首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
混杂岩是古增生楔存在的标志之一,一般由枕状玄武岩、灰岩、放射虫硅质岩、硅质页岩、砂岩等混乱无序组成。目前"大洋板块地层"(OPS)运用放射虫地层学方法对混乱的增生楔断片进行重建取得了良好效果,并清晰地展示了大洋板块俯冲和洋底物质连续增生的历史。在西藏仲巴地区填图过程中,结合放射虫年代学分析鉴定结果,以OPS重建的思路和理论作为指导,重建了仲巴地区混杂岩的大洋板块地层,并恢复了该区域特提斯洋在洋中脊大洋板块增生至消亡的岩石序列,自下而上分别为侏罗纪海山玄武岩、海山覆盖物侏罗系—白垩系碳酸盐岩、海山周围沉积的侏罗系—白垩系放射虫硅质岩和硅质页岩,以及海沟附近的白垩系陆源碎屑岩等,为特提斯洋大洋板块俯冲的方向、持续时间和古大地构造环境提供了信息。  相似文献   

2.
Recent mapping projects undertaken in Central Mongolia have revealed the widespread occurrence of radiolarian chert within a Paleozoic accretionary complex. We present the results of the first detailed tectonostratigraphic and radiolarian biostratigraphic investigations of the Gorkhi Formation in the Khangai–Khentei belt of the Central Asian Orogenic Belt.The Gorkhi Formation consists of sandstone shale, alternating sandstone and shale of turbidite affinity and chert with small amounts of siliceous shale, basalt, limestone, and clast-bearing mudstone. Radiolarian chert that is completely devoid of terrigenous clastic material is commonly associated with underlying basalt (sedimentary contact) and with conformably overlying siliceous shale and turbidite deposits. The tectonic stacking of basalt–chert and chert–turbidite successions is the most remarkable structural feature of the formation.The recovery of moderately well-preserved radiolarians and conodonts from red chert led to the recognition of four radiolarian assemblages that have a combined age range from the latest Silurian (Pridolian) to the Late Devonian (Frasnian). No age control exists for the siliceous shale, shale, and sandstone, although they are considered to be latest Devonian or slightly younger on the basis of stratigraphic relationships with underlying chert.The Gorkhi Formation has previously been interpreted as a thick sedimentary basin deposit overlying an unexposed Archean–Neoproterozoic basement; however, the stratigraphy within individual tectonic slices clearly corresponds to that of an ocean plate stratigraphy of an accretionary complex generated by the trenchward movement of an oceanic plate. From the lowermost to uppermost units, the stratigraphy comprises ocean floor basalt, pelagic deep-water radiolarian chert, hemipelagic siliceous shale, and terrigenous turbidite deposits. The biostratigraphic data obtained in the present study provide corroborating evidence for the existence of an extensive deep-water ocean that enabled the continuous sedimentation of pelagic chert over a period of nearly 50 million years. These data, together with structural data characterized by tectonic repetition of the stratigraphy, indicate that these rocks formed as an accretionary wedge along an active continental margin, possibly that of the Angara Craton. The mid-oceanic chert was probably deposited in the Northern Hemisphere portion of the Paleo–Pacific Ocean that faced the Angara Craton and the North China–Tarim blocks. Thus, we propose that subduction–accretion processes along the Paleo–Pacific rim played an important role in the accretionary growth of the active continental margin of the Angara Craton, directly influencing the evolution of the Central Asian Orogenic Belt.  相似文献   

