首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Khalil Sarkarinejad   《Tectonophysics》2007,442(1-4):49-65
The Ghouri area in southwest Iran exposes a cross section through the Zagros orogenic belt. The area provides an opportunity to investigate quantitative finite strain (Rs), kinematic vorticity number (Wk), proportions of pure shear and simple shear components, sense of shear indicators, steeply plunging lineations, and other moderate to steeply plunging stretching lineations in a transpressional zone. Based on a classical strain analysis of deformed microfossils with oblate strain ellipsoid shape, the Zagros orogenic belt is classified as a pure-shear dominated zone of transpression, but asymmetry of shear-sense indicators suggests that a significant component of simple shear was involved along the deformation zone boundaries. The long axes of the microfossils and stretched pebbles of a deformed conglomerate were used to indicate the stretching direction in this zone. The stretching lineations have a steep to moderate plunge but a constant strain magnitude. Characteristics of dextral inclined transpressional kinematics in the Zagros continental collision zone were quantified and indicate an estimated k-value < 1, an angle between the maximum horizontal axis of the instantaneous strain ellipsoid and the zone boundary (θ = 32°), asymmetrical dextral shear-sense indicators, and an angle of relative plate motion (α = 25°).  相似文献   

2.
Fabrics in the mid-crustal Bronson Hill zone of the southern New England Appalachian orogen record a range of apparent finite strains and conflicting kinematics, but structural relationships indicate coeval development. At the smallest scale of this study, shortening was accommodated in granitic orthogneiss, while transcurrent deformation was partitioned into relatively thin zones of metastratified rocks along the margins. The Monson orthogneiss can be broadly characterized by subvertical to steeply dipping S > L tectonites, subvertical to subhorizontal stretching lineations, closed to isoclinal folds, and dextral/reverse kinematics. The east-bounding Conant Brook shear zone and Greenwich syncline are characterized by steeply dipping mylonitic foliations, a range of lineations, and dextral/reverse kinematic indicators. The west-bounding Mt. Dumplin high strain zone is comprised of steeply dipping mylonites, subhorizontal lineations, and sinistral/normal kinematics. These structures reflect coeval partitioned dextral transpression, vertical extrusion, and north-directed lateral escape of the orthogneiss that was facilitated by bounding conjugate shear zones. Comparison of structural subdomains with transpressional modeling indicates vertical pseudo-monoclinic to inclined triclinic coaxial to simple shear influenced transpression. Compatibility between laterally adjacent subdomains was maintained by meso-/microscale partitioning. Absolute and relative timing constraints show that transpression was sustained from 330 Ma to 300 Ma.  相似文献   

3.
Laboratory measurements are required to study geophysical properties of the subsurface because of lacking direct observation of Earth’s crust. In this research, compressional (P) and shear (S) wave velocity measurements have been conducted on cylindrical specimens of Quartz-micaschist cored using rock blocks taken from the zinc and lead Angouran mine, Zanjan, northwest of Iran. Cylindrical rock specimens were prepared from the blocks by coring in 0°, 30°, 45°, 60°, and 90° into the foliation direction. P- and S-wave velocities were measured along the cylindrical specimens with different foliation orientations. Percent variations of the P- and S-wave velocities (Thomsen’s anisotropic parameters ε and γ) and constant dynamic modulus of test results have been determined. Percent variations of the P-wave velocity (ε) increase with an increase of the foliation angle with respect to the propagating waves direction by a parabolic function as it shows P-wave velocity differences up to a maximum value of 50 %. Thomsen’s anisotropic parameter of γ has also the same function with the foliation angle. Meanwhile, foliation orientation has a much greater influence on ε than γ for foliation angle from 45° to 90° as \( \frac{\varepsilon }{\gamma } \) ratio increases with an increase of foliation angle. Values of dynamic elastic modulus (E), Poisson’s ratio (ν), shear modulus (μ), bulk modulus (K), and Lamé’s constant (λ) increase with the increase of foliation angle with the parabolic function. The results show that dynamic elastic modulus, Poisson’s ratio, shear modulus, bulk modulus, and Lamé’s constant have anisotropic behavior in relation with the foliation orientation.  相似文献   

