首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous investigations of the causal relationship between postglacial rebound and earthquakes in eastern Canada have focused on the mode of failure and the observed timing of the pulse of earthquake/faulting activity following deglaciation. In this study, the observational database has been extended to include observed orientations of the contemporary stress field and the rotation of stress since deglacial times. It is shown that many of these observations can be explained by a realistic ice history and a viscoelastic earth with a uniform 1021 Pa s mantle.
The effects of viscosity structure on the above predictions are also examined. It is shown that, since most of the above observations are found within the ice margin, they are not very sensitive to lithospheric thickness. Also, the inclusion of a 25 or 50 km ductile layer within the lithosphere will not decouple the seismogenic upper crust. High viscosity (1022 Pa s) in the lower mantle is rejected by the stress orientation and rotation observations. A low-viscosity (6 times 1020Pa s) upper mantle with 1.6 times 1021 Pa s in the upper part of the lower mantle and 3 times 1021 Pa s in the lower part of the lower mantle below 1200 km depth has been found to give predictions that are in general agreement with the observations.  相似文献   

2.
Summary. We give the analytical formulation for calculating the transient displacement of fields produced by earthquakes in a stratified, selfgravitating, incompressible, viscoelastic earth. We have evaluated the potential of viscous creep in the asthenosphere in exciting the Chandler wobble by a four-layer model consisting of an elastic lithosphere, a two-layer Maxwell viscoelastic mantle, and an inviscid core. The seismic source is modelled as an inhomogeneous boundary condition, which involves a jump condition of the displacement fields across the fault in the lithosphere. The response fields are derived from the solution of a two-point boundary value problem, using analytical propagator matrices in the Laplace-transformed domain. Transient flows produced by post-seismic rebound are found to be confined within the asthenosphere for local viscosity values less than 1020P. The viscosity of the mantle below the low-viscosity channel is kept at 1022P. For low-viscosity zones with widths greater than about 100 km and asthenospheric viscosities less than 1018P, we find that viscoelasticity can amplify the perturbations in the moment of inertia by a factor of 4–5 above the elastic contribution within the time span of the wobble period. We have carried out a comparative study on the changes of the inertia tensor from forcings due to surface loading and to faulting. In general the global responses from faulting are found to be much more sensitive to the viscosity structure of the asthenosphere than those produced from surface loading.  相似文献   

3.
Micromonas pusilla (Butcher) Manton & Parke appears to be a prominent member of the Barents Sea picoplankton community as revealed by the serial dilution culture method. Cell numbers frequently exceeded 107 cells 1−1, though they usually varied between 103and 106 cells l−1. A number of other identified and unidentified taxa were recorded and quantified. Distribution relative to the marginal ice zone is reported.  相似文献   

4.
Observations of ice movements across the British Isles and of sea-level changes around the shorelines during Late Devensian time (after about 25 000 yr BP) have been used to establish a high spatial and temporal resolution model for the rebound of Great Britain and associated sea-level change. The sea-level observations include sites within the margins of the former ice sheet as well as observations outside the glaciated regions such that it has been possible to separate unknown earth model parameters from some ice-sheet model parameters in the inversion of the glacio-hydro-isostatic equations. The mantle viscosity profile is approximated by a number of radially symmetric layers representing the lithosphere, the upper mantle as two layers from the base of the lithosphere to the phase transition boundary at 400 km, the transition zone down to 670 km depth, and the lower mantle. No evidence is found to support a strong layering in viscosity above 670 km other than the high-viscosity lithospheric layer. Models with a low-viscosity zone in the upper mantle or models with a marked higher viscosity in the transition zone are less satisfactory than models in which the viscosity is constant from the base of the lithosphere to the 670 km boundary. In contrast, a marked increase in viscosity is required across this latter boundary. The optimum effective parameters for the mantle beneath Great Britain are: a lithospheric thickness of about 65 km, a mantle viscosity above 670 km of about (4-5) 1020 Pa s, and a viscosity below 670 km greater than 4 × 1021 Pa s.  相似文献   

