首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Recent changes in the editorial leadership, name, content, and publishing process for Estuaries and Coasts and looming changes in scientific publishing as technology advances have provided an opportunity to assess the health and examine the growth in size and reputation of the journal. Estuaries and Coasts has grown in size by about fourfold, with a concurrent decline in acceptance rate of about 1.5% per year to reach the present 65% acceptance rate. The number of paper downloads has increased exponentially to the current 4,000 downloads per month. Most (81%) of the published papers come from senior authors in the USA, with only 15% of the papers coming from senior authors based in non-English-speaking countries. The average number of authors per paper increased from an average of two in 1980 to three at present, and the impact factor has risen to 1.563 in 2006, at about the middle of the range in impact factors for related journals, from an average of 1.295 in the previous 10 years. Papers published in Estuaries and Coasts have a long citation half-life (8.4 years), resulting in very few (3.5%) published papers never receiving citations. All metrics assessed portray Estuaries and Coasts as a journal on the rise that stands up in comparisons of quality and citation rate with other journals in its field.  相似文献   

3.
The nearshore land-water interface is an important ecological zone that faces anthropogenic pressure from development in coastal regions throughout the world. Coastal waters and estuaries like Chesapeake Bay receive and process land discharges loaded with anthropogenic nutrients and other pollutants that cause eutrophication, hypoxia, and other damage to shallow-water ecosystems. In addition, shorelines are increasingly armored with bulkhead (seawall), riprap, and other structures to protect human infrastructure against the threats of sea-level rise, storm surge, and erosion. Armoring can further influence estuarine and nearshore marine ecosystem functions by degrading water quality, spreading invasive species, and destroying ecologically valuable habitat. These detrimental effects on ecosystem function have ramifications for ecologically and economically important flora and fauna. This special issue of Estuaries and Coasts explores the interacting effects of coastal land use and shoreline armoring on estuarine and coastal marine ecosystems. The majority of papers focus on the Chesapeake Bay region, USA, where 50 major tributaries and an extensive watershed (~ 167,000 km2), provide an ideal model to examine the impacts of human activities at scales ranging from the local shoreline to the entire watershed. The papers consider the influence of watershed land use and natural versus armored shorelines on ecosystem properties and processes as well as on key natural resources.  相似文献   

4.
Estuaries provide nursery habitat for juvenile stages of several commercial decapod crustaceans worldwide, and those in the Northeastern Pacific are viewed as providing this function for Dungeness crab,Cancer magister. It is difficult to ascertain the degree to which such estuarine production of juveniles eventually contributes to coastal adult populations and fisheries since there are no direct surveys of adult abundance. As other authors have done, we used fishery landings data to compute the long-term average contribution of 1 + juvenile crab populations reared in estuaries to future coastal fisheries. We focused on Oregon and Washington states, but grouped landings in two large geographic zones by combining fishery ports as adjacent to Large Estuarine Zones (LEZ; Grays Harbor and Willapa Bay, Washington, and both sides of the Columbia River) and Small Estuarine Zones (SEZ; all other ports in Oregon). Mortality estimates were used to reduce 1 + crab abundance to surviving legal males, and portrayed as percent of the fisheries. Trends in the SEZ indicate that an average of only about 5–7% of estuarine production adds to the coastal adult population and contributes about $0.7 million to the fishery. The contribution is 25–30% in the LEZ (but may be higher since interannual density varies up to 5 times) and is worth about $3.9 million based on present ex-vessel value. Analyses of crab distribution and density indicate that the majority of an estuarine population (50–80%) is located in lower side channels (LSC) in spring and summer where temperature is higher and prey within and on adjacent intertidal flats is high. The potential average dollar value of equivalent legal male crab produced from the juvenile population is about $180 ha?1 in LSC (but $280 ha?1 in Grays Harbor where long-term density is highest), and lower in other estuarine habitats ($50–100 ha?1). Estuarine juvenile production provides a relatively stable source of recruits to coastal adult populations, and large systems in the LEZ are important nurseries. Since direct coastal settlement of larvae does occur but is highly variable, the estuarine contribution may be especially important when physical forcing or unusual events lead to low survival of the coastal 0+ cohort. An unusually long period of very low landings in the LEZ from 1981–1987 is interpreted in light of the Mount St. Helens eruption (1980) and subsequent transport and deposition of very fine silt fractions over much of the LEZ nearshore shelf that may have adversely affected several year classes of small, early benthic phase juveniles at that time.  相似文献   

