首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Common-reflection-surface (CRS) stack for common offset   总被引:8,自引:0,他引:8  
We provide a data-driven macro-model-independent stacking technique that migrates 2D prestack multicoverage data into a common-offset (CO) section. We call this new process the CO common-reflection-surface (CRS) stack. It can be viewed as the generalization of the zero-offset (ZO) CRS stack, by which 2D multicoverage data are stacked into a well-simulated ZO section. The CO CRS stack formula can be tailored to stack P-P, S-S reflections as well as P-S or S-P converted reflections. We point out some potential applications of the five kinematic data-derived attributes obtained by the CO CRS stack for each stack value. These include (i) the determination of the geometrical spreading factor for reflections, which plays an important role in the construction of the true-amplitude CO section, and (ii) the separation of the diffractions from reflection events. As a by-product of formulating the CO CRS stack formula, we have also derived a formula to perform a data-driven prestack time migration.  相似文献   

2.
Interval velocity analysis using post‐stack data has always been a desire, mainly for 3D data sets. In this study we present a method that uses the unique characteristics of migrated diffractions to enable interval velocity analysis from three‐dimensional zero‐offset time data. The idea is to perform a standard three‐dimensional prestack depth migration on stack cubes and generate three‐dimensional common image gathers that show great sensitivity to velocity errors. An efficient ‘top‐down’ scheme for updating the velocity is used to build the model. The effectiveness of the method is related to the incorporation of wave equation based post‐stack datuming in the model building process. The proposed method relies on the ability to identify diffractions along redatumed zero‐offset data and to analyse their flatness in the migrated local angle domain. The method can be considered as an additional tool for a complete, prestack depth migration based interval velocity analysis.  相似文献   

3.
Prestack image volumes may be decomposed into specular and non‐specular parts by filters defined in the dip‐angle domain. For space‐shift extended image volumes, the dip‐angle decomposition is derived via local Radon transform in depth and midpoint coordinates, followed by an averaging over space‐shifts. We propose to employ prestack space‐shift extended reverse‐time migration and dip‐angle decomposition for imaging small‐scale structural elements, considered as seismic diffractors, in models with arbitrary complexity. A suitable design of a specularity filter in the dip‐angle domain rejects the dominant reflectors and enhances diffractors and other non‐specular image content. The filter exploits a clear discrimination in dip between specular reflections and diffractions. The former are stationary at the specular dip, whereas the latter are non‐stationary without a preferred dip direction. While the filtered image volume features other than the diffractor images (for example, noise and truncation artefacts are also present), synthetic and field data examples suggest that diffractors tend to dominate and are readily recognisable. Averaging over space‐shifts in the filter construction makes the reflectors? rejection robust against migration velocity errors. Another consequence of the space‐shift extension and its angle‐domain transforms is the possibility of exploring the image in a multiple set of common‐image gathers. The filtered diffractions may be analysed simultaneously in space‐shift, scattering‐angle, and dip‐angle image gathers by means of a single migration job. The deliverables of our method obviously enrich the processed material on the interpreter's desk. We expect them to further supplement our understanding of the Earth's interior.  相似文献   

4.
Seismic tomography is a well‐established approach to invert smooth macro‐velocity models from kinematic parameters, such as traveltimes and their derivatives, which can be directly estimated from data. Tomographic methods differ more with respect to data domains than in the specifications of inverse‐problem solving schemes. Typical examples are stereotomography, which is applied to prestack data and Normal‐Incidence‐Point‐wave tomography, which is applied to common midpoint stacked data. One of the main challenges within the tomographic approach is the reliable estimation of the kinematic attributes from the data that are used in the inversion process. Estimations in the prestack domain (weak and noisy signals), as well as in the post‐stack domain (occurrence of triplications and diffractions leading to numerous conflicting dip situations) may lead to parameter inaccuracies that will adversely impact the resulting velocity models. To overcome the above limitations, a new tomographic procedure applied in the time‐migrated domain is proposed. We call this method Image‐Incident‐Point‐wave tomography. The new scheme can be seen as an alternative to Normal‐Incidence‐Point‐wave tomography. The latter method is based on traveltime attributes associated with normal rays, whereas the Image‐Incidence‐Point‐wave technique is based on the corresponding quantities for the image rays. Compared to Normal‐Incidence‐Point‐wave tomography the proposed method eases the selection of the tomography attributes, which is shown by synthetic and field data examples. Moreover, the method provides a direct way to convert time‐migration velocities into depth‐migration velocities without the need of any Dix‐style inversion.  相似文献   

