby suggesting a mixed source input. The 22S/(22S+22R)C32 hopane ratio has reached equilibrium, and this is supported by the high maturity level as indicated by the 22S/22SC31–33 extended hopane ratios and 20S/(20S+20R)C29 regular steranes ratios.  相似文献   

14.
The Qinjiatun and Qikeshu oilfields are new Mesozoic petroleum exploration targets in Lishu Fault Depression of Songliao Basin, northeastern China. Currently, researches on geochemistry of crude oils from Qinjiatun and Qikeshu oilfields have not been performed and the genesis of oils is still uncertain. Based on bulk analyses, the crude oils in the Qinjiatun and Qikeshu oilfields of Lishu Fault Depression from the Lower Cretaceous can be classified as three types. TypeⅠoils, from Quantou and Denglouku formations of Qikeshu oilfield, are characterized by high C24tetracyclic terpane/C26tricyclic terpanes ratios, low gammacerance/C30hopane ratios, tricyclic terpanes/hopanes ratios, C29Ts/C29norhopane ratios and 17α(H)-diahopane/17α(H)-hopane ratios, indicating a brackish lacustrine facies. TypeⅡoils, from Shahezi Formation of Qikeshu oilfield show low C24tetracyclic terpane/C26tricyclic terpanes, high gammacerance/C30hopane ratios, tricyclic terpanes/hopanes ratios, C29Ts/C29 norhopane and C30diahopane/C30hopane ratios, thus suggesting that they originated from source rocks deposited in a weak reducing brackish lacustrine environment, or clay-rich sediments. Type oilsⅢ, from some wells of Qikeshu oilfield have geochemical characteristics intermediate between those two types and may be mixture of typeⅠand Ⅱoils.  相似文献   

15.
Distinctive compositional features of cyclic saturated hydrocarbon biomarkers have been established in oils from the main petroliferous lithostratigraphic complexes of various structural zones in the Timan-Pechora petroliferous province (TPPP). Four geochemical families (types) of oils in TPPP are recognized based on the variations in the geochemical parameters of steranes and terpanes including sterane ratios C27/C29 and C28/C29, K1 mat and K2 mat, diasterane/regular sterane, pregnane (C21–22)/sterane (C21–22 + C27–29), as well as terpane Ts/Tm parameters, adiantane C29/hopane C30, neoadiantane/adiantane, tryciclic terpane/pentacyclic terpane, hopane/sum of C29 steranes, etc. The distribution of various types of oil in the sedimentary sequence of TPPP makes it possible to infer source rocks for each of the four selected types.  相似文献   

16.
The analyses, by gas chromatography and gas chromatography/mass spectrometry, of the triterpane concentrate of crude oils sampled from various oil fields of the Tertiary Niger delta have revealed the ubiquitous presence of a series of C24–C27 tetracyclic alkanes likely to be novel degraded triterpanes. The presence in the crude oils of a C25 tricyclic alkane, apparently structurally related to the tetracyclanes, seemed consistent with the hypothesis of sequential cleavages of the terminal rings of precursor pentacyclic triterpenoid derivatives with increasing thermal transformation of the respective petroleums.The degraded triterpanes might be useful for assessing the stages of thermal evolution of petroleum in the reservoir. A possible application, to oil exploration, of the expected variations in the concentration of the polycyclanes in crude oils with different thermal histories would be in distinguishing primary (immature) oils from mature but biodegraded oils.  相似文献   

17.
Lipids extracted from lacustrine deposits in the paleolake Qarhan of the Qaidam basin in the northeastern Tibetan Plateau were determined by conventional gas chromatography-mass spectrometry. Several series of biomarkers were identified, mainly including n-alkanes, n-alkan-2-ones, n-alkanoic acids, branched alkanes, triterpenoids and steroids, indicative of various biogenic contributions. On the basis of cluster analysis, the n-C15, n-C17, n-C19 alkanes were proposed to be derived from algae and/or photosynthetic bacteria, the n-C21, n-C23, n-C25 homologues from aquatic plants, and the n-C29, n-C31 homologues from vascular plants. In contrast, the n-C27 alkane is not categorized in the n-C29 and n-C31 group of alkanes, probably due to more complex origins including both aquatic and vascular plants, and/or differential biodegradation. Stratigraphically, layers-2, 4 and 5 were found to show a close relationship in n-alkane distribution, associated with a positive shift in carbon isotope composition of bulk organic matter (δ13Corg), inferring a cold/dry period. Layers-1 and 6 were clustered together in association with a negative δ13Corg, excursion, probably indicating a relatively warm/humid climate. The potential coupling between the n-alkane distributions and δ13Corg, suggests a consequence of vegetation change in response to climate change, with the late MIS3 being shown to be unstable, thought to be the climatic optimum in the Tibetan Plateau. Our results suggest that the cluster analysis used in this study probably provides an effective and authentic method to investigate the n-alkane distribution in paleolake sediments.  相似文献   