5.
222 Rn and 226Ra distributions beneath the sea ice of the Barents Sea revealed that ice cover has varied effects on air-sea gas exchange. Twice, once in late summer and once in late winter, seawater samples from the top meter below drill holes had 222Rn activities that were not lower than their 226,Ra activities, indicating the existence of secular equilibrium and a negligible net exchange of 222Rn and other gases with the atmosphere. However, seawater in the upper 20-85 m usually exhibited at least some 222Rn depletion; 222Rn-to-226Ra activity ratios tended to have 'ice-free' values (0.3-0.9) in the summer and values between 0.9 and 1.0 in the winter. Integrated 222Rn depletions and piston velocities in both seasons typically fell in the lower 25% of the ranges for ice-free seawater, suggesting that a moderate but far from total reduction in gas exchange is normally caused by ice cover and/or meltwater. The results demonstrate that sea-ice interference with the oceanic uptake of atmospheric gases such as CO, is not well understood and needs further investigation.  相似文献   

6.
More than 250 radiocarbon dates of lacustrine algae and marine shells afford a chronology for Ross Sea drift in eastern Taylor Valley. Dates of algae that lived in ice-dammed Glacial Lake Washburn show that grounded Ross Sea ice blocked the mouth of Taylor Valley between 8340 and 23,800 14C yr bp . Ross Sea ice was at its maximum position at the Hjorth Hill moraine between 12,700 and 14,600 14C yr bp and was within 500m distance of this position as late as 10,794 14C yr bp . The implication is that the flow line of the Ross Sea ice sheet which extended around northern Ross Island and across McMurdo Sound to Taylor Valley must have remained intact, and hence that a grounded ice sheet must have existed east of Ross Island as late as 8340 14C yr bp . Evidence from ice-dammed lakes in Taylor Valley and from shells from McMurdo Sound suggests grounding-line retreat from the vicinity of Ross Island between 6500 and 8340 14C yr bp . If this is correct, then most recession to the present-day grounding line on the Siple Coast took place subsequently in the absence of significant deglacial sea-level rise. Rising sea level may have triggered internal mechanisms within the ice sheet that led to retreat, but did not in itself drive continued ice-sheet recession. Ice retreat, once set in motion, continued in the absence of sea-level forcing. If correct, this hypothesis implies that the grounding line could continue to recede into the interior reservoir of the West Antarctic Ice Sheet.  相似文献   

7.
Using the viscoelastic correspondence principle, we utilize the surface coseismic spheroidal deformation fields (i.e. vertical displacements, potential perturbations and gravity changes) of SNREI earth models caused by four typical types of point dislocation, derived by Sun & Okubo (1993 ), to deduce the fundamental formulas for spheroidal fields relevant to viscoelastic earth models. In computations, we employ a strike-slip dislocation on a vertical plane buried at the bottom of the lithosphere to estimate the maximal viscous relaxation responses to this kind of source that possibly exist on the surface of the earth. We take the seismic moment as 1022  N  m, which is characteristic of an average large earthquake. The numerical results demonstrate that, if we take the viscosity as 1019  Pa  s in the asthenosphere, and 1021  Pa  s in the other mantle layers, the rates of surface vertical displacements and gravity changes within about 2.5° for the 10 postseismic years are respectively 1.5–8.1  cm  yr−1 and 4.0–14.9  μgal  yr−1 : the viscous relaxation for this mantle viscosity profile proceeds much faster than for a constant mantle viscosity of 1021  Pa  s.  相似文献   