3.
The geology of Cretaceous accretionary–collision complexes in central Indonesia is reviewed in this paper. The author and his colleagues have investigated the Cretaceous accretionary–collision complexes by means of radiolarian biostratigraphy and metamorphic petrology, as well as by geological mapping. The results of their work has revealed aspects of the tectonic development of the Sundaland margin in Cretaceous time. The Cretaceous accretionary–collision complexes are composed of various tectonic units formed by accretionary or collision processes, forearc sedimentation, arc volcanism and back arc spreading. The tectonic units consist of chert, limestone, basalt, siliceous shale, sandstone, shale, volcanic breccia, conglomerate, high P/T and ultra high P metamorphic rocks and ultramafic rocks (dismembered ophiolite). All these components were accreted along the Cretaceous convergent margin of the Sundaland Craton. In the Cretaceous, the southeastern margin of Sundaland was surrounded by a marginal sea. An immature volcanic arc was developed peripherally to this marginal sea. An oceanic plate was being subducted beneath the volcanic arc from the south. The oceanic plate carried microcontinents which were detached fragments of Gondwanaland. Oceanic plate subduction caused arc volcanism and formed an accretionary wedge. The accretionary wedge included fragments of oceanic crust such as chert, siliceous shale, limestone and pillow basalt. A Jurassic shallow marine allochthonous formation was emplaced by the collision of continental blocks. This collision also exhumed very high and ultra-high pressure metamorphic rocks from the deeper part of the pre-existing accretionary wedge. Cretaceous tectonic units were rearranged by thrusting and lateral faulting in the Cenozoic era when successive collision of continental blocks and rotation of continental blocks occurred in the Indonesian region.  相似文献   

4.
重点分析和总结了由前寒武纪增生复合体和造山带混杂岩重建的古老造山带洋板块地层,包括由英国威尔士安格尔西岛新元古代莫纳超群混杂岩重建的太平洋洋板块地层、由澳大利亚西北部皮尔巴拉早太古代克里夫维尔绿岩带重建的古印度洋洋板块地层。澳大利亚东皮尔巴拉地块大理石坝地区早太古代玄武岩-硅质岩-碎屑岩序列与日本二叠纪-三叠纪洋板块地层在岩石组成和地球化学特征方面具有高度的相似性,这一认识将为早太古代洋板块地层的沉积环境从高热流洋脊扩张区经过热点向低热流海沟陆源碎屑沉积区转变这一过程提供有力支持。从增生造山带洋板块地层保存的岩石记录看,不同年代洋板块地层的主要物质组成和岩石类型相似,因此在地球38亿年的演化进程中,洋壳扩张、海洋沉积、俯冲及增生的过程并没有显著变化;但随着时间推移,年轻造山带洋板块性质和洋板块地层组成与古老造山带相比,可能会发生一些变化。就古老造山带洋板块地层而言,前寒武纪的地幔温度略高,太古代局部熔融显著,熔融量大大超过洋壳扩张速率,因而没有形成席状岩墙群。  相似文献   

5.
着重介绍了洋板块地层的概念、模式、组成及失序变化特征。造山带混杂岩和大陆边缘增生复合体是经历俯冲碰撞消亡后的古洋沉积记录,利用微体古生物地层学和同位素年代学方法可以重建造山带混杂岩和大陆边缘增生复合体的原始地层。洋板块地层(学)是用来描述沉淀在洋壳基底之上的沉积岩和火成岩序列的术语,其开始于洋中脊形成,终止于该洋中脊被移入到汇聚边缘增生楔。从造山带混杂岩中重建的古大洋地层的基本组成大体相似,但因大洋岩石圈的岩浆背景不同,造成不同时期和不同类型的洋板块地层组成也会有差异。在前人研究成果的基础上, 笔者通过对不同类型洋板块地层进行分类,介绍了如何从经历碰撞造山过程的增生造山带进行洋板块地层的重建。引入“洋板块地层学”概念的主要目的在于通过对因俯冲增生而消亡的具有洋壳基底的构造洋盆和边缘海盆地的地层单元进行重建,恢复已消失洋的地层组成单元,这对造山带地层解析、造山带构造古地理恢复、重大构造变革期古地理学研究和板块重建等都将起到积极的促进作用。  相似文献   

