首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantifying groundwater recharge is a fundamental part of groundwater resource assessment and management, and is requisite to determining the safe yield of an aquifer. Natural groundwater recharge in arid and semi-arid regions comprises several mechanisms: in-place, mountain-front, and mountain-block recharge. A field study was undertaken in a high-plain basin in the Altiplano region of northern Chile to quantify the magnitude of in-place and mountain-front recharge. Water fluxes corresponding to both recharge mechanisms were calculated using heat as a natural tracer. To quantify in-place recharge, time-series temperature data in cased boreholes were collected, and the annual fluctuation at multiple depths analyzed to infer the water flux through the unsaturated zone. To quantify mountain-front recharge, time-series temperature data were collected in perennial and ephemeral stream channels. Streambed thermographs were analyzed to determine the onset and duration of flow in ephemeral channels, and the vertical water fluxes into both perennial and ephemeral channels. The point flux estimates in streambeds and the unsaturated zone were upscaled to channel and basin-floor areas to provide comparative estimates of the range of volumetric recharge rates corresponding to each recharge mechanism. The results of this study show that mountain-front recharge is substantially more important than in-place recharge in this basin. The results further demonstrate the worth of time-series subsurface temperature data to characterize both in-place and mountain-front recharge processes.  相似文献   

2.
For the determination of groundwater recharge processes in arid environments, vadose zone water fluxes and water storage should be considered. To better understand and quantify vadose zone processes influencing groundwater recharge, a soil column experimental setup has been developed that mimics arid atmospheric conditions and measures water and temperature fluxes in high temporal and spatial resolution. The focus of the experiment was on the determination of water infiltration, redistribution, evaporation and percolation under non-isothermal conditions. TDR rod sensors and a specific TDR “Taupe” cable sensor were used for water content measurements and allowed the infiltration fronts to be traced over the whole column length. Applying single irrigations of different amount and intensity showed the applicability of the experimental setup for the measurement of water movement in the unsaturated soil column.  相似文献   

3.
浅层包气带地温与含水量昼夜动态的实验研究   总被引:8,自引:1,他引:7  
西北荒漠化地区,包气带中的水分除来自大气降水外,还来自凝结水。凝结水对维持荒漠地区的植被生态环境起到至关重要的作用,而凝结水的形成机制又反映在包气带地温与含水量的昼夜动态过程中。文中报告了室外沙坑浅层包气带地温与含水量观测的实验结果。土壤含水量变化采用原位测试的方法观测,避免了传统称重法产生的干扰和不确定性。实验中对深度0~30cm范围的土壤温度进行了高密度观测。结果表明,温度梯度对水汽的运移起到主控作用,温度梯度方向向下,土壤含水量增加,反之,含水量减少。通过热传导方程对土壤中的传热过程进行分析,得到傅立叶级数表示的温度波方程,用于预测不同深度土壤响应地表条件而产生的温度变化。实验中还对近地表微气象以及土壤负压等因素进行了观测。  相似文献   

4.
包气带在干旱半干旱地区地下水补给研究中的应用   总被引:3,自引:0,他引:3  
在干旱半干旱地区,包气带的溶质和同位素剖面不但可以提供较长时间尺度上的地下水补给信息,而且记录了过去气候变化与环境变化信息。本文基于学科组近10年的研究成果,以鄂尔多斯盆地为例(包括南部的黄土高原和北部的沙漠高原),将包气带和饱和带结合起来,利用多种环境示踪技术,提升了包气带在干旱半干旱地区地下水研究中的潜力,并将其应用到地下水补给历史重建、地下水补给机制确定、植被变化对地下水补给影响评价和地下水污染物全过程示踪中。研究表明,由于在干旱半干旱地区,包气带较厚且补给量有限,地下水和现今的浅表水文过程未达到水力平衡,如在沙漠高原西部,近2 500 a降水尚储存在包气带13 m以浅,地下水是4 000 a以前补给的,其水化学特征与浅部包气带水差异巨大;而在黄土高原,补给量较大,但包气带巨厚,年降水仍需要几十到上百年时间入渗到地下水(但并不意味着没有补给,其土壤水在包气带中平均入渗速率为0.1~0.3 m·a-1),包气带浅部溶质含量较深部和地下水中的高;典型黄土塬区的地下水均不含氚,地下水年龄在几百到上万年。黄土内部层状均匀的土壤质地特征和相对较老的地下水年龄揭示的均匀活塞流入渗是黄土塬区浅层地下水补给的主要方式。黄土高原退耕还林还草和沙漠区植被恢复导致地下水补给呈现不同程度的减少,反映在包气带上表现为溶质含量的增加,可用于定量化确定地下水补给量的变化。本文强化了包气带在干旱半干旱地区地下水补给研究中的作用,在未来地下水资源评价、地下水污染全过程刻画中应得到重视。  相似文献   

