首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A summary is given of the literature data on the content of volatiles in the lunar regolith, the characterization of the likely sources of the volatiles, and the possible processes of their migration and burial. The main sources of volatiles in the regolith are the solar wind, small Solar System bodies (comets and meteorites), and the lunar interior. Different sources are the leading ones for different volatiles. Water and other volatiles can accumulate on the surface and in the near-surface layers of the Moon only in the so-called cold traps in polar basins, where other volatiles, as well as water ice, including highly toxic elements such as mercury and cadmium must be accumulated. The content of volatiles in the lunar interior is comparable to that in terrestrial rocks. Water could have played an important role in the early stages of the Moon’s history, e.g., in the formation of mare basalts. The isotopic composition of the lunar juvenile water is similar to that on the Earth, which suggests a common origin of the terrestrial and lunar water.  相似文献   

2.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

3.
We use multispectral reflectance data from the lunar Clementine mission to investigate the impact ejecta deposits of simple craters in two separate lunar mare basalt regions, one in Oceanus Procellarum and one in Mare Serenitatis. Over 100 impact craters are studied, and for a number of these we observe differences between the TiO2 (and FeO) contents of their ejecta deposits and the lava flow units in which they are located. We demonstrate that, in the majority of cases, these differences cannot plausibly be attributed to uncorrected maturity effects. These observations, coupled with morphometric crater relationships that provide maximum crater excavation depths, allow the investigation of sub-surface lava flow stratigraphy. We provide estimated average thicknesses for a number of lava flow units in the two study regions, ranging from ∼80 m to ∼600 m. In the case of the Serenitatis study area, our results are consistent with the presence of sub-surface horizons inferred from recent radar sounding measurements from the JAXA Kaguya spacecraft. The average lava flow thicknesses we obtain are used to make estimates of the average flux of volcanic material in these regions. These are in broad agreement with previous studies, suggesting that the variation in mare basalt types we observe with depth is similar to the lateral variations identified at the surface.  相似文献   

4.
D.J. Burke 《Icarus》2011,211(2):1082-1088
Remote infrared spectroscopic measurements have recently re-opened the possibility that water is present on the surface of the Moon. Analyses of infrared absorption spectra obtained by three independent space instruments have identified water and hydroxyl (-OH) absorption bands at ∼3 μm within the lunar surface. These reports are surprising since there are many mechanisms that can remove water but no clear mechanism for replenishment. One hypothesis, based on the spatial distribution of the -OH signal, is that water is formed by the interaction of the solar wind with silicates and other oxides in the lunar basalt. To test this hypothesis, we have performed a series of laboratory simulations that examine the effect of proton irradiation on two minerals: anorthite and ilmenite. Bi-directional infrared reflection absorption spectra do not show any discernable enhancement of infrared absorption in the 3 μm spectral region following 1 or 100 keV proton irradiation at fluences between 1016 and 1018 ions cm−2. In fact, the post-irradiation spectra are characterized by a decrease in the residual O-H band within both minerals. Similarly, secondary ion mass spectrometry shows a decrease rather than an increase of the water group ions following proton bombardment of ilmenite. The absence of significant formation of either -OH or H2O is ascribed to the preferential depletion of oxygen by sputtering during proton irradiation, which is confirmed by post-irradiation surface analysis using X-ray photoelectron spectroscopy measurements. Our results provide no evidence to support the formation of H2O in the lunar regolith via implantation of solar wind protons as a mechanism responsible for the significant O-H absorption in recent spacecraft data. We determine an upper limit for the production of surficial -OH on the lunar surface by solar wind irradiation to be 0.5% (absorption depth).  相似文献   