6.
重点分析和总结了由显生宙增生复合体和造山带混杂岩重建的年轻造山带洋板块地层--太平洋洋板块地层,也简要介绍了东古印度洋(东新特提斯洋)和古亚洲洋洋板块地层的重建情况。通过对阿拉斯加南部中生代增生地体、俄罗斯远东和中国东北侏罗纪-早白垩世增生复合体、日本二叠纪-侏罗纪-白垩纪等不同时期的增生复合体、菲律宾侏罗纪增生复合体和美国加州海岸山脉中侏罗世-古新世弗朗西斯卡杂岩体等不同单元的岩石学特征、古生物地层学、年代地层学、因逆冲导致的构造叠置和混杂失序特征及演化阶段的分析,重建了太平洋洋板块地层。其中加州海岸山脉中侏罗世-古新世弗朗西斯卡杂岩体的研究比较深入,对该区俯冲带上叠蛇绿岩(大峡谷群弧前盆地蛇绿岩)和弗朗西斯卡北部马林海岬杂岩体(原岩为洋中脊玄武岩)进行了有效区分,不仅还原了太平洋板块的俯冲碰撞过程,还厘清了与之伴生的弧前盆地裂陷和扩张过程。另外,板块俯冲的滞留和幕式增生在活动时间较短的板块俯冲体系中可能不容易识别。  相似文献   

7.
Ocean plate stratigraphy (OPS) is essential to understanding accretionary wedges and complexes along convergent plate margins. Mélanges within accretionary wedges and complexes are the products of fragmentation and mixing processes during and following OPS accretion. A new term, ‘OPS mélange’, is proposed here for mélanges composed mostly of blocks of OPS with an argillaceous matrix, and for a mixture of mélanges of multiple origins with either broken or coherent formations. An OPS mélange results from the fragmentation and disruption of OPS, without admixing of other components. Three major types of OPS mélange can be distinguished on the basis of their components: turbidite type, chert–turbidite type, and limestone–basalt type. These three types potentially form similar mélanges, but they are derived from different parts of the OPS, depending on the level of the decollement surface. The concept of ‘OPS mélange’ can be applied to most of the mélanges in accretionary prisms and complexes worldwide. In addition, this proposal recognizes a distinction between processes of fragmentation and mixing of OPS components, and mixing of ophiolite components, the latter of which results in serpentinite mélanges, not OPS mélanges. Mélanges composed of OPS sequences occur worldwide. The recognition of OPS mélanges is a key aspect of understanding tectonic processes at convergent margins, which result in mélange formation in orogenic belts globally.  相似文献   

8.
We present a new approach for recognizing the origin of accreted basaltic rocks based on ocean plate stratigraphy (OPS), and on the petrology and geochemistry of basalts from mid-oceanic ridges (MORB) and oceanic islands (OIB) using examples from four accretionary complexes (AC) in SW Japan: Akiyoshi, Mino–Tamba, Chichibu and Shimanto. The key to the problem is the model of OPS, which includes an association of igneous and sedimentary rocks that form on an oceanic plate during its travel from a mid-oceanic ridge to a subduction zone. We propose the reconstruction of the tectonic settings of basalts according to their relationships with associated OPS sediments, their petrogenesis and their geochemical features. Five types of OPS are recognized in the accretionary complexes of SW Japan: (1) sandstone/shale; (2) sandstone/shale and chert; (3) sandstone/shale, chert and MORB; (4) sandstone/shale, chert, MORB and gabbro (± peridotite); (5) seamount OPS including OIB, cap carbonates, slope clastics and basal shale/chert. The alkaline, tholeiitic or calc-alkaline composition of basaltic melts, which are typical of oceanic islands, mid-oceanic ridges and island-arcs, respectively, can be identified by the sequence in crystallization of their major phenocrysts, i.e. olivine (ol), clinopyroxene (cpx) and plagioclase (pl), and by their compositions. Alkaline and calc-alkaline mafic lavas are characterized by an ol  cpx  pl succession, whereas tholeiitic melts by their ol  pl ± cpx succession. Titanium-rich minerals, e.g., Ti–augite, kaersutite, Ti–biotite, are typical of alkaline lavas. The application of geochemistry-based tectonic discrimination diagrams is also a powerful tool, if not supported by geological and petrological data, may result in confusion due to magma contamination, post-magmatic alteration, and secular change of mantle thermal conditions. We propose that a direct comparison of normalized multi-element patterns and key binary plots from older volcanic rocks with their modern analogues provides a more viable and reliable method of basalt discrimination. Our OPS–petrology–geochemistry method allows us to confirm the above conclusions that the lavas of the Akiyoshi, Mino–Tamba and Southern Chichibu AC formed in oceanic islands, because they are associated with seamount OPS sediments, crystallized from ol to cpx and pl, contain Ti–augite and kaersutite and are enriched in TiO2, LREE and Nb. In this paper we present geochemical data from the Inuyama basalts of the Mino–Tamba AC and from the Toba complex in the huge Mikabu greenstone belt of the Chichibu AC. The Inuyama basalts are in contact with Jurassic pelagic cherts, but their geochemical features are confusing; they contain phenocrysts of ol, Ti–augite and kaersutite and therefore probably formed in seamounts. The Toba volcanic rocks are a part of the huge ophiolite belt; they have flat to slightly LREE-enriched REE patterns, are characterized by an ol  cpx succession of phenocrysts and they plot in the OIB field in binary plots suggesting they formed in an oceanic plateau.  相似文献   