8.
North Atlantic Water (NAW) is an important source of heat and salt to the Nordic seas and the Arctic Ocean. To measure the transport and variability of one branch of NAW entering the Arctic, a transect across the entrance to the Barents Sea was occupied 13 times between July 1997 and November 1999, and hydrography and currents were measured. There is large variability between the cruises, but the mean currents and the hydrography show that the main inflow takes place in Bjørnøyrenna, with a transport of 1.6 Sv of NAW into the Barents Sea. Combining the flow field with measurements of temperature and salinity, this results in mean heat and salt transports by NAW into the Barents Sea of 3.9×1013 W and 5.7×107 kg s−1, respectively. The NAW core increased in temperature and salinity by 0.7 °C yr−1 and 0.04 yr−1, respectively, over the observation period. Variations in the transports of heat and salt are, however, dominated by the flow field, which did not exhibit a significant change.  相似文献   

9.
Uptake rates of NH4+, NO3 and dissolved organic nitrogen (urea) were measured in phytoplankton and in ice algae in the Barents Sea using a 15N-technique. NO3 was the most important nitrogen source for the ice algae (f-ratio = 0.92). The in situ irradiances in the subsurface chlorophyll maximum and in the ice algal communities were low. The in situ NO3 uptake rate in the ice algal communities was light-limited The in situ NO3 and NH4 uptake rates in the subsurface chlorophyll maximum were at times light-limited. It is hypothesised that NH4+ may accumulate in low light in the bottom of the euphotic zone and inhibit the in situ NO3 uptake rate.  相似文献   

10.
The Barents Sea ice sheet - a sedimentological discussion   总被引:1,自引:0,他引:1  
Sediment sampling and shallow seismic profiling in the western and northern Barents Sea show that the bedrock in regions with less than 300 m water depth is unconformably overlain by only a thin veneer (<10 m) of sediments. Bedrock exposures are probably common in these areas. The sediments consist of a Holocene top unit, 0.1–1.5 m in thickness, grading into Late Weichselian glaciomarine sediments. Based on average sedimentation rates (14C-dating) of the Holocene sediments, the transition between the two units is estimated to 10,000–12,000 B.P. The glaciomarine sediments are commonly 1–3 m in thickness and underlain by stiff pebbly mud, interpreted as till and/or glaciomarine sediments overrun by a glacier. In regions where the water depth is over 300 m the sediment thickness increases, exceeding 500 m near the shelf edge at the mouth of Bjørnøyrenna. In Bjømøyrenna itself the uppermost 15–20 m seem to consist of soft glaciomarine sediments underlain by a well-defined reflector, probably the surface of the stiff pebbly mud. Local sediment accumulations in the form of moraine ridges and extensive glaciomarine deposits (20–60m in thickness) are found at 250–300m water depth, mainly in association with submarine valleys. Topographic highs, probably moraine ridges, are also present at the shelf edge. Based on the submarine morphology and sediment distribution, an ice sheet is believed to have extended to the shelf edge at least once during the Pleistocene. Spitsbergenbanken and the northern Barents Sea have also probably been covered by an ice sheet in the Late Weichselian. Lack of suitable organic material in the glacigenic deposits has prevented precise dating. Based on the regional geology of eastern Svalbard, a correlation of this younger stage with the Late Weichselian is indicated.  相似文献   

11.
Novaya Zemlya was covered by the eastern part of the Barents–Kara ice sheet during the glacial maximum of marine isotope stage 2 (MIS 2). We obtained 14C ages on 37 samples of mollusc shells from various sites on the islands. Most samples yielded ages in the range of 48–26 14C Ky. Such old samples are sensitive to contamination by young 14C, and therefore their reliability was assessed using replicate analyses and amino acid geochronology. The extent of aspartic acid racemization (Asp D/L) indicates that many of the 14C ages are correct, whereas some are minimum ages only. The results indicate that a substantial part of Novaya Zemlya was ice-free about 35–27 14C Kya, and probably even earlier. Corresponding shorelines up to >140 m a.s.l. indicate a large Barents–Kara ice sheet during early MIS 3. These results are consistent with findings from Svalbard and northern Russia: in both places a large MIS 4/3 Barents–Kara ice sheet is postulated to have retreated about 50 Kya, followed by an ice-free interstadial that lasted until up to ca. 25 Kya. The duration of the MIS 2 glaciation in Novaya Zemlya was calculated by applying the D/L values to a kinetic equation for Asp racemization. This indicates that the islands were ice covered for less than 3000 years if the basal temperature was 0oC, and for less than 10 000 years if it was −5oC.  相似文献   