5.
地震绕射波是地下非连续性地质体的地震响应,绕射波成像对地下断层、尖灭和小尺度绕射体的识别具有重要的意义.在倾角域共成像点道集中,反射波同相轴表现为一条下凸曲线,能量主要集中在菲涅耳带内,绕射波能量则比较发散.由于倾角域菲涅耳带随偏移距变化而存在差异,因此本文提出一种在倾角-偏移距域道集中精确估计菲涅耳带的方法,在各偏移距的倾角域共成像点道集中实现菲涅耳带的精确切除,从而压制反射波.在倾角-偏移距域道集中还可以分别实现绕射波增强,绕射波同相轴相位校正,因此能量弱的绕射波可以清晰地成像.在倾角域共成像点道集中,反射波同相轴的最低点对应于菲涅耳带估计所用的倾角,因此本文提出一种在倾角域共成像点道集中直接自动拾取倾角场的方法.理论与实际资料试算验证了本文绕射波成像方法的有效性.  相似文献   

6.
Conventional seismic data processing methods based on post‐stack time migration have been playing an important role in coal exploration for decades. However, post‐stack time migration processing often results in low‐quality images in complex geological environments. In order to obtain high‐quality images, we present a strategy that applies the Kirchhoff prestack time migration (PSTM) method to coal seismic data. In this paper, we describe the implementation of Kirchhoff PSTM to a 3D coal seam. Meanwhile we derive the workflow of 3D Kirchhoff PSTM processing based on coal seismic data. The processing sequence of 3D Kirchhoff PSTM includes two major steps: 1) the estimation of the 3D root‐mean‐square (RMS) velocity field; 2) Kirchhoff prestack time migration processing. During the construction of a 3D velocity model, dip moveout velocity is served as an initial migration velocity field. We combine 3D Kirchhoff PSTM with the continuous adjustment of a 3D RMS velocity field by the criteria of flattened common reflection point gathers. In comparison with post‐stack time migration, the application of 3D Kirchhoff PSTM to coal seismic data produces better images of the coal seam reflections.  相似文献   

7.
State‐of‐the‐art 3D seismic acquisition geometries have poor sampling along at least one dimension. This results in coherent migration noise that always contaminates pre‐stack migrated data, including high‐fold surveys, if prior‐to‐migration interpolation was not applied. We present a method for effective noise suppression in migrated gathers, competing with data interpolation before pre‐stack migration. The proposed technique is based on a dip decomposition of common‐offset volumes and a semblance‐type measure computation via offset for all constant‐dip gathers. Thus the processing engages six dimensions: offset, inline, crossline, depth, inline dip, and crossline dip. To reduce computational costs, we apply a two‐pass (4D in each pass) noise suppression: inline processing and then crossline processing (or vice versa). Synthetic and real‐data examples verify that the technique preserves signal amplitudes, including amplitude‐versus‐offset dependence, and that faults are not smeared.  相似文献   

8.
共接收点倾斜叠加波动方程偏移,本质上是一种叠前偏移方法.每给定一个斜率P,对经过叠前(动校正前)常规处理的地震记录中的各共接收点道集,沿直线t=τ+px进行倾斜叠加,就形成一个共接收点倾斜叠加剖面.对之进行波动方程偏移,该偏移剖面将代表地下真实构造.对一系列的p,我们可以得到一系列这样的偏移剖面.对它们作共接收点叠加,偏移叠加剖面的信噪比将超过水平叠加剖面.本文导出了在均匀、水平层状及非均匀介质条件下的共接收点倾斜叠加波动方程偏移算法.  相似文献   

