首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Geophysical observations demonstrate that the archipelagic apron surrounding the Marquesan hot-spot volcanoes is derived almost entirely from mass wasting processes. Seismic reflection and refraction data constrain the volume of the apron sediments to approximately 200,000 km3, with thicknesses reaching over 2 km in the deep portions of the moat near the edge of the volcanic edifice. Seismic velocities average 4 to 5 km s–1 in the sediments, and 6 km s–1 at the top of the underlying basement. Single channel seismic profiles show acoustically chaotic cores in the sediments of the apron, which are interpreted as debris flows from mass wasting events. We deduce that the apron is formed by catastrophic collapses that may involve volumes over 100 km3 tens to hundreds of times during the lifetime of a volcano. Comparison with similar data from the Hawaiian Islands yields the result that the total volume of volcanics and their derived sediments along the strike of the chains is only slightly smaller for the Marquesas, implying comparable eruption rates. However, the ratio of sediment to surface volcanic load is much larger for the latter, leading to an overfilled moat in the Marquesas and an underfilled moat at Hawaii. The much larger size of the Hawaiian islands can be explained as the combined effects of a higher thermal swell, loading a stiffer elastic plate, and proportionately less mass wasting.  相似文献   

2.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

3.
The West Alboran Basin was previously classified as a mud volcanic province consisting of two mud volcano (MV) fields that are inactive at the present day: the Northern (Spanish) and the Southern (Moroccan) fields. The discovery of the first active mud volcano (Carmen; cruise TTR-17) in 2008, along with several pockmarks at the central part of the basin, motivates more careful geological and geochemical analysis of previous data and comparison to new observations.Gas bubbling from the crater of Carmen MV was observed and recorded using an underwater TV-system and a large TV-grab sample. The gas mainly consisted of methane with less than 1% wetness. However, all sets of homologues up to pentane were detected in the mud breccia of Carmen MV. Both molecular and stable carbon isotopic compositions, and their distribution along the core length, suggest a deep thermogenic source of hydrocarbons (HCs). Composition of the pore water from Carmen MV also points to a deep source of mud volcanic water. The isotopic results indicate that the source of mud volcanic water is the dehydration of clay minerals in the thermal zone of the smectite-to-illite transformation. Our observations allow us to infer the presence of structure II gas hydrates in mud breccia on the top of Carmen MV.High HC gas saturation in sediments in some pockmarks accompanied with live chemosynthetic fauna directly indicates the strong seepage activity of these structures. For the first time, authigenic carbonate crusts and chimneys with associated living chemosynthetic bivalves and tubeworms were sampled from a seep site in the West Alboran Sea. Authigenic carbonates consist of aragonite and calcite, and are characterized by a light carbon isotopic signature, up to −37.2‰ PDB, which points to their methane-derived origin.  相似文献   

4.
The mud volcano known as LUSI first erupted in May 2006 in East Java, Indonesia. The eruption has continued for over two years, and potentially will continue for many years to come, impacting an ever larger area. An obvious and significant question is how extensive the impacted area will become in the coming years. The answer is important for planning scenarios for the relocation of people and infrastructure and for managing the environment and economy. To make such a prediction, an understanding of the geological processes controlling the mud volcanic evolution is needed.  相似文献   

5.
A mud volcano LUSI initiated its eruption on 29 May 2006, adjacent to a hydrocarbon exploration well in East Java. Ground subsidence in the vicinity of the LUSI eruptive vent was well recorded by a Synthetic Aperture Radar (SAR) PALSAR onboard the Japanese ALOS satellite. We apply an Interferometric SAR (InSAR) technique on ten PALSAR data scenes, acquired between 19 May 2006 and 21 May 2007, in order to obtain continuous maps of ground displacements around LUSI. Although the displacements in the area closest to the eruptive vent (spatial extension of about 1.5 km) are not detectable because of the erupted mud, all the processed interferograms indicate subsidence in an ellipsoidal area of approximately 4 km (north–south) × 3 km (east–west), centered at the main eruptive vent. In particular, interferograms spanning the first four months until 4 Oct. 2006 and the subsequent 46 days between 4 Oct. 2006 and 19 Nov. 2006 show at least about 70 cm and 80 cm of displacements away from the satellite, respectively. Possible causes of the subsidence, i.e., 1) loading effect of the erupted mud, 2) creation of a cylindrical mud conduit, and 3) pressure decrease and depletion of materials at depth, are investigated. The effects of the first two causes are found to be insufficient to explain the total amount of subsidence observed in the first six months. The third possibility is quantitatively examined using a boundary element approach by modeling the source of deformation as a deflating oblate spheroid. The spheroid is estimated to lie at depths of a few hundred to a thousand meters. The estimated depths are significantly shallower than determined from analyses of erupted mud samples; the difference is explained by presence of significant amount of inelastic deformation including compaction and downward transfer of material.  相似文献   