12.
Late glacial palaeoceanography of Hinlopen Strait, northern Svalbard   总被引:3,自引:0,他引:3  
Timing and structure of the Late and post-glacial development of the northern Svalbard margin, together with the initial influx of Atlantic water into the Arctic Ocean are still very poorly constrained. We investigated a sediment core (NP94-51) from a high accumulation area on the continental shelf north of Hinlopen Strait with the purpose of resolving the timing and structure of the last deglaciation. Detailed analyses of ice-rafted detritus, benthic and planktonic foraminiferal fauna, diatom flora, grain size and radiocarbon dates are used to reconstruct the palaeoceanographic evolution of the area. Our results indicate that the disintegration of Hinlopen Strait ice and possibly the northern margin of the Svalbard Ice Sheet commenced between 13.7 and 13.9 14C Ky BP. Influx of subsurface Atlantic waters into the area (12.6 14C Ky BP) and the retreat of the sea ice cover, with the accompanying opening of the surface waters (10.8 14C Ky BP), happened at different times and both much later than the disintegration of the ice sheets. The transition into the Holocene shows a two-step warming.  相似文献   

13.
Simple models for the flexure of the lithosphere caused by the load of the Hawaiian-Emperor Seamount Chain have been determined for different values of the effective flexural rigidity of the lithosphere. The gravity effect of the models have been computed and compared to observed free-air gravity anomaly profiles in the vicinity of the seamount chain. The values of the effective flexural rigidity which most satisfactorily explain both the amplitude and wavelength of the observed profiles have been determined. Computations show that if the lithosphere is modelled as a continuous elastic sheet, a single effective flexural rigidity of about 5 × 1029 dyne-cm can explain profiles along the Hawaiian-Emperor Seamount Chain. If the lithosphere is modelled as a discontinuous elastic sheet an effective flexural rigidity of about 2 × 1030 dyne-cm is required. Since the age of the seamount chain increases from about 3 My near Hawaii to about 70 My near the northernmost Emperor seamount these results suggest there is apparently little decrease in the effective flexural rigidity of the lithosphere with increase in the age of loading. This suggests the lithosphere is rigid enough to support the load of the seamount chain for periods of time of at least several tens of millions of years. Thus the subsidence of atolls and guyots along the chain is most likely to be regional in extent and is unlikely to be caused by an inelastic behaviour of the lithosphere beneath individual seamounts.  相似文献   

14.
Summary. The thermal effect of a rapid injection of hot magmas into the lower part of the lithosphere is modelled as an increase in heat production through the invaded region. The change in surface heat flow and the uplift resulting from the thermal expansion are determined in three-dimensional axially symmetric geometry: they are expressed as the space time convolutions of a Green's function with the anomalous heat production.
The anomalies with shorter wavelength (compared to the lithospheric thickness) are attenuated. This filtering affects the surface uplift more than the heat flow anomaly; the attenuation effect is larger when only the lower part of the lithosphere is invaded.
The uplift time constant is of the same order as the heat conduction time if the lower lithosphere is invaded by magmas at a moderate rate (i.e. the rate of injection does not exceed the equivalent of 0.1 per cent of the lithospheric volume in 106yr). Fifty per cent of the total uplift takes place in about 80 × 106yr for a lithosphere 100 km thick. The uplift is slightly faster when the whole lithosphere is invaded. The heat flow anomaly is delayed when the lower part of the lithosphere is invaded.
The spatial extent and the timing of the uplift and heat flow anomalies are critical in determining the mechanism's feasibility. Magma injections explain rapid uplifts [> 100 m (106 yr)−1] only if the magma is supplied at a very high rate (i.e. at least 10 per cent of the lithosphere volume per 106yr). It is a feasible mechanism for uplifts that occur over longer periods of time (≊ 30 × 106yr) such as those that seem to have occurred when the African plate came to rest with respect to the mantle.  相似文献   