9.
We present an extension of the Common Reflection Surface (CRS) stack that provides support for an arbitrary top surface topography. CRS stacking can be applied to the original prestack data without the need for any elevation statics. The CRS-stacked zero- offset section can be corrected (redatumed) to a given planar level by kinematic wave field attributes. The seismic processing results indicate that the CRS stacked section for rugged surface topography is better than the conventional stacked section for S/N ratio and better continuity of reflection events. Considering the multiple paths of zero-offset rays, the method deals with reflection information coming from different dips and performs the stack using the method of dip decomposition, which improves the kinematic and dynamic character of CRS stacked sections.  相似文献   

10.
For pre‐stack phase‐shift migration in homogeneous isotropic media, the offset‐midpoint travel time is represented by the double‐square‐root equation. The travel time as a function of offset and midpoint resembles the shape of Cheops’ pyramid. This is also valid for transversely isotropic media with a vertical symmetry axis. In this study, we extend the offset‐midpoint travel‐time pyramid to the case of 2D transversely isotropic media with a tilted symmetry axis. The P‐wave analytical travel‐time pyramid is derived under the assumption of weak anelliptical property of the tilted transverse isotropy media. The travel‐time equation for the dip‐constrained transversely isotropic model is obtained from the depth‐domain travel‐time pyramid. The potential applications of the derived offset‐midpoint travel‐time equation include pre‐stack Kirchhoff migration, anisotropic parameter estimation, and travel‐time calculation in transversely isotropic media with a tilted symmetry axis.  相似文献   

11.
12.
输出道成像方式的共反射面元叠加方法I——理论   总被引:8,自引:8,他引:8       下载免费PDF全文
共反射面元(Common Reflection Surface)叠加是一种独立于宏观速度模型的零偏移距成像方法,该方法属于典型的克希霍夫型成像方法. 根据成像方式的不同,克希霍夫型成像方法可以分为两大类:输出道成像方式和输入道成像方式. 考察共反射面元叠加方法,它属于输入道成像方式. 本文基于理论模型数据,实现了输出道成缘方式的CRS叠加方法. 相比传统的输入道成像方式,它具有能够保证大偏移距反射信息的成像精度和计算效率较高的优点,而且更加容易推广到三维情形.  相似文献   

13.
倾角分解共反射面元叠加方法   总被引:13,自引:4,他引:9       下载免费PDF全文
共反射面元(Common Reflection Surface)叠加是一种独立于宏观速度模型的零偏移距剖面成像方法,传统的CRS叠加实现是以数据驱动的方式对属性参数进行自动搜索并对其进行优化合成相应的CRS叠加算子,通过该算子进行叠加能够得到信噪比和连续性更高的零偏移距剖面.但是数据驱动的实现方式带来了不可避免的“倾角歧视现象”,它造成了弱有效反射信号损失和运动学特征失真的问题.本文提出的倾角分解CRS叠加方法成功解决了上述问题,使CRS叠加方法更具实用价值.  相似文献   

14.
The common reflection surface (CRS) stack method is known as a generalized stacking velocity analysis tool and was originally introduced as a data-driven method to simulate zero-offset sections. However, this method has some difficulties in imaging complex structures and low-quality data. The problem of conflicting dips is one of the drawbacks of the CRS method addressed in many studies. The common diffraction surface (CDS) method was explicitly introduced to overcome this problem. In one study, the problem was resolved by combination of the CDS method and the common offset CRS method. The method was called the common offset CDS method showed successful application on improving image quality in semi-complex media. In this study, we combined the partial CRS with the CDS to derive the partial CDS for more efficient resolve of the conflicting dips problem. In the partial CDS, thresholds in the angle spectrum were removed for full contribution of all possible dips to have volume of operators for a sample point. The aperture definition in the partial CDS is the same as in the partial CRS, where an offset and time variant aperture is used. The new method was applied on a simple synthetic data set with much diffraction points imbedded in the model. Then it was applied to a semicomplex data set to enhance the body of mud volcanoes and faults. For better comparison, it was applied to two more real data sets from a complex overthrust zone to improve the seismic quality and remove the geological ambiguities in the interpretation. In the synthetic data example, more conflicting dips were resolved than in the other methods. In all real data examples, the enhanced partial CDS data were depth-migrated to compare them with the pre-stack depth migration of partial CRS gathers. More details of the geological structures can be observed in the new results.  相似文献   