9.
The Late Jurassic–Early Cretaceous Wandashan accretionary complex (AC) in NE China is a key region for constraining the subduction and accretion of the Palaeo-Pacific Ocean; however, the protoliths and structure of the region remain poorly understood, resulting in debates regarding crustal growth mechanisms and subduction-related accretionary processes in Northeast China. In this contribution, we integrate detailed field observations, ocean plate stratigraphy (OPS) reconstruction, and associated geological data to determine the structure and tectonic evolution of the Wandashan AC. The Wandashan AC formed through the progressive incorporation of OPS units along an oceanic trench. The observed OPS comprises, in ascending order, Permian basalt and limestone, Middle Triassic–Early Jurassic chert, Middle Jurassic siliceous shale and mudstone, and Late Jurassic–Early Cretaceous turbidite. Numerous NNE–SSW-striking thrust faults have segmented the OPS into a series of bedding-parallel tectonic slices that were successively thrust over the Jiamusi massif along a basal thrust (the Yuejinshan Fault), producing a large-scale imbricate thrust system. The Wandashan AC underwent oceanward accretion via multiple deformational processes. The OPS units were detached and rearranged along or within a decollement through offscraping, underplating, thrusting, and duplexing. The units were then emplaced over the Jiamusi massif along the basal thrust. The timing of accretion and thrusting is constrained to the latest Middle Jurassic to earliest Early Cretaceous (ca. 167–131 Ma). Reconstructed accretion-related structural lines within the Wandashan AC trend dominantly NE–SW, close to the direction of Jurassic extension at the eastern Asian continental margin. Large-scale left-lateral strike-slip movement on the Dunmi Fault during the late Early Cretaceous resulted in the folding of structural lines within the Wandashan AC, producing their present-day westward-convex orientation.  相似文献   

10.
雅鲁藏布江缝合带是新特提斯洋俯冲消亡的残余,记录了新特提斯洋打开—闭合的全过程。本文以雅鲁藏布江缝合带西段仲巴地区南侧的纳久混杂岩为研究对象,进行了详细的放射虫年代学,砂岩碎屑锆石U-Pb同位素年代学以及碎屑组分统计研究。我们的数据表明,纳久混杂岩中硅质岩含有大量保存较好的放射虫化石,包含Pseudodictyomitra carpatica带典型分子,根据放射虫时代组合确定其时代为早Barremian阶;混杂岩中砂岩岩块主要为岩屑砂岩,不同样品碎屑锆石得出的最大沉积年龄介于95~73 Ma之间。碎屑锆石U-Pb年龄源区分析表明,碎屑物质来自北侧的冈底斯岩浆弧和拉萨地体。纳久混杂岩南侧的砂岩沉积时代为早白垩世,碎屑锆石U-Pb年龄源区表明具有典型的特提斯喜马拉雅特征。我们的数据表明,纳久混杂岩基质时代为早白垩世,砂岩岩块时代为晚白垩世,与北侧的早白垩世蛇绿岩共同组成了白垩纪的增生楔,随着印度与欧亚大陆的碰撞仰冲到特提斯喜马拉雅之上。  相似文献   