5.
Three soil profiles were selected in the Ejina Oasis, northwest China, to determine water content profiles and evolution of soil moisture potentials in the unsaturated zone within the arid area. The total soil moisture potentials have been monitored for about 3 months in 2001 at different depths in the soil profiles. The occurrence and movement of water in the unsaturated zone was analyzed using the zero flux plane (ZFP) method. It is shown that convergent ZFPs and divergent ZFPs may occur at depths between 0.5 and 3.0 m, and that the depth of the ZFPs was controlled by the root zone of plants growing on the land surface. Profiles of the total soil moisture potentials were observed to be coincident with those of the water contents at the three experimental sites. The total soil moisture potential showed a slight increasing trend and the ZFPs tend to vanish from summer to winter as the water extraction by roots decreased. Evapotranspiration through vegetation has an important bearing on the water content and the total potential in the unsaturated zone.  相似文献   

6.
《Applied Geochemistry》1998,13(2):185-195
The occurrence and significance of aqueous flow through fractures in unsaturated tuff was investigated at the Apache Leap Research Site near Superior, Arizona. Water samples for geochemical and isotopic analysis were collected from water seeping from fractures in a mine haulage tunnel, from the saturated zone in a vertical borehole (USW UZP-4), and from both the unsaturated and saturated zones in an angled borehole (DSB). The geochemistry and14C activity of water samples from the DSB suggest that most of the recharge to the saturated zone has occurred through fractures, especially beneath the ephemeral streams. Evidence of substantial recent recharge through fractures was found in saturated-zone samples from the mine haulage tunnel using 3H, δ34S and SO42−/Cl analyses. Evidence of partial imbibition of fracture flow into the rock matrix was found at multiple depths throughout the 147 m unsaturated zone at the DSB using geophysical measurements from the borehole, water-content analyses from core samples, and 14C and 3H analyses from pore water extracted from preserved core samples. Post-bomb 14C activity was measured in pore water near fractures just above the saturated zone.  相似文献   

7.
Model conceptualisation is a key source of uncertainty in one-dimensional recharge modelling. The effects of different conceptualisations on transient recharge predictions for the semi-arid Uley South Basin, South Australia, were investigated. One-dimensional unsaturated zone modelling was used to quantify the effect of variations of (1) lithological complexity of the unsaturated zone, and (2) representation of preferential flow pathways. The simulations considered ranges of water-table depths, vegetation characteristics, and top soil thicknesses representative for the study area. Complex lithological profiles were more sensitive to the selected vegetation characteristics and water-table depth. Scenarios considering runoff infiltration into, and preferential flow through sinkholes resulted in higher and faster recharge rates. A comparison of modelled and field-based recharge estimates indicated that: (1) the model simulated plausible recharge rates, (2) only the models with preferential flow correctly reproduced the timing of recharge, and (3) preferential flow is probably redistributed in the unsaturated zone rather than passing to the water table directly. Because different but equally plausible conceptual models produce widely varying recharge rates, field-based recharge estimates are essential to constrain the modelling results.  相似文献   

8.
A study of environmental chloride, deuterium, oxygen-18, and tritium in deep sand profiles (35 m) has been carried out in order to estimate their relative value for measuring average groundwater recharge. The investigation was located at a 0.1-km2 site in Quaternary sands near the northwestern coast of Senegal in a zone of rainfed agriculture. By using a steady-state model for duplicate unsaturated zone chloride profiles, the long-term average recharge at the site was estimated to be 30 mm yr–1 or around 10% of the average precipitation (290 mm). The chloride concentration of adjacent shallow groundwater was relatively uniform and comparable to the unsaturated zone average, while the spatial variability in the depth distribution of Cl in the unsaturated zone was considerable. Stable isotope (deuterium and oxygen-18) data show that there is some isotopic enrichment due to direct evaporation through the soil surface. The degree of heavy isotope enrichment is proportional to the extent of evaporative loss and there is good correspondance with the chloride enrichment. Nevertheless, stable isotopes cannot be used quantitatively to estimate the recharge. The excellent preservation of the peak in thermonuclear tritium in precipitation in the unsaturated zone at depths between 12 and 20 m enables an estimated annual recharge of 24 mm yr–1 in this area to be calculated, using the piston flow model. Agreement therefore between Cl and3H as tools for recharge measurement is reasonable over the site.  相似文献   