6.
The IS44 station operates at the observation point of Nachiki on the Kamchatka peninsula, which is part of the International Monitoring System (IMS), and it helps verify compliance with the Comprehensive Nuclear Test-Ban Treaty (CTBT). The Kamchatka Branch, Geophysical Service, Russian Academy of Sciences (KB GS RAS), has a station operating in the village of Paratunka. Both of these stations allow one to monitor strong explosive eruptions of andesitic volcanoes.1 Both kinematic and dynamic parameters of acoustic signals accompanying the eruptions of the Bezymyannyi volcano (at a distance of 361 km from Nachiki) in 2009–2010 and the Kizimen volcano (at a distance of 275 km) on December 31, 2011, are considered. A low-frequency rarefaction phase 60 s in length has been revealed in the initial portion of the record of acoustic signals accompanying such strong eruptions. It is shown that the rarefaction phase occurs due to the rapid condensation of superheated juvenile vapor2 that enters the atmosphere during such explosions.3 The amount of volcanic ash emitted into the atmosphere has been estimated within (3.2–7.3) 106 m3 on the basis of acoustic signals recorded during the eruptions under consideration.  相似文献   

7.
8.
The remote detection of a seismic swarm on the northern Gorda Ridge on 28 February 1996 prompted a three-cruise response effort to investigate event and chronic hydrothermal discharge associated with a dike intrusion. The GR1 cruise reached the northern Gorda only 10 days after seismicity began and discovered a 15 km-diameter event plume, EP96A, centered between depths 1800 and 2800 m above the shallowest portion of the axial valley axis (3100 m). One month later, GR2 returned and found only a weak, near-bottom chronic plume at the EP96A site. A few kilometers to the south, however, GR2 mapped a distinctly different chronic plume (2500–2900 m depth) as well as the edge of a second event plume, EP96B (1800–2400-m depth), above the western wall of the axial valley. EP96B was seeded with a neutrally buoyant float, which traveled 10 net km to the northwest before surfacing on 10 June at the start of GR3. Mapping around the float location fully revealed EP96B, a 10 km diameter plume with a heat content 25% that of EP96A. Extensive observations within the axial valley determined that chronic venting was effectively exhausted within three months. Models seeking to explain the perturbation of hydrothermal venting by a dike intrusion and eruption must satisfy several criteria generalized from this and previous events: (1) venting begins (or increases) with the intrusion/eruption and declines exponentially afterwards; (2) the time scale of the post-intrusion decline varies within and among sites; (3) the discharge of multiple event plumes is common; (4) an existing high-temperature vent field may not be necessary or even conducive to event plume formation; and (5) the ratio of total chronic to event discharge varies among intrusion events.  相似文献   

9.
As part of a response effort following the February 1996 T-wave swarm on the North Gorda Ridge, camera tows were conducted at the site in April and discovered that a lava flow had erupted onto the seafloor during the earthquake swarm. The lava flow is located on axis between 42.665° and 42.688°N, just south of the axial high of the ridge segment, near the northern extent of T-wave epicenters, and under the site where a hydrothermal event plume was found 2 weeks after the swarm began. Temperature sensors on the camera sled recorded anomalies up to 0.5°C over and near the new flow, showing that it was still actively cooling. Data from camera tows, remotely operated vehicle (ROV) dives, sidescan sonar imagery, and SeaBeam resurveys show that the new flow is 2.6 km long, 400 m wide, and up to 75 m thick, with a volume of 18×106 m3. We interpret that this flow was erupted during the first half of the T-wave swarm. A combination of T-wave, plume, sidescan, and SeaBeam evidence also suggests that another lava flow (not imaged by camera or ROV) may have erupted 8 km to the south between 42.605° and 42.615°N, where the second half of the T-wave swarm was concentrated. However, this possible second eruption site remains unconfirmed.  相似文献   