11.
南祁连拉脊山口增生楔的结构与组成特征   总被引:2,自引:1,他引:1  
造山带内增生楔/增生杂岩结构与组成的精细研究可为古洋盆演化和古板块构造格局重建提供最直接证据。北祁连构造带发育多条增生杂岩带,记录了阿拉善和中祁连地块之间原特提斯洋的俯冲和闭合过程,然而南祁连构造带大地构造演化长期存在争议。地质填图结果表明,南祁连构造带拉脊山口地区存在一套强烈片理化的玄武岩、灰黑色和红色硅质岩、砂岩和泥岩组合,它们与一套呈现"块体裹夹于基质"结构特征的混杂岩共同构成了增生杂岩,发育双重逆冲构造、逆冲断层、无根褶皱、紧闭褶皱和透入性面理。该增生杂岩与蛇绿岩之间为断层接触,并位于断层下盘。混杂岩是由斜长花岗岩(561Ma)、斜长岩(507Ma)、辉绿岩、玄武岩、硅质岩和砂岩等外来或原地岩块与浊流成因的细碎屑岩基质共同组成;基质和砂岩块体均发育同沉积构造,呈现出滑塌堆积典型特征。空间上,拉脊山口增生杂岩与上覆蛇绿岩被断层所分割且共同仰冲于中祁连南缘青石坡组浊积岩之上,具有与东侧昂思多地区增生杂岩和蛇绿岩相似的岩石组成、构造变形和时空结构特征。它们与南侧的岛弧带共同构成了南祁连构造带寒武纪-早奥陶世沟-弧体系,指示了寒武纪-早奥陶世时期南祁连洋盆向南俯冲。  相似文献   

12.
The East Sakhalin accretionary wedge is a part of the Cretaceous-Paleogene accretionary system, which developed on the eastern Asian margin in response to subduction of the Pacific oceanic plates. Its formation was related to the evolution of the Early Cretaceous Kem-Samarga island volcanic arc and Late Cretaceous-Paleogene East Sikhote Alin continental-margin volcanic belt. The structure, litho-, and biostratigraphy of the accretionary wedge were investigated in the central part of the East Sakhalin Mountains along two profiles approximately 40 km long crossing the Nabil and Rymnik zones. The general structure of the examined part of the accretionary wedge represents a system of numerous east-vergent tectonic slices. These tectonic slices. tens to hundreds of meters thick. are composed of various siliciclastic rocks, which were formed at the convergent plate boundary, and subordinate oceanic pelagic cherts and basalts, and hemipelagic siliceous and tuffaceous-siliceous mudstones. The siliciclastic deposits include trench-fill mudstones and turbidites and draping sediments. The structure of the accretionary wedge was presumably formed owing to off-scraping and tectonic underplating. The off-scraped and tectonically underplated fragments were probably tectonically juxtaposed along out-of-sequence thrusts with draping deposits. The radiolarian fauna was used to constrain the ages of rocks and time of the accretion episodes in different parts of the accretionary wedge. The defined radiolarian assemblages were correlated with the radiolarian scale for the Tethyan region using the method of unitary associations. In the Nabil zone, the age of pelagic sediments is estimated to have lasted from the Late Jurassic to Early Cretaceous (Barremian); that of hemipelagic sediments, from the early Aptian to middle Albian; and trench-fill and draping deposits of the accretionary complex date back to the middle-late Albian. In the Rymnik zone, the respective ages of cherts, hemipelagic sediments, and trench facies with draping deposits have been determined as Late Jurassic to Early Cretaceous (middle Albian), middle Aptian-middle Cenomanian, and middle-late Cenomanian. East of the rear toward the frontal parts of the accretionary wedge, stratigraphic boundaries between sediments of different lithology become successively younger. Timing of accretion episodes is based on the age of trench-fill and draping sediments of the accretionary wedge. The accretion occurred in a period lasting from the terminal Aptian to the middle Albian in the western part of the Nabil zone and in the middle Cenomanian in the eastern part of the Rymnik zone. The western part of the Nabil zone accreted synchronously with the Kiselevka-Manoma accretionary wedge located westerward on the continent. These accretionary wedges presumably formed along a single convergent plate margin, with the Sakhalin accretionary system located to the south of the Kiselevka-Manoma terrane in the Albian.  相似文献   