5.
Despite the widely acknowledged threat posed by invasive species in coastal estuaries, there are substantial gaps at the intersection of science and policy that are impeding invasive species management. In the face of pressing management needs in coastal and estuarine environments, we advocate that introduced species should receive the kind of management effort dedicated, for example, to reducing pollution. We support our argument with some examples of economic costs of estuarine and coastal introduced species and a summary of recent evidence for the ecological costs. We highlight some of the issues that either thwart or facilitate the successful marriage between science and management of introduced species, including the regulatory framework for management. We use the available information on coastal eradication programs, including case histories of the programs for Caulerpa taxifolia and Spartina alterniflora (and hybrids) in the western USA, to indicate the feasibility of managing introduced species and to help point out how management and science can improve the outcome. We close with a research agenda that focuses primarily on science that will really assist with invasive species management and reflects our own experience and the opinions of managers directly involved with this issue.  相似文献   

6.
Climate change impacts on U.S. Coastal and Marine Ecosystems   总被引:1,自引:0,他引:1  
Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.  相似文献   

7.
We provide an introduction and a foreword to the Special Issue “Phytoplankton Time Series in Estuaries and Coastal Ecosystems”. This issue includes long-term investigations (10–40 years) of 22 coastal ecosystems and a comparative analysis of chlorophyll a from 84 time series. The results and conclusions provided by these studies help to illuminate the disparities and similarities in long-term phytoplankton dynamics among a wide range of coastal systems and provide insight into the major driving factors responsible for short- and long-term trends in phytoplankton communities.  相似文献   

8.
Coastal ecosystems are characterized by relatively deep, plankton-based estuaries and much shallower systems where light reaches the bottom. These latter systems, including lagoons, bar-built estuaries, the fringing regions of deeper systems, and other systems of only a few meters deep, are characterized by a variety of benthic primary producers that augment and, in many cases, dominate the production supplied by phytoplankton. These “shallow coastal photic systems” are subject to a wide variety of both natural and anthropogenic drivers and possess numerous natural “filters” that modulate their response to these drivers; in many cases, the responses are much different from those in deeper estuaries. Natural drivers include meteorological forcing, freshwater inflow, episodic events such as storms, wet/dry periods, and background loading of optically active constituents. Anthropogenic drivers include accelerated inputs of nutrients and sediments, chemical contaminants, physical alteration and hydrodynamic manipulation, climate change, the presence of intensive aquaculture, fishery harvests, and introduction of exotic species. The response of these systems is modulated by a number of factors, notably bathymetry, physical flushing, fetch, sediment type, background light attenuation, and the presence of benthic autotrophs, suspension feeding bivalves, and fringing tidal wetlands. Finally, responses to stressors in these systems, particularly anthropogenic nutrient enrichment, consist of blooms of phytoplankton, macroalgae, and epiphytic algae, including harmful algal blooms, subsequent declines in submerged aquatic vegetation and loss of critical habitat, development of hypoxia/anoxia particularly on short time scales (i.e., “diel-cycling”), fish kills, and loss of secondary production. This special issue of Estuaries and Coasts serves to integrate current understanding of the structure and function of shallow coastal photic systems, illustrate the many drivers that cause change in these systems, and synthesize their varied responses.  相似文献   

9.
Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.  相似文献   

10.
Estuaries of the southeastern Atlantic coastal plain are dominated by shallow meso-tidal bar-built systems interspersed with shallow sounds and both low flow coastal plain and high flow piedmont riverine systems. Three general geographical areas can be discriminated: the sounds of North Carolina; the alternating series of riverine and ocean dominated bar-built systems of South Carolina, Georgia, and northeast Florida, and the subtropical bar-built estuaries of the Florida southeast coast. The regional climate ranges from temperate to subtropical with sea level rise and hurricanes having a major impact on the region's estuaries because of its low and relatively flat geomorphology. Primary production is highest in the central region. Seagrasses are common in the northern and southern most systems, while intertidal salt marshes composed ofSpartina alterniflora reach their greatest extent and productivity in South Carolina and Georgia. Nuisance blooms (cyanobacteria, dinoflagellates, and cryptomonads) occur more frequently in the northern and extreme southern parts of the region. Fishery catches are highest in the North Carolina and Florida areas. Human population growth with its associated urbanization reaches a maximum in Florida and it is thought that the long-term sustainability of the Florida coast for human habitation will be lost within the next 25 years. Tidal flushing appears to play an important role in mitigating anthropogenic inputs in systems of moderate to high tidal range, i.e., the South Carolina and Georgia coasts. The most pressing environmental problems for the estuaries of the southeastern Atlantic coast seem to be nutrient loading and poor land use in North Carolina and high human population density and growth in Florida. The future utilization of these estuarine systems and their services will depend on the development of improved management strategies based on improved data quality.  相似文献   