10.
The eruption of the Anak Krakatau volcano,Indonesia,on 22 December 2018 induced a destructive tsunami(the Sunda Strait tsunami),which was recorded by four nearby tidal gauges.In this study we invert the tsunami records and recover the tsunami generation process.Two tsunami sources are obtained,a static one of instant initial water elevation and a time-dependent one accounting for the continuous evolution of water height.The time-dependent results are found to reproduce the tsunami recordings more satisfactorily.The complete tsunami generation process lasts approximately 9 min and features a two-stage evolution with similar intensity.Each stage lasts about 3.5 min and elevates a water volume of about 0.13 km3.The time,duration and volume of the volcano eruption in general agree with seismic records and geomorphological interpretations.We also test different sizes of the potential source region,which lead to different maximum wave height in the source area,but all the results of time-dependent tsunami sources show the robust feature of two stages of wave generation.Our results imply a time-dependent and complex process of tsunami generation during the volcano eruption.  相似文献   

11.
The Håkon Mosby mud volcano is a 1.5-km-diameter geological structure located on the Southwest Barents Sea slope at a water depth of 1,270 m. High-definition seabed mapping of the mud volcano has been carried out in 2003 and 2006. A comparative analysis of the bathymetry and backscatter maps produced from the two surveys shows subtle morphological changes over the entire crater of the mud volcano, interpreted to be the consequence of mud eruption events. Mud temperature measurements point to a persistently warm mud at shallow depth in the crater. This is explained by upward fluid advection, rather than conductive cooling of mud flows. The small-scale spatial variability in the temperature distribution may be related to mud outflows or changes in the fluid flow regime. Furthermore, the locations of free gas venting observed in 2006 were found to differ from those of 2003. Our observations of overall similar topographic profiles across the mud volcano in 2003 and 2006 suggest that eruption events would have been modest. Nevertheless, the data bring evidence of significant change in activity even over short time intervals of only 3 years. This may be a characteristic shared by other submarine mud volcanoes, notably those considered to be in a quiescent stage.  相似文献   

12.
对于太平洋深海沉积物的研究虽有很久的历史(如1873-1876年“挑战者”号的科学考察),但对该区开展深入系统的岩石学和矿物学研究却是六十年代以后的事.随着研究手段的发展和进步,已积累了关于该区深海沉积物的大量资料.目前我国的海洋工作者也正在努力开展这方面的科学研究工作.  相似文献   

13.
冲绳海槽中部火山事件的环境磁学记录   总被引:1,自引:0,他引:1       下载免费PDF全文
对冲绳海槽中部DH180岩心沉积物进行了AMS14C测年、磁化率、非磁滞剩余磁化强度和饱和等温剩余磁化强度等试验,在含火山物质高的两段层位各磁学参数发生了异常变化。在57.5~82.5和212.5~252.5 cm深度处磁化率、非磁滞剩余磁化强度和饱和等温剩余磁化强度表现出增大的变化趋势,饱和度则出现相对减小的变化趋势。根据磁学参数异常变化的位置和测年数据,对所记录的两次火山事件发生年代进行了计算,它们分别为距今约12.6和6.2 ka,最近一次火山喷发的年代与K-Ah火山喷发的年代基本一致。  相似文献   

14.
《Oceanologica Acta》1998,21(2):191-207
The Gironde estuary (France) discharges to the ocean an important amount of suspended particulate matter in the form of turbid plumes. The surface plume is more particularly studied from coastal oceanographic surveys and NOAA/AVHRR satellite data collected during a French programme of coastal oceanography (PNOC-Atlantic). The AVHRR reflectances are atmospherically corrected according to an algorithm based on the clear water concept. The comparison with suspended sediment concentrations are realised by direct and indirect calibrations. The correlations obtained show that at a same concentration the reflectance varies, probably because of varying particle (floc) size and composition. The shape and the surface measured from low resolution (4 km × 4 km) and high resolution (1 km × 1 km) AVHRR data are then compared to the forcings introduced by the fluvial output, the tide, neap and spring tide and the wind variations. The latter have an important effect on the orientation of the distal part of the turbid plume.  相似文献   