5.
A computer simulation of the sputtering of lunar soil by solar wind protons was performed with the TRIM program. The rate of the sputtering-induced erosion of regolith particles was shown to be less than 0.2 Å per year. A preferential sputtering of Ca, Mg, and O was found along with a less intense sputtering of Fe, Si, and Ti. However, with no other selection mechanisms, surface concentrations of the atoms would differ from the volume ones by no more than 6 %. The enrichment of rims of regolith particles with iron occurs as a result of selective removal of lighter atoms from the lunar surface because of different energies of escape from the Moon's gravity. The energy distributions proved to be the same for all sorts of the sputtered atoms, except for implanted hydrogen; thus, a greater fraction of the atoms left on the lunar surface corresponds to heavier elements. According to simulation results, the concentration of reduced iron observed in the mature regolith could be attained during the time of regolith particle exposure to the present flux of solar wind (105 years). Thus, sputtering can provide the concentration of Fe0 observed in regolith. On periphery of a cloud of impact vapor the temperature is too low for an irreversible selective removal of evaporation products; thus, a meteoritic bombardment contributes to the formation of composition of the rims of regolith particles mainly through enrichment of the rims with elements from the bulk of the particles. The estimates of fluxes of backscattered solar wind protons and of sputtered protons, earlier implanted to the regolith, demonstrated that their contribution to the proton flux near the poles is only 104 cm–2 s–1. This is by two orders of magnitude smaller than the proton flux from the Earth's magnetosphere which is, therefore, the main source of protons for permanently shaded polar craters of the Moon.  相似文献   

6.
We performed the first global survey of lunar regolith depths using Lunar Reconnaissance Orbiter Camera (LROC) data and the crater morphology method for determining regolith depth. We find that on both the lunar farside and in the nearside, non-mare regions, the regolith depth is twice as deep as it is within the lunar maria. Our data compare favorably with previous studies where such data exist. We also find that regolith depth correlates well with density of large craters (>20 km diameter). This result is consistent with the gradual formation of regolith by rock fracture during impact events.  相似文献   

7.
This study examines a set of lunar domes with very low flank slopes which differ in several respects from the frequently occurring lunar effusive domes. Some of these domes are exceptionally large, and most of them are associated with faults or linear rilles of presumably tensional origin. Accordingly, they might be interpreted as surface manifestations of laccolithic intrusions formed by flexure-induced vertical uplift of the lunar crust (or, alternatively, as low effusive edifices due to lava mantling of highland terrain, or kipukas, or structural features). All of them are situated near the borders of mare regions or in regions characterised by extensive effusive volcanic activity. Clementine multispectral UVVIS imagery indicates that they do not preferentially occur in specific types of mare basalt. Our determination of their morphometric properties, involving a combined photoclinometry and shape from shading technique applied to telescopic CCD images acquired at oblique illumination, reveals large dome diameters between 10 and more than 30 km, flank slopes below 0.9°, and volumes ranging from 0.5 to 50 km3. We establish three morphometric classes. The first class, In1, comprises large domes with diameters above 25 km and flank slopes of 0.2°-0.6°, class In2 is made up by smaller and slightly steeper domes with diameters of 10-15 km and flank slopes between 0.4° and 0.9°, and domes of class In3 have diameters of 13-20 km and flank slopes below 0.3°. While the morphometric properties of several candidate intrusive domes overlap with those of some classes of effusive domes, we show that a possible distinction criterion are the characteristic elongated outlines of the candidate intrusive domes. We examine how they differ from typical effusive domes of classes 5 and 6 defined by Head and Gifford [Head, J.W., Gifford, A., 1980. Lunar mare domes: classification and modes of origin. Moon Planets 22, 235-257], and show that they are likely no highland kipukas due to the absence of spectral contrast to their surrounding. These considerations serve as a motivation for an analysis of the candidate intrusive domes in terms of the laccolith model by Kerr and Pollard [Kerr, A.D., Pollard, D.D., 1998. Toward more realistic formulations for the analysis of laccoliths. J. Struct. Geol. 20(12), 1783-1793], to estimate the geophysical parameters, especially the intrusion depth and the magma pressure, which would result from the observed morphometric properties. Accordingly, domes of class In1 are characterised by intrusion depths of 2.3-3.5 km and magma pressures between 18 and 29 MPa. For the smaller and steeper domes of class In2 the magma intruded to shallow depths between 0.4 and 1.0 km while the inferred magma pressures range from 3 to 8 MPa. Class In3 domes are similar to those of class In1 with intrusion depths of 1.8-2.7 km and magma pressures of 15-23 MPa. As an extraordinary feature, we describe in some detail the concentric crater Archytas G associated with the intrusive dome Ar1 and discuss possible modes of origin. In comparison to the candidate intrusive domes, terrestrial laccoliths tend to be smaller, but it remains unclear if this observation is merely a selection effect due to the limited resolution of our telescopic CCD images. An elongated outline is common to many terrestrial laccoliths and the putative lunar laccoliths, while the thickness values measured for terrestrial laccoliths are typically higher than those inferred for lunar laccoliths, but the typical intrusion depths are comparable.  相似文献   