13.
Many ophiolite complexes like those of Oman and New Caledonia represent fragments of ancient oceanic crust and upper mantle generated at supra‐subduction zone environments and have been obducted onto the adjacent rifted continental margin together with the accretionary complexes and intra‐oceanic arcs. The Lajishan ophiolite complexes in the Qilian orogenic belt along the NE edge of the Tibet‐Qinghai Plateau are one of several ophiolites situated to the south of the Central Qilian block. Our geological mapping and petrological investigations suggest that the Lajishankou ophiolite complex consists of serpentinite, wehrlite, pyroxenite, gabbro, dolerite, and pillow and massive basalts that occur in a series of elongate fault‐bounded slices. An accretionary complex composed mainly of basalt, radiolarian chert, sandstone, mudstone, and mélange lies structurally beneath the ophiolite complex. The Lajishankou ophiolite complex and accretionary complex were emplaced onto the Qingshipo Formation of the Central Qilian block which shows features typical of turbidites deposited in a deep‐water environment of passive continental margin. Our geochemical and geochronological studies indicate that the mafic rocks in the Lajishankou ophiolite complex can be categorized into three distinct groups: massive island arc tholeiites, 509 Ma back‐arc dolerite dykes, and 491 Ma pillow basaltic and dolerite slices that are of seamount origin in a back‐arc basin. The ophiolite and accretionary complex constitute a Cambrian‐early Ordovician trench‐arc system within the South Qilian belt during the early Paleozoic southward subduction of the South Qilian Ocean prior to Early Ordovician obduction of this system onto the Central Qilian block.  相似文献   

14.
The Palaeozoic to Mesozoic accretionary complexes of southwest Japan include various types of mélange. Most mélanges are polygenetic in origin, being sedimentary or diapiric mélanges that were overprinted by tectonic deformation during subduction. Sedimentary mélanges, without a tectonic overprint, are present in the Permian accretionary complexes of the Akiyoshi and Kurosegawa belts and in the Early Cretaceous accretionary complex of the Chichibu Belt. These mélanges are characterized by dominant basalt and limestone clasts, within a mudstone matrix. The basalt and limestone clasts within the sedimentary mélanges were derived from ancient seamounts. Subduction of a seamount results in deformation of the pre-existing accretionary wedge, and it is difficult to incorporate a seamount into an accretionary wedge; therefore, preservation of seamount fragments requires a special tectonic setting. Oceanic plateau accretion might play an important role in interrupting the processes of subduction and accretion during the formation of accretionary complexes. Especially the Mikabu oceanic plateau might have caused the cessation of accretion during the Early Cretaceous. The subduction and accretion of volcanic arcs and oceanic plateaux helps to preserve sedimentary mélanges from tectonic overprinting by preventing further subduction.  相似文献   

15.
大洋或弧后洋盆俯冲增生是大陆地壳增长的主导地质作用.重建大陆中消亡的洋地层岩石组合序列是当代大陆动力学和地学研究的重大前沿.洋壳消减杂岩带的厘定是洋板块地质构造重建乃至全球大地构造研究之纲,是理解区域大地构造形成演化及动力学的核心.俯冲增生杂岩带的基本特征:(1)俯冲增生杂岩带物质组成的共性是:以强烈构造变形洋底沉积的硅质岩-硅泥质岩-粉砂岩、凝灰岩;弧-沟浊积岩等为基质;以洋岛-海山灰岩-玄武岩及塌积砾岩,洋内弧残留岩块,超镁铁质蛇绿岩、绿片岩、蓝片岩等为岩块.(2)变形样式:同斜倒转冲断叠瓦构造、增生柱前缘重力滑动构造以及泥质岩的底辟构造;增生楔前缘变形和增生形式受控于大洋或弧后洋盆的规模和洋壳的俯冲速度,也取决于陆缘碎屑供给量及洋底沉积厚度和岩性.(3)宽度和厚度:厚常达几千米,宽达几十公里至数百公里,延长上千公里,是洋壳俯冲消亡过程洋盆地层系统及陆缘沉积物加积的结果.(4)形成机制:是大陆碰撞前大洋(或弧后洋盆)岩石圈俯冲消减的产物.结合带中的早期俯冲增生杂岩带往往卷入晚期的构造混杂作用.  相似文献   