4.
Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.  相似文献   

5.
Deformed conglomerates in the Igarra schist belt display contrasting strains between different lithological clast populations. We analysed three different clast populations (pegmatite, metasediment, quartz) across three sites in the Igarra metaconglomerates of Edo state, Nigeria. We calculated finite strain using the Rf/ø method and Flinn graph. Quartz clasts exhibited the least amount of strain, while the pegmatite and metasedimentary clasts had greater strains (pegmatite > metasediment > quartz). The variability in the finite strains gotten from the three sites is controlled by clast composition and probably grain size. The differences in finite strain and maximum elongation direction (λ 1) in the three sites indicates that the Igarra metaconglomerates was subjected to a heterogenous simple shear deformation which is probably associated with the general transpressional deformation that affected the Pan-African mobile belt considering its (Igarra schist belt) spatial proximity with regional dextral shear zones. Three-dimensional strain analysis in site one indicates a constrictive deformation with the dominance of L tectonites. Spatial analysis of two-dimensional strain suggests a strain gradient where finite strain decreases from north to south.  相似文献   

6.
Shear heating by reverse faulting on a sharp straight fault plane is modelled. Increase in temperature (T i ) of faulted hangingwall and footwall blocks by frictional/shear heating for planar rough reverse faults is proportional to the coefficient of friction (μ), density and thickness of the hangingwall block (ρ). T i increases as movement progresses with time. Thermal conductivity (K i ) and thermal diffusivity (\(k_{\mathrm {i}}^{\prime }\)) of faulted blocks govern T i but they do not bear simple relation. T i is significant only near the fault plane. If the lithology is dry and faulting brings adjacent hangingwall and footwall blocks of the same lithology in contact, those blocks undergo the same rate of increase in shear heating per unit area per unit time.  相似文献   

7.
The Pan-African NE–SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE–SW and NNE–SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an ‘S’ shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604–557 Ma for D 2–D 3 emplacement and deformation age of the granitic pluton in a dextral ENE–WSW shear movement.  相似文献   

8.
北祁连南缘右行韧性走滑剪切带位于祁连地块与北祁连俯冲碰撞杂岩带边界 ,长约 80 0km ,走向NWW SEE ,面理向北陡倾 ,中西部宽 5~ 6km ,东部由四条呈帚状撒开的强应变带组成。构造指向及向南东低角度倾伏的拉伸线理揭示出韧性剪切带的右行走滑和转换挤压性质。TIMS法测定的单颗粒锆石U Pb上交点年龄为 96 5~ 95 6Ma ,代表韧性剪切带原岩———基底变质岩的变质时代。糜棱岩中钾长石、黑云母单矿物40 Ar/ 3 9Ar同位素测年结果及与地层和岩浆活动的关系表明韧性剪切带形成于 4 4 0~ 380Ma。北祁连南缘右行韧性走滑剪切带是在祁连加里东造山带形成过程中 ,祁连地块与阿拉善地块间斜向碰撞诱发大规模转换挤压作用的产物。  相似文献   

9.
In the Singhbhum Shear Zone of eastern India successive generations of folds grew in response to a progressive ductile shearing. During this deformation a mylonitic foliation was initiated and was repeatedly transposed. The majority of fold hinges were formed in an arcuate manner at low angles to the Y-axis in an E-W trending subhorizontal position and major segments of the fold hinges were then rotated towards the down-dip northerly plunging X-axis. The striping and intersection lineations were rotated in the same manner. The down-dip mylonitic lineation is a composite structure represented by rotated early lineations and newly superimposed stretching lineations. The consistent asymmetry of the folds, the angular relations between C and S surfaces and the evidence of two-dimensional boudinage indicate that the deformation was non-coaxial, but with a flattening type of strain with λ1λ2. The degree of non-coaxiality varied both in space and time. From the progressive development of mesoscopic structures it is concluded that the 2–3 km wide belt of ductile shear gave rise to successive anastomosing shear zones of mesoscopic scale. When a new set of shear lenses was superimposed on already sheared rocks, the preexisting foliation generally lay at a low angle to the lenses. No new folds developed where the acute angle was sympathetic to the sense of shear displacements. Where the acute angle was counter to the sense of shear, the pre-existing foliation, lying in the instantaneous shortening field, was deformed into a set of asymmetric folds.  相似文献   

10.
Since cross-anisotropic sand behaves differently when the loading direction or the stress state changes, the influences of the loading direction and the intermediate principal stress ratio (b = (σ 2 ? σ 3)/(σ 1 ? σ 3)) on the initiation of strain localization need study. According to the loading angle (angle between the major principal stress direction and the normal of bedding plane), a 3D non-coaxial non-associated elasto-plasticity hardening model was proposed by modifying Lode angle formulation of the Mohr–Coulomb yield function and the stress–dilatancy function. By using bifurcation analysis, the model was used to predict the initiation of strain localization under plane strain and true triaxial conditions. The predictions of the plane strain tests show that the major principal strain at the bifurcation points increases with the loading angle, while the stress ratio decreases with the loading angle. According to the loading angle and the intermediate principal stress ratio, the true triaxial tests were analyzed in three sectors. The stress–strain behavior and the volumetric strain in each sector can be well captured by the proposed model. Strain localization occurs in most b value conditions in all three sectors except for those which are close to triaxial compression condition (b = 0). The difference between the peak shear strength corresponding to the strain localization and the ultimate shear strength corresponding to plastic limit becomes obvious when the b value is near 0.4. The influence of bifurcation on the shear strength becomes weak when the loading direction changes from perpendicular to the bedding plane to parallel. The bifurcation analysis based on the proposed model gives out major principal strain and peak shear strength at the initiation of strain localization; the given results are consistent with experiments.  相似文献   