8.
Lunar irregular mare patches (IMPs) comprise dozens of small, distinctive, and enigmatic lunar mare features. Characterized by their irregular shapes, well-preserved state of relief, apparent optical immaturity, and few superposed impact craters, IMPs are interpreted to have been formed or modified geologically very recently (<~100 Ma; Braden et al. 2014 ). However, their apparent relatively recent formation/modification dates and emplacement mechanisms are debated. We focus in detail on one of the major IMPs, Sosigenes, located in western Mare Tranquillitatis, and dated by Braden et al. ( 2014 ) at ~18 Ma. The Sosigenes IMP occurs on the floor of an elongate pit crater interpreted to represent the surface manifestation of magmatic dike propagation from the lunar mantle during the mare basalt emplacement era billions of years ago. The floor of the pit crater is characterized by three morphologic units typical of several other IMPs, i.e., (1) bulbous mounds 5–10 m higher than the adjacent floor units, with unusually young crater retention ages, meters thick regolith, and slightly smaller subresolution roughness than typical mature lunar regolith; (2) a lower hummocky unit mantled by a very thin regolith and significantly smaller subresolution roughness; and (3) a lower blocky unit composed of fresh boulder fields with individual meter-scale boulders and rough subresolution surface texture. Using new volcanological interpretations for the ascent and eruption of magma in dikes, and dike degassing and extrusion behavior in the final stages of dike closure, we interpret the three units to be related to the late-stage behavior of an ancient dike emplacement event. Following the initial dike emplacement and collapse of the pit crater, the floor of the pit crater was flooded by the latest-stage magma. The low rise rate of the magma in the terminal stages of the dike emplacement event favored flooding of the pit crater floor to form a lava lake, and CO gas bubble coalescence initiated a strombolian phase disrupting the cooling lava lake surface. This phase produced a very rough and highly porous (with both vesicularity and macroporosity) lava lake surface as the lake surface cooled. In the terminal stage of the eruption, dike closure with no addition of magma from depth caused the last magma reaching shallow levels to produce viscous magmatic foam due to H2O gas exsolution. This magmatic foam was extruded through cracks in the lava lake crust to produce the bulbous mounds. We interpret all of these activities to have taken place in the terminal stages of the dike emplacement event billions of years ago. We attribute the unusual physical properties of the mounds and floor units (anomalously young ages, unusual morphology, relative immaturity, and blockiness) to be due to the unusual physical properties of the substrate produced during the waning stages of a dike emplacement event in a pit crater. The unique physical properties of the mounds (magmatic foams) and hummocky units (small vesicles and large void space) altered the nature of subsequent impact cratering, regolith development, and landscape evolution, inhibiting the typical formation and evolution of superposed impact craters, and maintaining the morphologic crispness and optical immaturity. Accounting for the effects of the reduced diameter of craters formed in magmatic foams results in a shift of the crater size–frequency distribution age from <100 Myr to billions of years, contemporaneous with the surrounding ancient mare basalts. We conclude that extremely young mare basalt eruptions, and resulting modification of lunar thermal evolution models to account for the apparent young ages of the IMPs, are not required. We suggest that other IMP occurrences, both those associated with pit craters atop dikes and those linked to fissure eruptions in the lunar maria, may have had similar ancient origins.  相似文献   