11.
A multimetric fish index, the Estuarine Fish Community Index (EFCI) of Harrison and Whitfield (2004), was applied to data collected for 190 South African estuaries. Estuaries spanned three biogeographic regions and included three distinct estuarine typologies. The EFCI is based on 14 metrics or measures that represent four broad fish community attributes: species diversity and composition, species abundance, nursery function, and trophic integrity. Metric reference conditions and scoring criteria were developed separately for each estuary type within each zoogeographic region. The final EFCI was applied to each estuary by comparing its fish community with the appropriate reference. Index values ranged between 18 (very poor) and 66 (very good). A comparison of the EFCI with independent measures of estuarine condition revealed that the index was able to effectively differentiate between poor and good quality sites. Applying the EFCI to estuaries in which multiple samples were taken also showed that the index is reproducible. The EFCI is both a robust and sensitive method for assessing the ecological condition of estuarine systems; it is also an effective communication tool for converting ecological information into an easily understood format for managers, policy makers, and the general public.  相似文献   

12.
13.
This special feature: Genetic Structure and Adaptation in Coastal Ecosystems emphasizes the importance of research focused on population genetic structure and evolutionary change for understanding estuarine and coastal communities. Many studies have examined the effect of environmental gradients on community-level patterns in estuarine habitats; however, relatively little is known about the role of genetically based adaptation (the heritable response to these environmental gradients) in these organisms. This special feature presents 11 studies that use a variety of approaches including ecophysiology, ecological genetics, molecular markers, and patterns of gene expression occurring within these populations. These studies provide examples of the role of genetic diversity and adaptation across a diversity of estuarine and coastal environments, and highlight the temporal and spatial scales at which adaptation impinges upon management. This collection of papers is especially timely, given the increasing importance of understanding and predicting the response to global climate change in order to effectively manage these communities.  相似文献   

14.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

15.
Numerous studies have concluded that better use of scientific information could improve the quality of coastal and estuarine environmental management. Approaches for effecting such a change include ecosystem-based, integrated, and adaptive management, but such basic re-orientation of estuarine and coastal management has proved difficult to achieve. Even environmental indicators, seemingly straightforward ways of injecting scientific information into decision making, have achieved broad on-the-ground use in relatively few instances—principally the largest estuary management programs. A conceptual framework useful for examining environmental management systems affecting the five PNCERS (Pacific Northwest coastal Ecosystems Regional Study) estuaries conceives of environmental managers, researchers, and interested and affected parties in the public as interacting through the multi-layered institutional arrangements that currently promote the utilization, management, or protection of coastal and estuarine resources. Considerable variation exists in the approach and effectiveness of the region's environmental management organizations. Interaction between science and management in the region appears to be limited to an extent by high transaction costs; a cultural divide between environmental scientists and environmental managers is perceived by members of both groups who work with the PNCERS estuaries as inhibiting communications between them. Mechanisms that both groups identify as useful for improving the flow of information between science and management are little used, perhaps as a result. The two groups have very different patterns of information dissemination and acquisition, and though both chose agency archives and databases as their top methods for disseminating information, neither group relies much on these vehicles for information they seek. Both residents' and practitioners' perceptions of threats to the PNCERS estuaries show patterns of estuary-to-estuary variation. One theme that emerges is that problems associated with poor land management in adjacent uplands are common to most of these estuaries, potentially providing a sense of commonality through which a more regional approach to estuary management could emerge. A common set of estuarine environmental indicators implemented for all estuaries could help instigate such a regional approach, but resource constraints, especially at the local level, will have to be overcome for that to occur. There is currently substantial lack of common vision among coastal practitioners as to the purpose and desirability of indicators, and relatively little experience or knowledge of their use, particularly at the local level. Use of estuarine science in the management of these estuaries appears to be greatest during periods in which the largest programmatic shifts in environmental management approaches occur, an observation consistent with other studies that have concluded that the use of environmental science in environmental management tends to be episodic.  相似文献   

16.
Holistic understanding of estuarine and coastal environments across interacting domains with high-dimensional complexity can profitably be approached through data-centric synthesis studies. Synthesis has been defined as “the inferential process whereby new models are developed from analysis of multiple data sets to explain observed patterns across a range of time and space scales.” Examples include ecological—across ecosystem components or organization levels, spatial—across spatial scales or multiple ecosystems, and temporal—across temporal scales. Though data quantity and volume are increasingly accessible, infrastructures for data sharing, management, and integration remain fractured. Integrating heterogeneous data sets is difficult yet critical. Technological and cultural obstacles hamper finding, accessing, and integrating data to answer scientific and policy questions. To investigate synthesis within the estuarine and coastal science community, we held a workshop at a coastal and estuarine research federation conference and conducted two case studies involving synthesis science. The workshop indicated that data-centric synthesis approaches are valuable for (1) hypothesis testing, (2) baseline monitoring, (3) historical perspectives, and (4) forecasting. Case studies revealed important weaknesses in current data infrastructures and highlighted opportunities for ecological synthesis science. Here, we list requirements for a coastal and estuarine data infrastructure. We model data needs and suggest directions for moving forward. For example, we propose developing community standards, accommodating and integrating big and small data (e.g., sensor feeds and single data sets), and digitizing ‘dark data’ (inaccessible, non-curated, non-archived data potentially destroyed when researchers leave science).  相似文献   