18.
Geochemical characterisation of 18 crude oils from the Potwar Basin (Upper Indus), Pakistan is carried out in this study. Their relative thermal maturities, environment of deposition, source of organic matter (OM) and the extent of biodegradation based on the hydrocarbon (HC) distributions are investigated. A detailed oil-oil correlation of the area is established. Gas chromatography-mass spectrometry (GC-MS) analyses and bulk stable carbon and hydrogen isotopic compositions of saturated and aromatic HC fractions reveals three compositional groups of oils. Most of the oils from the basin are typically generated from shallow marine source rocks. However, group A contains terrigenous OM deposited under highly oxic/fluvio-deltaic conditions reflected by high pristane/phytane (Pr/Ph), C30 diahopane/C29Ts, diahopane/hopane and diasterane/sterane ratios and low dibenzothiophene (DBT)/phenanthrene (P) ratios. The abundance of C19-tricyclic and C24-tetracyclic terpanes are consistent with a predominant terrigenous OM source for group A. Saturated HC biomarker parameters from the rest of the oils show a predominant marine origin, however groups B and C are clearly separated by bulk δ13C and δD and the distributions of the saturated HC fractions supporting variations in source and environment of deposition of their respective source rocks. Moreover, various saturated HC biomarker ratios such as steranes/hopanes, diasteranes/steranes, C23-tricyclic/C30 hopane, C28-tricyclic/C30 hopane, total tricyclic terpanes/hopanes and C31(R + S)/C30 hopane show that two different groups are present. These biomarker ratios show that group B oils are generated from clastic-rich source rocks deposited under more suboxic depositional environments compared to group C oils. Group C oils show a relatively higher input of algal mixed with terrigenous OM, supported by the abundance of extended tricyclic terpanes (up to C41+) and steranes.Biomarker thermal maturity parameters mostly reached to their equilibrium values indicating that the source rocks for Potwar Basin oils must have reached the early to peak oil generation window, while aromatic HC parameters suggest up to late oil window thermal maturity. The extent of biodegradation of the Potwar Basin oils is determined using various saturated HC parameters and variations in bulk properties such as API gravity. Groups A and C oils are not biodegraded and show mature HC profiles, while some of the oils from group B show minor levels of biodegradation consistent with high Pr/n-C17, Ph/n-C18 and low API gravities.  相似文献   

19.
The Namoi Formation in the Werrie Syncline, north and west of Tamworth, is part of the well-preserved Devonian–Carboniferous fore arc in the New England Fold Belt. The formation is between 640–914 m thick and consists of dominant olive-green mudstones with lenses of sandstone and oolitic limestone. To assess shale gas prospectivity, we analysed five outcrop samples from the Namoi Formation in the Keepit area. Well-preserved aliphatic and aromatic hydrocarbon fractions do not show evidence of weathering or biodegradation. n-Alkanes in all samples have a unimodal distribution maximising at C26 to C28. Little odd-to-even n-alkane carbon number predominance and relatively low Pr/n-C17 and Ph/n-C18 ratios are consistent with a high thermal maturity. Based on the distribution of alkylnaphthalenes and alkylphenanthrenes, the Namoi Formation is in the gas window. Calibration of the methylphenanthrene index and ratio with vitrinite reflectance suggests a calculated reflectance around 2.1%, which given a normal geothermal gradient is equivalent to a maximum temperature of 205°C for the deepest burial of the formation. There is a dominance of parent polycyclic aromatic hydrocarbons (PAH) over alkylated PAHs, supporting a high thermal maturity. Some samples contain biomarkers suggestive of a marine depositional environment, including the C30 sterane index and the C31/C30 hopane ratio. The Namoi Formation is a prospective shale-gas source, as it has been buried sufficiently to be well within the gas window. Where it is exposed at the surface gas will have been lost, but elsewhere it will be buried beneath other sediments and may still retain gas. Key exploration uncertainties include information on organic richness, lateral variation in thermal maturity, mineralogy, and porosity–permeability relationships.  相似文献   

20.
The lower part of Shayi Member (Es1x Sub-Member) composed mainly of dark mudstones and shales is the dominant source rocks for the Lixian Slope. Based on organic petrology, organic and inorganic geochemistry analyses of several mudstone and shale samples selected from Es1x Sub-Member, this research provides an overview on type, origin and thermal maturity of organic matters, as well as depositional environment of Es1x Sub-Member. Kerogen microscopy observation shows that the macerals are dominated by sapropelinite with a significant mixture of vitrinite and inertinite, indicating that aquatic algal-bacterial organic matter inputs are dominate with a significant contribution of terrigenous organic matter inputs. This statement is supported by n-alkane patterns distribution characteristics, high (n-C21 + n-C22)/(n-C28 + n-C29) values (average = 1.77), the plot of high Ph/n-C18 values (average = 4.15) versus low Pr/n-C17 values (average = 1.13), and high proportion of C27 sterane and C29 sterane (average = 37.7 and 42.0%, respectively). In addition, the rather low Pr/Ph values (average = 0.38), high gammacerane index values (average = 0.30), high V/Ni and V/(V + Ni) values (average = 11.84 and 0.89, respectively), high Sr/Ba and Sr/Cu values (average = 8.54 and 108, respectively), indicative of a saline water condition and a anoxic depositional environment. The low C29 sterane ααα 20S/(20S + 20R), C29 sterane αββ/(αββ + ααα), C31 homohopane 22S/(22S + 22R), C32 homohopane 22S/(22S + 22R), Ts/(Ts + Tm) values and relatively high moretane/hopane values show that the level of thermal maturity of organic matters in Es1x Sub-Member are low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号