9.
The adsorption of molecular water onto lunar analog materials was investigated under ultra-high vacuum with the goal to better understand the thermal stability and evolution of water on the lunar surface. Temperature-programmed desorption (TPD) experiments show that lunar-analog basaltic-composition glass is hydrophobic, with water-water interactions dominating over surface chemisorption. This suggests that lunar agglutinates will tend not to adsorb water at temperatures above where water clusters and multilayer ice forms. The basalt JSC-1A lunar mare analog, which is a complex mixture of minerals and glass, adsorbs water above 180 K with an adsorption profile that extends to 400 K, showing evidence for a continuum of water adsorption sites. Bancroft albite adsorbs more water, more strongly, than JSC-1A, with a well-defined desorption peak near 225 K. This suggests that mineral surfaces will adsorb more water than mare or mature (glassy, agglutinate rich) surfaces and may explain the association of water with fresh feldspathic craters at high latitudes. The activation energies for the thermal desorption of water from these materials were determined, and along with values from the literature, used to model the grain-to-grain migration of water within the lunar regolith. These models suggest that a combination of recombinative desorption of hydroxyl along with molecular desorption of water and its subsequent migration within and out of the regolith may explain observed diurnal variations in the distribution of water and hydroxyl on the illuminated Moon.  相似文献   

10.
Abstract— The meteorite Northwest Africa 773 (NWA 773) is a lunar sample with implications for the evolution of mafic magmas on the moon. A combination of key parameters including whole‐rock oxygen isotopic composition, Fe/Mn ratios in mafic silicates, noble gas concentrations, a KREEP‐like rare earth element pattern, and the presence of regolith agglutinate fragments indicate a lunar origin for NWA 773. Partial maskelynitization of feldspar and occasional twinning of pyroxene are attributed to shock deformation. Terrestrial weathering has caused fracturing and precipitation of Carich carbonates and sulfates in the fractures, but lunar minerals appear fresh and unoxidized. The meteorite is composed of two distinct lithologies: a two‐pyroxene olivine gabbro with cumulate texture, and a polymict, fragmental regolith breccia. The olivine gabbro is dominated by cumulate olivine with pigeonite, augite, and interstitial plagioclase feldspar. The breccia consists of several types of clasts but is dominated by clasts from the gabbro and more FeO‐rich derivatives. Variations in clast mineral assemblage and pyroxene Mg/(Mg + Fe) and Ti/(Ti + Cr) record an igneous Fe‐enrichment trend that culminated in crystallization of fayalite + silica + hedenbergite‐bearing symplectites. The Fe‐enrichment trend and cumulate textures observed in NWA 773 are similar to features of terrestrial ponded lava flows and shallow‐level mafic intrusives, indicating that NWA 773 may be from a layered mafic intrusion or a thick, differentiated lava flow. NWA 773 and several other mafic lunar meteorites have LREE‐enriched patters distinct from Apollo and Luna mare basalts, which tend to be LREE‐depleted. This is somewhat surprising in light of remote sensing data that indicates that the Apollo and Luna missions sampled a portion of the moon that was enriched in incompatible heatproducing elements.  相似文献   