9.
Artificial recharge of groundwater: hydrogeology and engineering   总被引:25,自引:4,他引:25  
Artificial recharge of groundwater is achieved by putting surface water in basins, furrows, ditches, or other facilities where it infiltrates into the soil and moves downward to recharge aquifers. Artificial recharge is increasingly used for short- or long-term underground storage, where it has several advantages over surface storage, and in water reuse. Artificial recharge requires permeable surface soils. Where these are not available, trenches or shafts in the unsaturated zone can be used, or water can be directly injected into aquifers through wells. To design a system for artificial recharge of groundwater, infiltration rates of the soil must be determined and the unsaturated zone between land surface and the aquifer must be checked for adequate permeability and absence of polluted areas. The aquifer should be sufficiently transmissive to avoid excessive buildup of groundwater mounds. Knowledge of these conditions requires field investigations and, if no fatal flaws are detected, test basins to predict system performance. Water-quality issues must be evaluated, especially with respect to formation of clogging layers on basin bottoms or other infiltration surfaces, and to geochemical reactions in the aquifer. Clogging layers are managed by desilting or other pretreatment of the water, and by remedial techniques in the infiltration system, such as drying, scraping, disking, ripping, or other tillage. Recharge wells should be pumped periodically to backwash clogging layers. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10040-001-0182-4. Electronic Publication  相似文献   

10.
A dielectric measurement device called a frequency domain reflectometry (FDR) has been designed and constructed for the dielectric measurement of unsaturated soil consisting of a volumetric soil water content of about 0.1, 0.2, and 0.3 m3/m3 with different soil porosity around 0.40–0.45, respectively. The dielectric constant is measured in the frequency range 1 GHz. Soil calibration tests and tracer injection tests on standard sand and river sand are carried out in the laboratory. FDR measurement probes at different soil depths allow volumetric soil water content and dielectric constant measurements. The tracer concentration in the pore water is monitored by determining the dielectric constant, from the soil impedance. From the relationship between volumetric soil water content and dielectric constant, the specific calibration equations for the unsaturated soils were derived, and one can easily estimate the volumetric soil water content from the response of the measured dielectric constant for the soils. In the study of dielectric mixture models using α-value of 0.5 which is dielectric geometric factor, the effective porosity for the soils was computed to a range of 87–92% compared with the soil porosity.  相似文献   

11.
降水和人工灌溉是黑河中游浅层地下水重要的补给来源。长期以来入渗补给量评价采用经验参数法,但没有成熟的监测方法和实证数据。采用人工溴示踪法研究黑河中游不同灌溉条件和不同深度条件下的地下水入渗补给规律。结果表明:研究区大气降水条件下包气带溴离子含量峰值年均运移距离为21.25 cm,年平均入渗补给量为11.93 mm,入渗补给系数为0.1;大水漫灌条件下包气带溴离子含量峰值年均运移距离为86.51 cm,年平均入渗补给量为148.7 mm,入渗补给系数为0.16;小水漫灌条件下包气带溴离子含量峰值年均运移距离为46.35 cm,年平均入渗补给量为 53.81 mm,入渗补给系数为0.07;滴灌条件下年包气带溴离子含量峰值年均运移距离为41.72 cm,年平均入渗补给量为52.6 mm,入渗补给系数为0.11。人工溴示踪剂应投放在包气带水分单向入渗下行区,一般西北内陆盆地在地表3 m以下为宜。此研究成果可为黑河流域地下水资源评价提供实证参数,对西北内流盆地地下水水资源量与合理开发利用的科学认识具有重要意义。  相似文献   