17.
Organisms and chemicals preserved in sediment cores from the Chesapeake estuary in mid-Atlantic USA are consistent with a precolonial landscape covered with a diversity of forests and marshes, large and small. During the past 300 years, many of the wetlands have been drained, and the landscape was converted to agricultural fields and urban and suburban development. During this time, sources of nitrogen have diversified, and loadings have increased. Since precolonial time, the mesohaline estuary has become increasingly eutrophic and anoxic. Estuaries and coastal regions throughout the world have experienced similar conditions in their recent history. These changes are recorded in Chesapeake sediment cores by increases in ragweed pollen, dry taxa, sedimentation rates, nitrogen influxes, and a major change in estuarine autotrophs from benthic to planktonic. In many areas, attempts to reverse estuarine eutrophication and anoxia have centered on restoring streams and riparian areas and reducing fertilizer use on agricultural lands. However, data from soils and historical reports and the paleoecological record suggest that to reduce the effects of modern nitrogen inputs, it may be necessary to locate and enhance denitrifying areas throughout the watershed.  相似文献   

18.
The residence times of orthophosphate measured in midsummer in estuarine and coastal shelf waters near Sapelo Island, Georgia, ranged from 1.6 to 105 h. Rates of orthophosphate uptake by microplankton varied from 1.4 to 62.2 μg P per 1 per h. Generally, when isotopic equilibrium was reached after the addition of32P-orthophosphate, significant amounts of32P-remained in solution, suggesting that the supply of phosphorus to microplankton was not limiting in these waters. In coastal shelf waters, the majority of phosphorus uptake (>60%) was associated with small microorganisms (<1μm); whereas, in estuarine waters or in a Gulf Stream intrusion usually a proportionately greater amount of phosphorus was incorporated into larger algae, or clumped or attached bacteria (>1μm). The time course of32P-orthophosphate incorporation into a cold, 10% TCA insoluble, cellular fraction was more consistently linear than into whole cells. This criterion may be useful for comparative studies of phosphorus utilization by microplankton.  相似文献   

19.
Several interrelated factors affect, water quality in the Albemarle-Pamlico Estuarine System (APES) including land use change in the upland and coastal watersheds, legislatively mandated basin-wide nutrient management plans, intense storms, and global and local changes in sea level. Despite its importance as an essential fish habitat, the APES has not been monitored as intensively or extensively for habitat impacts associated with decreased water quality as other estuaries have been, such as with the North Carolina tributary estuaries or Chesapeake Bay. To support the sustainable use of these estuaries, we are developing an automated water quality monitoring system aboard ferries that traverse the APES. This program, FerryMon, provides a unique, long-term, and cost-effective monitoring system to evaluate status and trends in APES water quality. Intensive temporal and spatial data obtained from all ferry routes provide an environmental baseline and are used to assess the patterns and variability in surface water hydrography, dissolved constituents, and particulate matter. The data are useful to calibrate estimates of ocean color and sea surface temperature from aircraft and satellite sensors. We are creating a searchable geographic database that is intended for scientists, managers, and the general public. Using ferries as sampling platforms to monitor estuarine water quality is a tractable approach and FerryMon represents a model for use in other large bodies of water traversed by ferries.  相似文献   

20.
Brown tides caused by the harmful algaAureococcus anophagefferens abruptly appeared in some coastal embayments of the northeastern United States (Rhode Island, New York) in 1985. Since then, brown tides have vanished from some bays, chronically reoccurred in others, and recently have exhibited an apparent southern expansion into new regions (e.g., New Jersey, Delaware, Maryland, and Virginia). Brown tides have also recently been detected across the Atlantic Ocean in South Africa. Although blooms ofA. anophagefferens have no known direct, negative effects on human health, they are considered harmful because of their detrimental effects on estuarine organisms, such as suspension feeders (scallops and hard clams) and submerged aquatic vegetation. The selective effect of blooms on pelagic grazers (zooplankton and shellfish) is likely to affect food webs and biodiversity within affected ecosystems. Recent findings indicate brown tides occur in shallow estuaries with long residence times and high salinities (> 25‰). These estuarine characteristics may foster the accumulation of algal biomass and a nutrient environment (high dissolved organic matter and low dissolved in organic nitrogen) as well as a low light regime that encourages rapid cellular growth ofA. anophagefferens. A lack of sufficient grazing control by benthic and pelagic suspension feeders during the initiation phase of blooms is also implicated in brown tide development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号