11.
Wenzhe Fa 《Icarus》2010,207(2):605-615
In China’s first lunar exploration project, Chang-E 1 (CE-1), a multi-channel microwave radiometer was aboard the satellite, with the purpose of measuring microwave brightness temperature (Tb) from lunar surface and surveying the global distribution of lunar regolith layer thickness. In this paper, the primary 621 tracks of swath data measured by CE-1 microwave radiometer from November 2007 to February 2008 are collected and analyzed. Using the nearest neighbor interpolation to collect the Tb data under the same Sun illumination, global distributions of microwave brightness temperature from lunar surface at lunar daytime and nighttime are constructed. Based on the three-layer media modeling (the top dust-soil, regolith and underlying rock media) for microwave thermal emission of lunar surface, the CE-1 measured Tb and its dependence upon latitude, frequency and FeO + TiO2 content, etc. are discussed. The CE-1 Tb data at Apollo landing sites are especially chosen for validation and calibration on the basis of available ground measurements. Using the empirical dependence of physical temperature upon the latitude verified by the CE-1 multi-channel Tb data at Apollo landing sites, the global distribution of regolith layer thickness is further inverted from the CE-1 brightness temperature data at 3 GHz channel. Those inversions at Apollo landing sites and the characteristics of regolith layer thickness for lunar maria are well compared with the Apollo in situ measurements and the regolith thickness derived from the Earth-based radar data. Finally, the statistical distribution of regolith thickness is analyzed and discussed.  相似文献   

12.
One of the principal scientific reasons for wanting to resume in situ exploration of the lunar surface is to gain access to the record it contains of early Solar System history. Part of this record will pertain to the galactic environment of the Solar System, including variations in the cosmic ray flux, energetic galactic events (e.g., supernovae and/or gamma-ray bursts), and passages of the Solar System through dense interstellar clouds. Much of this record is of astrobiological interest as these processes may have affected the evolution of life on Earth, and perhaps other Solar System bodies. We argue that this galactic record, as for that of more local Solar System processes also of astrobiological interest, will be best preserved in ancient, buried regolith (‘palaeoregolith’) deposits in the lunar near sub-surface. Locating and sampling such deposits will be an important objective of future lunar exploration activities.  相似文献   

13.
Spectral properties, magnetic fields, and dust transport at lunar swirls   总被引:1,自引:0,他引:1  
Lunar swirls are albedo anomalies associated with strong crustal magnetic fields. Swirls exhibit distinctive spectral properties at both highland and mare locations that are plausibly explained by fine-grained dust sorting. The sorting may result from two processes that are fairly well established on the Moon, but have not been previously considered together. The first process is the vertical electrostatic lofting of charged fine dust. The second process is the development of electrostatic potentials at magnetic anomalies as solar wind protons penetrate more deeply into the magnetic field than electrons. The electrostatic potential can attract or repel charged fine-grained dust that has been lofted. Since the finest fraction of the lunar soil is bright and contributes significantly to the spectral properties of the lunar regolith, the horizontal accumulation or removal of fine dust can change a surface’s spectral properties. This mechanism can explain some of the spectral properties of swirls, accommodates their association with magnetic fields, and permits aspects of weathering by micrometeoroids and the solar wind.  相似文献   

14.
In this study we examine the spectral and morphometric properties of the four important lunar mare dome fields near Cauchy, Arago, Hortensius, and Milichius. We utilize Clementine UV-vis multispectral data to examine the soil composition of the mare domes while employing telescopic CCD imagery to compute digital elevation maps in order to determine their morphometric properties, especially flank slope, height, and edifice volume. After reviewing previous attempts to determine topographic data for lunar domes, we propose an image-based 3D reconstruction approach which is based on a combination of photoclinometry and shape from shading. Accordingly, we devise a classification scheme for lunar mare domes which is based on a principal component analysis of the determined spectral and morphometric features. For the effusive mare domes of the examined fields we establish four classes, two of which are further divided into two subclasses, respectively, where each class represents distinct combinations of spectral and morphometric dome properties. As a general trend, shallow and steep domes formed out of low-TiO2 basalts are observed in the Hortensius and Milichius dome fields, while the domes near Cauchy and Arago that consist of high-TiO2 basalts are all very shallow. The intrusive domes of our data set cover a wide continuous range of spectral and morphometric quantities, generally characterized by larger diameters and shallower flank slopes than effusive domes. A comparison to effusive and intrusive mare domes in other lunar regions, highland domes, and lunar cones has shown that the examined four mare dome fields display such a richness in spectral properties and 3D dome shape that the established representation remains valid in a more global context. Furthermore, we estimate the physical parameters of dome formation for the examined domes based on a rheologic model. Each class of effusive domes defined in terms of spectral and morphometric properties is characterized by its specific range of values for lava viscosity, effusion rate, and duration of the effusion process. For our data set we report lava viscosities between about 102 and , effusion rates between 25 and , and durations of the effusion process between three weeks and 18 years. Lava viscosity decreases with increasing R415/R750 spectral ratio and thus TiO2 content; however, the correlation is not strong, implying an important influence of further parameters like effusion temperature on lava viscosity.  相似文献   