15.
The 3D common-reflection-surface stack is a tool to simulate zero-offset sections from the prestack data. In conventional implementations conflicting dip situations, i.e., the contribution of more than one stacking operator per output location, are not taken into account. This leads to stacked sections with fragmentary events and to incomplete sets of stacking parameters. Subsequent applications based on the results of the common-reflection-surface stack and its attributes will show deteriorated quality.
In this paper, I present a modified workflow for the handling of the conflicting dip problem in context of the 3D common-reflection-surface stack. The strategy utilizes the path-summation technique to obtain an improved input for the conflicting dip search in the zero-offset domain. The actual detection is done by means of an adapted peak detection algorithm. For each detected event consistent sets of attributes are obtained by a newly introduced search step.
Two 3D real data applications show the applicability of the proposed technique. The strategy proves to resolve most of the conflicting dip situations even for poor signal-to-noise ratio. With only moderate additional computational cost the presented method provides superior results compared to the conventional 3D common-reflection-surface stack.  相似文献   

16.
输出道方式的共反射面元叠加方法Ⅱ——实践   总被引:7,自引:0,他引:7       下载免费PDF全文
CRS MZO方法是一种以输出道成像方式合成零偏移距剖面的共反射面元(Common Reflection Surface)叠加算法,它以完全不同的方式实现了CRS叠加.理论I已经对CRS MZO叠加方法的理论进行了详细介绍,本文进一步将CRS MZO方法用于对实际资料的处理.处理结果表明CRS MZO方法有效地改善了零偏移距剖面的成像质量,体现了CRS叠加理论的特点.在结合倾角分解策略消除了倾角歧视现象后,倾角分解CRS MZO方法完全能够用于处理实际数据,为得到高质量的零偏移距剖面提供了一个新的手段.  相似文献   

17.
Various seismic imaging methods are introduced to resolve some of the possible ambiguities of seismic interpretation in complex structures. Reducing dependency of imaging techniques on velocity or using diffraction energy for imaging more structural details are the main topics of the imaging research. In this study, we try to improve the seismic image quality in semi-complex structures by combining the common reflection surface (CRS) method with a diffraction based scheme in the common-offset domain. Previously introduced partial CRS and common offset CRS methods exhibited reliable performance in imaging complex media. Here, we were looking for stable and efficient solutions, preserving advantages of the previous methods. Herewith, the proposed operator fits better to diffractions than to reflections. Therefore, we call it the commonoffset common diffraction surface stack (CO CDS). In a previous study, improvement of the quality of seismic image by the CRS method was achieved by combination of the CDS method with the partial CRS. This resulted in the introduction of the partial CDS. Initially, in this study, the common-offset CRS traveltime equation was modified to the common-offset CDS. The hypothetical shot reflector experiment in the CRS method was changed to shot diffraction point experiment. In the introduced operator, two wavefront curvatures, observed at receivers positions, are set equal in order to satisfy the diffraction condition. In the proposed method, we search for accurate attribute sets for each considered offset individually, and then form a new operator by four coherent attributes. Application of the common- offset CDS method on synthetic and field data shows more details of the geological structures with higher quality, while preserving continuity of reflection events. The proposed method is, however, more expensive than the partial and common offset CRS for large dataset.  相似文献   