15.
Primary production of the northern Barents Sea   总被引:7,自引:0,他引:7  
The majority of the arctic waters are only seasonally ice covered; the northern Barents Sea, where freezing starts at 80 to 81°N in September, is one such area. In March, the ice cover reaches its greatest extension (74-75°N). Melting is particularly rapid in June and July, and by August the Barents Sea may be ice free. The pelagic productive season is rather short, 3 to 3.5 months in the northern part of the Barents Sea (north of the Polar Front, 75°N), and is able to sustain an open water production during only half of this time when a substantial part of the area is free of ice. Ice algal production starts in March and terminates during the rapid melting season in June and July, thus equalling the pelagic production season in duration.
This paper presents the first in situ measurements of both pelagic and ice-related production in the northern Barents Sea: pelagic production in summer after melting has started and more open water has become accessible, and ice production in spring before the ice cover melts. Judged by the developmental stage of the plankton populations, the northern Barents Sea consists of several sub-areas with different phytoplankton situations. Estimates of both daily and annual carbon production have been based on in situ measurements. Although there are few sampling stations (6 phytoplankton stations and 8 ice-algae stations), the measurements represent both pelagic bloom and non-bloom conditions and ice algal day and night production. The annual production in ice was estimated to 5.3 g Cm-2, compared to the pelagic production of 25 to 30 g Cm-2 south of Kvitøya and 12 to 15 g Cm-2 further north. According to these estimates ice production thus constitutes 16% to 22% of the total primary production of the northern Barents Sea, depending on the extent of ice-free areas.  相似文献   

16.
During the last glacial maximum, a coalescent ice mass consisting of the grounded Ross Sea ice sheet and an expanded Wilson Piedmont Glacier covered the southern Scott Coast. This coalescent ice mass was part of a larger grounded ice sheet that occupied the Ross Sea Embayment during the last glacial maximum. Deglaciation of the western Ross Sea Embayment adjacent to the southern Scott Coast was delayed until shortly before 6500 14C yr bp , aconclusion based on ages of marine shells from McMurdo Sound, a relative sea-level curve, and algae that lived in ice-dammed lakes. Therefore, most recession of grounded ice in the Ross Sea Embayment occurred in mid to late Holocene time, after deglacial sea-level rise due to melting of Northern Hemisphere ice sheets essentially was accomplished. Rising sea level alone could not have driven grounding-line retreat back to the present-day Siple Coast.  相似文献   

17.
Summary. A systematic approach is suggested for modelling the development of sedimentary basins. The theory, which partitions basin formation into initiating and isostatic adjustment processes, is applicable to all modes of basin formation if these processes are linear, or can he represented with sufficient accuracy in an incrementally linear form.
The dynamics of regional isostatic adjustment are characterized by the Heaviside space-time Green functions for the response of elastic and viscoelastic (Maxwell) thin plate models of the lithosphere. It is shown, by convolving the Heaviside—Green functions with cylindrical surface loads, that the rate of isostatic adjustment on a viscoelastic lithosphere is a function of the wavelength of the surface load, long wavelengths being compensated most rapidly.
Six archetypal initiating processes for sedimentary basin development are presented. These processes are those responsible for the subsidence of the Earth's surface which creates a depression in which water and sediments collect. Isostatic amplification of subsidence by sediment and water loads is cast in the form of an integral equation with isostatic Heaviside—Green functions as kernel.
Specific examples, the basins that result from a graben initiating process, are compared with the largest scale structure of the North Sea Basin, a basin that is known to be underlain by a graben system. A model, in which a 50-km wide graben subsides exponentially with a time constant of 5 × 107yr during the interval 180–100 Myr bp , is shown to be consistent with the largest scale structure of the North Sea Basin if the underlying lithosphere is viscoelastic with a flexural rigidity of ∼5 × 1025 Nm and relaxation time constant ∼ 106 yr.  相似文献   