15.
Abstract— Knowledge of regolith depth structure is important for a variety of studies of the Moon and other bodies such as Mercury and asteroids. Lunar regolith depths have been estimated using morphological techniques (i.e., Quaide and Oberbeck 1968; Shoemaker and Morris 1969), crater counting techniques (Shoemaker et al. 1969), and seismic studies (i.e., Watkins and Kovach 1973; Cooper et al. 1974). These diverse methods provide good first order estimates of regolith depths across large distances (tens to hundreds of kilometers), but may not clearly elucidate the variability of regolith depth locally (100 m to km scale). In order to better constrain the regional average depth and local variability of the regolith, we investigate several techniques. First, we find that the apparent equilibrium diameter of a crater population increases with an increasing solar incidence angle, and this affects the inferred regolith depth by increasing the range of predicted depths (from ~7–15 m depth at 100 m equilibrium diameter to ~8–40 m at 300 m equilibrium diameter). Second, we examine the frequency and distribution of blocky craters in selected lunar mare areas and find a range of regolith depths (8–31 m) that compares favorably with results from the equilibrium diameter method (8–33 m) for areas of similar age (~2.5 billion years). Finally, we examine the utility of using Clementine optical maturity parameter images (Lucey et al. 2000) to determine regolith depth. The resolution of Clementine images (100 m/pixel) prohibits determination of absolute depths, but this method has the potential to give relative depths, and if higher resolution spectral data were available could yield absolute depths.  相似文献   

16.
This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.  相似文献   

17.
We measured the concentrations and isotopic compositions of the stable isotopes of He, Ne, Ar, Kr, and Xe in the two lunar impact‐melt breccias Abar al’ Uj (AaU) 012 and Shi?r 166 to obtain information on their cosmic‐ray exposure histories and possible launch pairing; the latter was suggested because of their similar chemical composition. AaU 012 has higher gas concentrations than Shi?r 166 and clearly contains implanted solar wind gases, indicating a shallow to moderate shielding for this meteorite in the lunar regolith. The maximum shielding depth of AaU 012 was most likely ≤310 g cm?2 and its lunar regolith residence time was ≥420 ± 70 Ma. Our results indicate that in Shi?r 166 the trapped component is a mixture of air and solar wind. The low concentration of cosmogenic and solar wind gases indicate substantial diffusive gas loss and a shielding depth of <700 g cm?2 on the Moon for Shi?r 166. All differences seen in the concentrations and isotopic compositions of the noble gases suggest that AaU 012 and Shi?r 166 are most likely not launch pairs, although a different exposure history on the Moon does not exclude the possibility that the two meteorites were ejected by a single, large impact event.  相似文献   