16.
Accretionary complexes record the histories of changes in physical properties of sediments from unlithified sediments to lithified rocks through the deformation processes along subduction interface. The trench sediment suffered various deformation of particulate flow, pressure solution deformation and cataclastic faultings from ductile to brittle regime during accretion in subduction zone. Tectonic mélange is a characteristic rock in on-land accretionary complexes. The dominant deformation mechanism of tectonic mélange formation is pressure solution on the basis of microscopic observation. However, brittle slickenlines are also commonly observed on mélange foliations at the outcrop scale. Although the slickenlines as a brittle failure is common on the surface of the pressure solution foliation, the relationship of their kinetic are still uncertain. Detailed observations of slickenlines suggest that they are formed by reactivation of the mélange foliations, which indicates that the slickenlines are developed after formation of block in matrix texture characterized in mélange. In addition, mélange foliations are cut by faults related to underplating of oceanic materials. Therefore, formation of slickenlines occur before underplating in a relatively deep portion along subduction interface. On the basis of P-T conditions reported from other parts of the Cretaceous Shimanto Belt, the mélange formation and underplating is inferred to have occurred around the seismic front or within the seismogenic zone. The change in deformation mechanisms from pressure solution to brittle failure may be the first change in physical properties from plastic to brittle around seismic front.  相似文献   

17.
The Kiselyovka–Manoma accretionary complex formed at the end of the Early Cretaceous during subduction of the Pacific oceanic plate underneath the Khingan–Okhotsk active continental margin along the east of Eurasia. It is composed of Jurassic–Early Cretaceous oceanic chert, siliceous mudstone, and limestone that include a significant amount of basic volcanic rocks. The known and newly obtained data on the petrogeochemistry of the Jurassic and Early Cretaceous basalt from various parts of the accretionary complex are systemized in the paper. Based on the comprehensive analysis of these data, the possible geodynamic settings of the basalt are considered. The petrogeochemical characteristics provide evidence for the formation of basalt in different parts of the oceanic floor within the spreading ridge, as well as on oceanic islands far from the ridge. The basalts of oceanic islands are mostly preserved in the accretionary complex. The compositional variations of the basalts may be controlled by the different thickness of the oceanic lithosphere on which they formed. This is explained by the varying distances of the lithosphere from the spreading zone.  相似文献   

18.
韩伟  周建波 《岩石学报》2020,36(3):703-725
饶河杂岩作为那丹哈达增生杂岩的主体,是古太平洋板块西向俯冲的直接证据。饶河增生杂岩组成与增生过程的研究对限定古太平洋板块向欧亚大陆的俯冲与增生过程具有重要的指示意义。本文在野外地质调查和饶河大岱地区大比例尺填图基础上,明确了饶河杂岩主要由枕状玄武岩、辉长岩以及大洋板块沉积地层(OPS)组成,这些岩石均呈构造透镜体状分布在海沟沉积物中,并被中生代花岗质岩脉所穿切,因此为限定饶河增生杂岩的组成、增生和就位时代提供了关键制约。地球化学数据表明玄武岩具有洋岛玄武岩(OIB)的地球化学属性。LA-ICPMS锆石测试结果表明该地区玄武岩和辉长岩的形成时代分别为166±2Ma和214±5Ma,限定了饶河杂岩中镁铁质-超镁铁质岩石的形成时代为晚三叠世至中侏罗世。结合该区粉砂质泥岩和砂岩的沉积时代下限分别为167±3Ma和133±4Ma,表明饶河杂岩的增生时代为167~133Ma,此外样品的碎屑年龄信息表明基质的物源为邻近的佳木斯地块和中亚造山带东段,其中前寒武的碎屑年龄在中国东北的多个陆块均有出现,可能源于早前存在的前寒武纪基底。本文测得侵入饶河杂岩的2个二长花岗岩形成年龄分别为126±1Ma和105±2Ma,表明饶河杂岩中的花岗岩脉主要形成于两个阶段,其中较老的花岗岩侵入体进一步限定了饶河杂岩的最终就位时代为133Ma至126Ma,表明古太平洋板块在中侏罗世至早白垩世存在西向俯冲-增生作用,为古太平洋板块的构造演化提供了重要的制约。  相似文献   