12.
Unsaturated zone pore water has the potential to record history of recharge, palaeoenvironment, pollution movement and water-rock interaction as it percolates through and moves towards the water table. In this study, two 6-m cores from the Badain Jaran desert (NW China) were collected to explore this potential using directly extracted moisture. Pore waters in these unsaturated zone sediments (1–5% moisture by wet weight) were directly extracted using immiscible liquid displacement and then analysed for major anions, cations and trace elements. Results show enrichment in pore water chemistry in the top 1–2 m where strong temperature and moisture fluxes occur. The enrichment in cations relative to chloride is primarily due to silicate mineral dissolution during infiltration. High nitrate and low iron concentrations indicate the overall oxidizing environment, which allows the mobility of oxyanions, such as uranium, arsenic and chromium. The trace elements show enrichment in the upper zone of fluctuation where chemical gradients are strong, but with lesser reaction lower in the profile. The calculated groundwater recharge rates using the chloride mass balance are negligible in this arid region between 1.5 and 3.0 mm/year. The modern rainfall infiltration signature contrasts with that of the underlying groundwater body, which has a distant, regional recharge signature.This reconnaissance study demonstrates the potential for a new geochemical approach to studying geochemical processes in the unsaturated sediments in semi-arid environments due to both natural and human influences. The use of directly extracted water, rather than extraction by dilution (elutriation), facilitates an improved understanding of hydrological and geochemical processes in the unsaturated zone and into the capillary fringe at the water table, because it avoids potential chemical changes induced during elutriation.  相似文献   

13.
《China Geology》2020,3(3):462-472
The scientific field test site of rainfall-soil moisture-groundwater conversion in Dabie Mountain Area–Jianghan Plain is located in the northern region of the Jianghan Plain, the transition zone between the Dabie Mountain Area and Jianghan Plain. It’s a great field test site to study the material and energy exchange among rainfall, soil moisture, and groundwater of the Earth ’s critical zone in subtropical monsoon climate plain areas. This paper analyzed the connection between rainfall and volume water content (VWC) of soil at different depths of several soil profiles, and the dynamic feature of groundwater was discussed, which reveals the rainfall infiltration recharge of Quaternary Upper Pleistocene strata. The results show that the Quaternary Upper Pleistocene aquifer groundwater accepts a little direct rainfall recharge, while the lateral recharge is the main supplement source. There were 75 effective rainfall events among 120 rainfall events during the monitoring period, with an accumulated amount of 672.9 mm, and the percentages of effective rainfall amount and duration time were 62.50% and 91.56%, respectively. The max evaporation depth at the upper part in Quaternary cohesive soil was no less than 1.4 m. The soil profile was divided into four zones: (1) The sensitive zone of rainfall infiltration within 1.4 m, where the material and energy exchange frequently near the interface between atmosphere and soil; (2) the buffer zone of rainfall infiltration between 1.4 m and 3.5 m; (3) the migration zone of rainfall infiltration between 3.5 m and 5.0 m; and (4) the rainfall infiltration and groundwater level co-influenced zone below 5.0 m. The results revealed the reaction of soil moisture and groundwater to rainfall in the area covered by cohesive soil under humid climate in Earth ’s critical zone, which is of great theoretical and practical significance for groundwater resources evaluation and development, groundwater environmental protection, ecological environmental improvement, drought disaster prevention, and flood disaster prevention in subtropical monsoon climate plain areas.  相似文献   

14.
Natural recharge due to rainfall (annual average 1,200 mm) over an area of 1,500 km2 of the Neyveli groundwater basin was carried out for two consecutive hydrological years, using the tritium injection technique. The lignite seams, occurring within the Upper Miocene formation in the basin have been mined for the last 40 years. The confined aquifer underlying the lignite seams has been pumped continuously since 1961, for depressurization and safety around the mine. The recharge zone is identified as an elongated zone, oriented in a NE–SW direction within the basin. Natural recharge measurements were made at several sites (single and duplicate injections), covering the entire basin. They indicate a recharge rate of 333–556 mm/year (24–40% of rainfall) in the north and northeastern parts, covering the previously defined recharge areas as well as some adjoining areas. Soil moisture movement at several duplicate sites in these areas showed significant downward migration of tracer during the non-monsoon period, probably caused by pumping in the mine area. Isotopic data of ground water samples in the northern and northeastern part of the basin indicates modern ages. Concurrent field observations like deep water table with high annual fluctuations and exposure of pebble beds, enabled the redemarcation of the aggregate recharge area as 650 km2. The redefined recharge area includes the areas identified by earlier workers as well as the new area on the northeastern side of the lignite mine.  相似文献   

15.
应用时域反射仪测定农田土壤水分   总被引:23,自引:0,他引:23       下载免费PDF全文
介绍了时域反射仪(TDR)测定农田土壤水分的方法及其应用,包括测定农田根系层土壤含水量和一定深度范围内土体贮水量,TDR自动、连续监测土壤水分,用TDR实测土壤水分来估算作物不同生长发育期内农田实际蒸散量以及用于探讨农田水分空间变异性。还对TDR、中子仪和土钻法测定的土壤含水量进行了比较,结果表明,应用TDR测定农田土壤水分要优于中子仪和土钻法。  相似文献   