18.
The solar and galactic cosmic rays interact directly with lunar surface materials, and the dominant nature of interactions is essentially the complete absorption of corpuscles. These corpuscles damage the lattice structure, and induce a complex set of reactions in the materials producing various species. The cosmic ray damage of the lattice would not produce an amorphous layer, similar to that produced by the solar wind, because the solar wind erosion rate is faster than the cosmic ray-induced amorphous layer formation rate. The species formation rate considered in this paper are those produced by protons, the dominant component of cosmic rays. Protons produce H, H2, OH, H2O, and hydrogenated species of carbon, nitrogen, sulfur, etc. These species, while migrating in the material, encounter oncoming cosmic ray corpuscles, and undergo a complex set of reactions. Although a variety of species are produced by protons, the dominant contributor to the atmosphere is H2. The H2 flux (molecules cm–2 sec–1) is about 1.5 × 105 as compared to the H flux of 8.4 × 101 and the H2O flux of 4.6 × 10–2. These fluxes are about 10–3 smaller than the fluxes of the same species produced by the solar wind protons. Thus the contributions of the cosmic ray-induced species to the atmosphere is very small compared to the solar wind-induced species. Although simulated experiments showed high concentractions of OH and H2O in the terrestrial materials of lunar type, these species concentrations in the lunar materials under the lunar environment is much smaller than those observed in the simulated experiments.  相似文献   

19.
Abstract— Quantitative textural data for Northwest Africa (NWA) 032 and the LaPaz (LAP) mare basalt meteorites (LAP 02205, LAP 02224, LAP 02226, and LAP 02436) prvide constraints on their crystallization and mineral growth histories. In conjunction with whole‐rock and mineral chemistry, textural analysis provides powerful evidence for meteorite pairing. Petrographic observations and crystal size distribution (CSD) measurements of NWA 032 indicate a mixed population of slowly cooled phenocrysts and faster cooled matrix. LaPaz basalt crystal populations are consistent with a single phase of nucleation and growth. Spatial distribution patterns (SDP) of minerals in the meteorites highlight the importance of clumping and formation of clustered crystal frameworks in their melts, succeeded by continued nucleation and growth of crystals. This process resulted in increasingly poor sorting, during competition for growth, as the melt crystallized. Based on CSD and SDP data, we suggest a potential lava flow geometry model to explain the different crystal populations for NWA 032 and the LaPaz basalts. This model involves crystallization of early formed phenocrysts at hypabyssal depths in the lunar crust, followed by eruption and flow differentiation on the lunar surface. Lava flow differentiation would allow for formation of a cumulate base and facilitate variable cooling within the stratigraphy, explaining the varied textures and modal mineralogies of mare basalt meteorites. The model may also provide insight into the relative relationships of some Apollo mare basalt suites, shallow‐level crystal fractionation processes, and the nature of mare basalt volcanism over lunar history.  相似文献   

20.
Lunar mare basalts provide insights into the compositional diversity of the Moon's interior. Basalt fragments from the lunar regolith can potentially sample lava flows from regions of the Moon not previously visited, thus, increasing our understanding of lunar geological evolution. As part of a study of basaltic diversity at the Apollo 12 landing site, detailed petrological and geochemical data are provided here for 13 basaltic chips. In addition to bulk chemistry, we have analyzed the major, minor, and trace element chemistry of mineral phases which highlight differences between basalt groups. Where samples contain olivine, the equilibrium parent melt magnesium number (Mg#; atomic Mg/[Mg + Fe]) can be calculated to estimate parent melt composition. Ilmenite and plagioclase chemistry can also determine differences between basalt groups. We conclude that samples of approximately 1–2 mm in size can be categorized provided that appropriate mineral phases (olivine, plagioclase, and ilmenite) are present. Where samples are fine‐grained (grain size <0.3 mm), a “paired samples t‐test” can provide a statistical comparison between a particular sample and known lunar basalts. Of the fragments analyzed here, three are found to belong to each of the previously identified olivine and ilmenite basalt suites, four to the pigeonite basalt suite, one is an olivine cumulate, and two could not be categorized because of their coarse grain sizes and lack of appropriate mineral phases. Our approach introduces methods that can be used to investigate small sample sizes (i.e., fines) from future sample return missions to investigate lava flow diversity and petrological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号