19.
The Blovice accretionary complex, Bohemian Massif, hosts well-preserved basaltic blocks derived from an oceanic plate subducted beneath the northern active margin of Gondwana during late Neoproterozoic to early Cambrian. The major and trace element and Hf–Nd isotope systematics revealed two different suites, tholeiitic and alkaline, whose composition reflects different sources of melts within a back-arc basin setting. The former suite has composition similar to mid-ocean ridge basalts (MORB), yet with striking enrichment in large-ion lithophile elements (LILE) and Pb paralleled by depletion in Nb, in agreement with its derivation from depleted mantle fluxed by subduction-related fluids. In contrast, the latter suite has composition similar to ocean island basalts (OIB) with variable contribution of ancient, recycled crustal material. We argue that both suites represent volcanic members of Ocean Plate Stratigraphy (OPS) and indicate that the oceanic realm consumed by the Cadomian subduction was a complex mosaic of intra-oceanic subduction zones, volcanic island arcs, and back-arc basins with mantle plume impinging the spreading centre. Hence, the basalt geochemistry implies that two distinct domains of oceanic lithosphere may have existed off the Gondwana’s continental edge: an outboard domain, made up of old and less buoyant oceanic lithosphere (remnants of the Mirovoi Ocean surrounding former Rodinia?) that was steeply subducted and generated the back-arcs, and young, hot, and more buoyant oceanic lithosphere generated in the back-arcs and later involved in accretionary complexes as dismembered OPS. Perhaps the best recent analogy of this setting is the Izu Bonin–Mariana arc–Philippine Sea in the western Pacific.  相似文献   

20.
This paper makes a review of the interpretations of the tectonic evolution of SW Japan during the last three decades. In the late 1970s, the dominant model was the so-called “Pacific-type orogeny”, emphasizing the purported absence of nappes and the contrast with the alpine chains, and interpreting the evolution as due to a steady oceanic subduction since the Paleozoic time. In the 80s, the discovery of the actual structure made of a pile of large thrust sheets led authors to propose collisional models, involving the intermittent underthrusting of buoyant blocks like micro-continents. At the same time, the use of high-resolution biostratigraphy allowed several authors to recognize ancient accretionary wedges, with a reconstructed ocean plate stratigraphy of individual accreted units, especially in the Tanba and Shimanto zones. Also, precise radiometric dating permitted the distinction of metamorphosed units, especially in Sanbagawa and Shimanto belts. As a result of these new data, since the 1990s, the plate tectonic interpretation of the history of the Japanese Islands was revised by Japanese scientists and presented again in terms of accretionary processes linked to a steadily oceanic subduction, with an episodic ridge subduction: the so-called “Miyashiro-type orogeny”. The review of different data leads to the following conclusions. The structure of SW Japan is made of a pile of sub-horizontal nappes, polydeformed, with a geometry similar to the one encountered in collisional orogens. The geodynamic mechanisms advocated for the tectonic building within the accretionary orogeny concept (Miyashiro-type orogeny) are inappropriate. A permanent oceanic subduction with the intermittent “collision” (actually subduction) of an active ridge or seamount chain is unable to build such structures, as this process induces in fact an acceleration of the tectonic erosion and collapse of the upper plate; the underthrusting of a micro-continent or mature arc is likely needed. The exhumation story of Sanbagawa HP schists suggests the setting of a continental subduction. The petrological and new geochemical data from the literature strongly support the existence, beneath the nappes of accretionary complexes, of continental bodies showing affinities with South China, from which they were once separated. The episodic collision, underthrusting, of such blocks was responsible for the tectonic piling. Tectonic erosion plaid likely a major role in removing material during the intervening subduction stages. A revised geodynamic model, implying the collision of the Honshu, South Kitakami–Kurosegawa, and Shimanto Blocks, is proposed for explaining the three orogenic crises which took place respectively at around 240, 130, and 80–60 Ma ago in SW Japan. The paleogeographic position and affinity of the Hida block with surrounding units, in the hinterland, are still unclear. More work is needed to solve this question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号