11.
The processes of differentiation in the magmatic chamber of the Ioko-Dovyren layered dunite-troctolite-gabbro-gabbronorite massif were simulated using the COMAGMAT-3.5 software package, which is based on the convection-accumulation model for the crystallization of magmatic intrusions. The initial magma composition was assumed to be equal to the weighted mean composition of the rocks composing the intrusion (wt %: 43.92 SiO2, 9.72 Al2O3, 10.53 FeO, 27.88 MgO, 6.99 CaO, 0.59 Na2O, 0.07 K2O, and 0.11 TiO2). The results obtained by simulating the crystallization of this composition within a pressure range of 0–10 kbar indicate that the crystallization sequence determined for the rocks Ol + ChrOl+ Pl+ ChrOl + Pl+ CPx → ± Ol + Pl+ CPx + LowCaPx in an anhydrous system takes place under pressures of 0–2 kbar. A series of simulations for a system closed with respect to oxygen yielded estimates for the phase and chemical composition of the emplaced magma and the parameters of the optimum model, which reproduces accurately enough the geochemical structure of the Ioko-Dovyren intrusion: the naturally occurring distributions of minerals and components in its vertical section. The correlation coefficients between the concentrations of oxides determined in the rocks and calculated within the model are \(r_{MgO,Al_2 O_3 ,CaO} \) ≥ 0.9 and \(r_{FeO,SiO_2 ,Na_2 O} \) ≥ 0.6. The simulated phase composition of the magma during its emplacement corresponded to melt + olivine (Fo 89). The crystallinity of the parental magma was determined to have been equal to approximately 40 vol % at an assumed cumulus density of 90% near the lower contact and 70% near the upper one. The temperature of the magma during its emplacement was close to 1340°C at a pressure of 1 kbar. In the model, plagioclase and clinopyroxene appear on the liquidus at T?1255°C at T?1210°C, respectively, and the crystallization sequence of cumulus minerals corresponds to that observed in nature. The liquid phase (melt) of the parental magma during its emplacement had the following composition (wt %): 45.95 SiO2, 15.93 Al2 O3, 14.49 MgO, 10.88 FeO, 11.46 CaO, 0.97 Na2O, 0.11 K2O, and 0.18 TiO2. Our results confirm the plausibility of the hypothesis that the inner structure of the Ioko-Dovyren intrusion was formed by the emplacement and differentiation of a single magma portion with no less than 40 vol % crystallinity.  相似文献   

12.
The West Development Program, initiated in 2000 by the central government of China, has attracted huge investments in the arid and semiarid regions of northwest China. As a consequence of this development, environmental pollution and ecological degradation have been widely reported. The Silk Road economic belt proposed by China promotes further economic development in the regions, but rational planning and regular monitoring are essential to minimize any additional negative impacts of the anthropogenic activities. This article reports an investigation on the distribution, enrichment and sources of trace metals in the topsoil in and around the Ningxia Hengli Steel Wire Plant (HSWP) situated along the Silk Road economic belt. The concentrations of Cd, Pb, Cr, Cu, Zn, Ni, Mn, V and Co in the surface soils of the study area vary, respectively, in the following ranges: 0.083–18.600, 21.9–2681.0, 58.0–100.0, 14.6–169.9, 59.0–4207.3, 19.3–40.8, 411–711, 55.2–76.6 and 7.46–25.21 mg/kg. The concentrations of Cd, Pb, Cr, Cu, Zn and Co are significantly higher than their local background values. Pollution levels of these trace metals in the surface soils were assessed using contamination index (C f i ), geo-accumulation index (I geo), modified contamination degree (mC d) and pollution load index. The potential ecological risks caused by the metal pollution were assessed by means of potential ecological risk factor (E f i ) and potential ecological risk index. The Spearman correlation and cluster analysis were applied to determine the contamination sources. The HSWP zone, associated with very high potential ecological risk caused by Pb and Cd, is more seriously contaminated by trace metals than the residential zone. This study indicates that Cd, Pb, Cu, Zn and Co mainly originate from industrial pollution, whereas Cr, Mn, Ni and V result from both industrial activities and natural processes.  相似文献   