18.
Imaging pre‐salt reflections for data acquired from the coastal region of the Red Sea is a task that requires prestack migration velocity analysis. Conventional post‐stack time processing lacks the lateral inhomogeneity capability, necessary for such a problem. Prestack migration velocity analysis in the vertical time domain reduces the velocity–depth ambiguity that usually hampers the performance of prestack depth‐migration velocity analysis. In prestack τ‐migration velocity analysis, the interval velocity model and the output images are defined in τ (i.e. vertical time). As a result, we avoid placing reflectors at erroneous depths during the velocity analysis process and thus avoid inaccurately altering the shape of the velocity model, which in turn speeds up the convergence to the true model. Using a 1D velocity update scheme, the prestack τ‐migration velocity analysis produces good images of data from the Midyan region of the Red Sea. For the first seismic line from this region, only three prestack τ‐migration velocity analysis iterations were required to focus pre‐salt reflections in τ. However, the second line, which crosses the first line, is slightly more complicated and thus required five iterations to reach the final, reasonably focused, τ‐image. After mapping the images for the two crossing lines to depth, using the final velocity models, the placements of reflectors in the two 2D lines were consistent at their crossing point. Some errors occurred due to the influence of out‐of‐plane reflections on 2D imaging. However, such errors are identifiable and are generally small.  相似文献   

19.
The stacking velocity best characterizes the normal moveout curves in a common-mid-point gather, while the migration velocity characterizes the diffraction curves in a zero-offset section as well as in a common-midpoint gather. For horizontally layered media, the two velocity types coincide due to the conformance of the normal and the image ray. In the case of dipping subsurface structures, stacking velocities depend on the dip of the reflector and relate to normal rays, but with a dip-dependent lateral smear of the reflection point. After dip-moveout correction, the stacking velocities are reduced while the reflection-point smear vanishes, focusing the rays on the common reflection points. For homogeneous media the dip-moveout correction is independent of the actual velocity and can be applied as a dip-moveout correction to multiple offset before velocity analysis. Migration to multiple offset is a prestack, time-migration technique, which presents data sets which mimic high-fold, bin-centre adjusted, common-midpoint gathers. This method is independent of velocity and can migrate any 2D or 3D data set with arbitrary acquisition geometry. The gathers generated can be analysed for normal-moveout velocities using traditional methods such as the interpretation of multivelocity-function stacks. These stacks, however, are equivalent to multi-velocity-function time migrations and the derived velocities are migration velocities.  相似文献   

20.
Extracting true amplitude versus angle common image gathers is one of the key objectives in seismic processing and imaging. This is achievable to different degrees using different migration techniques (e.g., Kirchhoff, wavefield extrapolation, and reverse time migration techniques) and is a common tool in exploration, but the costs can vary depending on the selected migration algorithm and the desired accuracy. Here, we investigate the possibility of combining the local‐shift imaging condition, specifically the time‐shift extended imaging condition, for angle gathers with a Kirchhoff migration. The aims are not to replace the more accurate full‐wavefield migration but to offer a cheaper alternative where ray‐based methods are applicable and to use Kirchhoff time‐lag common image gathers to help bridge the gap between the traditional offset common image gathers and reverse time migration angle gathers; finally, given the higher level of summation inside the extended imaging migration, we wish to understand the impact on the amplitude versus angle response. The implementation of the time‐shift imaging condition along with the computational cost is discussed, and results of four different datasets are presented. The four example datasets, two synthetic, one land acquisition, and a marine dataset, have been migrated using a Kirchhoff offset method, a Kirchhoff time‐shift method, and, for comparison, a reverse time migration algorithm. The results show that the time‐shift imaging condition at zero time lag is equivalent to the full offset stack as expected. The output gathers are cleaner and more consistent in the time‐lag‐derived angle gathers, but the conversion from time lag to angle can be considered a post‐processing step. The main difference arises in the amplitude versus offset/angle distribution where the responses are different and dramatically so for the land data. The results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers. The same disadvantages with a ray‐based approach will apply using the extended imaging condition relative to a wave equation angle gather solution. Nevertheless, using this approach allows one to explore the relationship between the velocity model and focusing of the reflected energy, to use the Radon transformation to remove noise and multiples, and to generate consistent products from a ray‐based migration and a full‐wave equation migration, which can then be interchanged depending on the process under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号