18.
Volume, heat and salt transport by the West Spitsbergen Current   总被引:1,自引:0,他引:1  
During the summer of 2000 (June-July) 14 CTD and ADCP transects perpendicular to the West Spitsbergen Current and along the western border of the Barents Sea were made. The measurements covered the area between 69° 43'and 80° N and 01° and 20° E. The main purpose was to follow changes in volume, heat and salt content of Atlantic Water (AW) on its way north. The strongest and most stable flow of AW was located along the continental slope where northward flowing currents exceeding 40 cm/sec were measured. A few weaker northward branches were also found to the west of the slope. South-directed currents were recorded between them and eddy-like mesoscale structures were commonly observed. Measured by vessel-mounted acoustic Doppler current profiler (VM-ADCP), the net northward transport of AW volume in the upper 136 m layer decreased from nearly 6 Sv at the southernmost transect to below 1 Sv at a latitude of 78° 50'N. Similarly, heat transport drops from about 173 TW to about 9 TW and relative salt transport (over 34.92 psu) from 980 × 103 kg/sec to 14 × 103 kg/sec. Transport in the southern direction prevails at the transect located between 79° 07'and 79° 30'N. The calculated baroclinic geostrophic transport of AW volume, heat and salt in the upper 1000 m layer behaves similarly. East-directed transport dominates at the Barents Sea boundary while westward flow prevails on the western side of the West Spitsbergen Current.  相似文献   

19.
The last British Ice Sheet: growth, maximum extent and deglaciation   总被引:2,自引:0,他引:2  
The growth, maximum lateral extent and deglaciation of the last British Ice Sheet (BIS) has been reconstructed using sediment, faunal and stable isotope methods from a sedimentary record recovered from the Barra Fan, north-west Scotland. During a phase of ice sheet expansion postdating the early "warmth" of Marine Isotope Stage 3 (MIS 3), ice rafting events, operating with a cyclicity of approximately 1500 years, are interspersed between warm, carbonate-rich interstadials operating with a strong Dansgaard-Oeschger (D-O) cyclicity. The data suggest that the BIS expanded westwards to the outer continental shelf break shortly after 30 Ky BP (before present) and remained there until about 15 Ky BP. Within MIS 2, as the ice sheet grew to its maximum extent, the pronounced periodicities which characterize MIS 3 are lost from the record. The exact timing of the Last Glacial Maximum is difficult to define in this record; but maxima in Neogloboquadrina pachyderma (sinistral) Ø18O are observed between 21-17 Ky BP. A massive discharge of ice-rafted detritus, coincident with Heinrich event 1, is observed at about 16 Ky BP. Deglaciation of the margin is complete by about 15 Ky BP and surface waters warm rapidly after this date.  相似文献   

20.
Summary. The viscoelastic response of the Earth to the mass displacements caused by late Pleistocene deglaciation and concomitant sea level changes is shown to be capable of producing the secular motion of the Earth's rotation pole as deduced from astronomical observations. The calculations for a viscoelastic Earth yield a secular motion in the direction of 72° W meridian which is in excellent agreement with observed values. The average Newtonian viscosity and the relaxation time obtained from polar motion data are about (1.1 ± 0.6)1023 poise (P) and 104 (1 ± 0.5) yr. The non-tidal secular acceleration of the Earth can also be attributed to the viscoelastic response to deglaciation and results in an independent viscosity estimate of 1.6 × 1023 P with upper and lower limits of 1.1 × 1023 and 2.8 × 1023 P. These values are in agreement with those based on the polar drift analysis and indicate an average mantle viscosity of 1–2 × 1023 P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号