13.
During the last earthquake that occurred in Chlef (El Asnam 1980, Algeria), a significant decrease in the shear strength has caused major damages to several civil and hydraulic structures (earth dams, embankments, bridges, slopes and buildings), especially for the saturated sandy soil of the areas near Chlef valley. This paper presents a laboratory study of drained compression triaxial tests conducted on sandy soil reinforced with horizontal layers of geotextile, in order to study the influence of geotextile layer characteristics both on shear stress–strain and on volumetric change–strain. Tests were carried out on medium and dense sand. The experimental programme includes some drained compression tests performed on reinforced sand samples, for different values of the geotextile layers number (N g), of confining pressure (\( \sigma_{\text{c}}^{\prime } \)) and relative density (D r). The test results have shown that the contribution of the geotextile at low values of the axial strain (ε 1) is negligible, for higher values of (ε 1); geotextile induces a quasi-linear increase in the deviator stress (q) and leads to an increase in the volume contractiveness within the reinforced samples. A negligible influence of geotextile layers number (N g) on the stress–strain behaviour and the volumetric change has been shown, when normalized with N g. The results indicate that the contribution of geotextile to the stress–strain mobilization increases with increasing confining pressure, while its contribution to the volume contraction decreases with the increase in the confining pressure.  相似文献   

14.
The Belomorian Mobile Belt (BMB) in northern Karelia mostly consists of gently sloping shear zones, whose gneisses and migmatized amphibolites and blastomylonites are typically thinly banded, with their banding consistently dipping north- and northeastward. These gently sloping shear zones were not affected by folding after they were produced and are not cut by Paleoproterozoic metabasite dikes. Intrusive metabasites in the gently sloping shear zones make up relatively small (usually <5 m) equant or elongate bodies and occur as fragments of larger bodies. These fragments are often concentrated in stripes. Metabasites in the gently sloping shear zone are sometimes also found as lenses and tabular bodies of relatively small thickness, which are conformable with the foliation of the host rocks. The gently sloping shear zones cut across older domains of more complicated structure, which suggests that these zones are gently sloping ductile shear zones. Along these zones, the nappes were thrust south- and southwestward, and this process was the last in the origin of major structural features of BMB when the Paleoproterozoic Lapland–Kola orogen was formed. Practically identical age values were obtained for the gently sloping shear zone in the two widely separated Engonozero and Chupa segments of BMB: 1879 ± 21 Ma (40Ar/39Ar amphibole age of amphibolite whose protolith was mafic rock) and 1857 ± 13 Ma (Sm–Nd mineral isochron age of garnet amphibolites after gabbronorite). The PT metamorphic parameters in these gently sloping shear zones are remarkably different from the metamorphic parameters outside these zones: the pressure is 3–4 kbar lower and the temperature is 60–100°C lower. Thrusting-related decompression triggered the transition from the older high-pressure episode of Paleoproterozoic metamorphism to a younger syn-thrusting higher temperature metamorphic episode. The peak metamorphic parameters corresponding to the boundary between the amphibolite and granulite facies were reached only in the central portions of the shear zones: T= 680–760°C, P = 8.0–11.9 kbar. In areas of the most intense migmatization, temperature estimates in the central portions of the shear are as high as 810–830°C. The marginal portions of the shear zones were formed at lower temperatures of 610–630°C. The temperature heterogeneous and rock heating in the gently sloping shear zones may have resulted from flows of high-temperature metamorphic fluid that were focused to the central portions of the zones.  相似文献   