16.
Geochemical data were collected to investigate the effects of topography and focused recharge on the transport of agricultural chemicals to groundwater through sandy soils. The research was done at a topographically high (upland) site and a depressional (lowland) site within a corn field. Agricultural chemicals that move readily with water were most directly affected by focused recharge to the lowland site. Surface runoff of water to the lowland site was the primary cause for the generally greater flux of chloride, nitrate nitrogen, and sulfate compared with the upland site. Based on data from the unsaturated zone, for example, the average annual fluxes of these chemicals in 1992–1993 were 5.1, 3.4, and 1.7 times greater, respectively, at the lowland site. Study results indicate that consideration should be given to modifying site-specific management farming technology to account for varying recharge rates in different topographic settings. By reducing chemical application rates in topographic depressions, where focused recharge of chemicals occurs because of surface runoff, farmers could improve ground-water quality as well as reduce expenditures for agricultural chemicals. Electronic Publication  相似文献   

17.
以张家湾包气带水盐运移试验场灌溉试验资料为依据,运用土壤水分能量观点,分析了灌溉条件下包气带水分运移特征。试验结果表明,在一定灌溉量下包气带水分运移具有明显的分带特征以及灌溉水明显运移到达的深度;在一定灌溉量条件下,灌溉后地下水位上升微小,灌溉补给地下水量较小,并通过非饱和水流达西定律计算了向下入渗补给量。  相似文献   

18.
Previous studies indicate that a small quantity of recharge occurs from infiltration of streamflow in intermittent streams in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. Chloride, tritium, and stable isotope data collected in the unsaturated zone between 1994 and 1998 from boreholes drilled in Oro Grande and Sheep Creek Washes indicate that infiltration of streamflow occurs to depths below the root zone, and presumably to the water table, along much of Oro Grande Wash and near the mountain front along Sheep Creek Wash. Differences in infiltration at sites along each wash are the result of hydrologic variables such as proximity to the mountain front, quantity of streamflow, and texture of the subsurface deposits. Differences in infiltration between the washes are the result of large-scale geomorphic processes. For example, Oro Grande wash is incised into the Victorville fan and infiltration has occurred at approximately the same location over recent geologic time. In contrast, Sheep Creek Wash overlies an active alluvial fan and the stream channel can move across the fan surface through time. Infiltration does not occur to depths below the root zone at control sites outside of the washes. Electronic Publication  相似文献   

19.
通过1989~1995年新疆乌拉泊水均衡试验场潜水埋深4m处包气带凝结水对地下水补给的观测:卵砾石2.58mm/a、细砾3.15mm/a、中砂9.90mm/a、细砂35..87mm/a、粉土10.04mm/a。最有利于包气带凝结水形成的时间是每年的4~9月;包气带凝结水量的大小与土体颗粒相对比表面积和渗透系数相关,推测粉砂的凝结水量约为20mm/a,粘性土小于10mm/a;凝结水对地下水补给的最大量约为50mm/a。综合气候和水文地质条件分析,认为本试验研究成果在我国西北干旱区具有代表性,估算西北地区凝结水对地下水的总补给量大于3×1010m3/a,可能大于平原降水入渗量,在某些区域可能是最主要的地下水补给源。  相似文献   

20.
包气带增厚区土壤水力参数及其对入渗补给的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
林丹  靳孟贵  马斌  汪丙国 《地球科学》2014,39(6):760-768
为探讨包气带深部增厚区土壤水力参数变化对入渗补给过程的影响,采用压力膜仪对河北正定深部包气带(8.0~21.0 m)10个原状土样进行水分特征曲线测试,利用RETC软件中Mualem-van Genuchten导水率模型对其拟合,获取含水率与非饱和导水率的关系曲线,并根据达西法对其进行分析讨论.结果表明:场地包气带深埋区的非饱和导水率为25~240 mm/a.当某一埋深历史水位下降速度越快,该埋深处相同含水率情况下土壤非饱和导水率越大,说明对应土层的入渗补给强度越大;因包气带厚度增大使原来位于饱水带的层状非均质土层转变为包气带,潜水位波动下降过程中深部包气带土层因排水压密作用,使得土壤水力特性发生变化,进而影响垂向入渗补给过程.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号