15.
The crystallization of plagioclase-bearing assemblages in mantle rocks is witness of mantle exhumation at shallow depth. Previous experimental works on peridotites have found systematic compositional variations in coexisting minerals at decreasing pressure within the plagioclase stability field. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5–10 kbar, 1050–1150?°C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO?=?0.08–0.13; X Cr = Cr/(Cr?+?Al)?=?0.07–0.10) as starting materials. As expected, the increase of the bulk Na2O/CaO ratio extends the plagioclase stability to higher pressure; in the studied high-Na fertile lherzolite (HNa-FLZ), the plagioclase-spinel transition occurs at 1100?°C between 9 and 10 kbar; in a fertile lherzolite (FLZ) with Na2O/CaO?=?0.08, it occurs between 8 and 9 kbar at 1100?°C. This study provides, together with previous experimental results, a consistent database, covering a wide range of PT conditions (3–9 kbar, 1000–1150?°C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. The pressure sensitive equilibrium:
$$\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}^{{\text{Ol}}}}\limits_{{\text{Forsterite}}} +\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{8}}}^{{\text{Pl}}}}\limits_{{\text{Anorthite}}~} =\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{6}}}^{{\text{Cpx}}}}\limits_{{\text{Ca-Tschermak}}} +{\text{ }}\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{6}}}^{{\text{Opx}}}}\limits_{{\text{Enstatite}}} ,$$
has been empirically calibrated by least squares regression analysis of experimental data combined with Monte Carlo simulation. The result of the fit gives the following equation:
$$P=7.2( \pm 2.9)+0.0078( \pm 0.0021)T{\text{ }}+0.0022( \pm 0.0001)T{\text{ }}\ln K,$$
$${R^2}=0.93,$$
where P is expressed in kbar and T in kelvin. K is the equilibrium constant K?=?a CaTs × a en/a an × a fo, where a CaTs, a en, a an and a fo are the activities of Ca-Tschermak in clinopyroxene, enstatite in orthopyroxene, anorthite in plagioclase and forsterite in olivine. The proposed geobarometer for plagioclase peridotites, coupled to detailed microstructural and mineral chemistry investigations, represents a valuable tool to track the exhumation of the lithospheric mantle at extensional environments.
  相似文献   

16.
The thermoelastic parameters of the CAS phase (CaAl4Si2O11) were examined by in situ high-pressure (up to 23.7 GPa) and high-temperature (up to 2,100 K) synchrotron X-ray diffraction, using a Kawai-type multi-anvil press. PV data at room temperature fitted to a third-order Birch–Murnaghan equation of state (BM EOS) yielded: V 0,300 = 324.2 ± 0.2 Å3 and K 0,300 = 164 ± 6 GPa for K′ 0,300 = 6.2 ± 0.8. With K′ 0,300 fixed to 4.0, we obtained: V 0,300 = 324.0 ± 0.1 Å3 and K 0,300 = 180 ± 1 GPa. Fitting our PVT data with a modified high-temperature BM EOS, we obtained: V 0,300 = 324.2 ± 0.1 Å3, K 0,300 = 171 ± 5 GPa, K′ 0,300 = 5.1 ± 0.6 (?K 0,T /?T) P  = ?0.023 ± 0.006 GPa K?1, and α0,T  = 3.09 ± 0.25 × 10?5 K?1. Using the equation of state parameters of the CAS phase determined in the present study, we calculated a density profile of a hypothetical continental crust that would contain ~10 vol% of CaAl4Si2O11. Because of the higher density compared with the coexisting minerals, the CAS phase is expected to be a plunging agent for continental crust subducted in the transition zone. On the other hand, because of the lower density compared with lower mantle minerals, the CAS phase is expected to remain buoyant in the lowermost part of the transition zone.  相似文献   

17.
The estimated undrained shear strength (su) is often not a unique value because it can be evaluated by various test types and/or procedures, such as different failure modes, shear strain rates, and boundary conditions. This study explores (1) the relationship between reference undrained shear strength and in situ shear wave velocity in terms of the effective overburden stress, and (2) the independent relationships to evaluate the undrained shear strength with special consideration of different directional and polarization modes (VH, HV, HH shear waves), which has not been reported. This evaluation is done via a worldwide database compiled from 43 well-documented geotechnical test sites associated with soft ground. Finally, new correlation models are proposed to estimate the undrained shear strength based on the in situ shear wave velocity as well as the plasticity index or the overconsolidation ratio. The application of the shear wave velocity–undrained shear strength relation is illustrated through two independent case studies. The proposed relationships are expected to contribute to reasonable estimates of undrained shear strength as well as offer practical guidance on even extrapolation beyond the data that is available to geotechnical engineers.  相似文献   

18.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

19.
Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length (Z 0/H) and shear velocity ratio (R) were analyzed as a function of roughness density (λ). Experiments showed that Z 0/H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/H and R showed little change with λ value beyond as λ max.  相似文献   

20.
The small strain shear stiffness G0 of the soil is of interest and importance in both theory and practice. It is expected that for granular materials G0 would slightly increases with over-consolidation ratio (OCR). However, laboratory tests indicate that G0 may decrease with increasing OCR, especially for loose specimens, which is counterintuitive. To explore the underlying mechanism, discrete element method (DEM) is used to investigate the effect of OCR on G0. The DEM simulations successfully capture the laboratory observations. The analyses at the particulate level reveal that the decrease in small strain stiffness is mainly due to the decreases in coordination number and the uniformity of contact force distribution during unloading process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号