15.
Nisyros island is a volcano at the eastern edge of the Aegean volcanic arc within the Hellenic arc and trench system along the convergence zone of the Eurasian and African plates. Several fault zones have been mapped and analyzed on the island with fault displacements reaching 100?C150 m as deduced from the morphology and the offset of the stratigraphic formations of the volcano. Seismic activity during 1995?C1998 affected the island with damage along the western edge of the Mandraki town, related to the Mandraki fault. The geological, tectonic and morphological data on land show that the Mandraki fault throw is 80?C100 m and its length about 2 km. Its continuation northwards under the sea was studied within a systematic survey of the broader area of the Kos-Nisyros-Tilos islands; and the bathymetric and lithoseismic data showed the existence of some active tectonic structures. In the area of the Yali-Nisyros Channel the prolongation of the Mandraki fault has a 100 m high submarine scarp between the two sides of the fault. Morphological slopes along the fault are high between 20 and 50% in contrast to slopes of 1?C5% observed on top of the two adjacent tectonic blocks. The general structure both on land and offshore shows a westward tilt contemporaneous to the extension in the E-W direction observed in this area. Observations of the submarine fault during a dive with submersible Thetis showed spectacular landslides and loose rocks along the fault scarp and very abrupt linear topographic change along the strike of the fault. The synthesis of the onshore and offshore data on a digital topographic map shows that the Mandraki fault is a secondary structure of the major F3 fault zone of Nisyros which separates the neotectonic block/horst of Prophitis Ilias in the west from the Emborio/Nikia block in the east. The GPS data from the period 1997?C2001 show excellent agreement with the neotectonic block structure of Nisyros. The seismic hazard of the F3/Mandraki fault zone is discussed together with the volcanic hazard of Yali-Nisyros area with the general conclusion that the expected seismic magnitude of 6.1?C6.3 is significantly higher than that observed in 1995?C1998. The ascent of magma from a chamber 7.5?C8.5 km deep between the Yali and Nisyros islands may trigger tectonovolcanic activity similar to that observed at the end of the 19th century.  相似文献   

16.
《Marine Geology》2005,219(1):1-17
The El Arraiche field is a new mud volcano field discovered near the Moroccan shelf edge in the Gulf of Cadiz that consists of 8 mud volcanoes in water depths from 200 to 700 m. The largest mud volcano in the field (Al Idrissi mud volcano) is 255 m high and 5.4 km wide. The cluster was discovered during a survey with the RV Belgica and studied further during Leg 2 of the TTR 12 survey onboard the R/V Prof Logachev. The 2002 surveys yielded detailed multibeam bathymetry over a 700 km2 study area, dense grids of high-resolution seismic data, deep-tow sub bottom profiles, sidescan sonar mosaics over the major structures. Selected video imagery lines, video guided grab samples, dredge samples, gravity cores, and box cores were collected for groundtruthing purposes. Eight mud volcanoes in water depths from 200 to 700 m cluster around two, sub-parallel anticlines and associated active extensional faults. Rock clasts and regional seismic data locate the El Arraiche field over a Late Miocene–Pliocene extensional basin. The onset of mud volcanic activity is estimated at about 2.4 Ma and probably roots in the Cretaceous–Miocene accretionary wedge. Stacked outflows are visible up to a depth of about 500 m below the sea floor. The occurrence of long-lived mud volcanoes bear witness to continued overpressure generation at depth, either by in situ oil and gas generation or by focussed flow and accumulation in the area. Geochemical analyses of pore water from cores demonstrate the presence of thermogenic hydrocarbon processes. The activity of the mud volcanoes is indicated by the thickness of hemi-pelagic sediments covering extruded mud breccia, the occurrence of seep-typical fauna, the degree of mixing between thermogenic and biogenic hydrocarbon processes, or the depth to the base of the sulphate reduction zone. Given its structural setting and the evidence of thermogenic and biogenic hydrocarbons, the area has promising hydrocarbon potential but remains untested.  相似文献   

17.
Several boreholes drilled by the Commissariat à l'Energie Atomique have reached and passed through the volcanic bedrock of Fangataufa atoll. The sampled volcanic rocks under the coral ring were produced during both aerial and submarine activity, whereas rocks drilled under the lagoon were erupted during submarine volcanism only. The bathymetric data show that the atoll has a “starfish” shape. The rift zones are elongated in N-S, N70–80 and N120 directions; these three main directions are also the directions of structural discontinuities in the lithosphere. Reconstruction of the atoll's topography before erosion using a slope angle of about 16° shows that the maximum height reached by the volcano was about 1300 m above sea level. For comparison, the maximum height of Méhetia island (southeast of Tahiti) is approximately 435 m. The successive construction stages are: (1) initiation of volcanism along the rift zones and construction of a central volcano; (2) production of brecciated lavas; (3) emergent volcanism; and (4) central and aerial activity. The present day position of the aerial volcanic rocks under the coral reef and the submarine products under the lagoon is discussed with reference to two hypotheses. The first is based on sea level changes and the second on a tectonic origin (collapse of the atoll's flanks). Using recent geochronological data, the submarine construction of the atoll related to the hot-spot activity lasted about 1.1 Ma. The accumulation rate was approximately 0.7 cm/yr (1.5 × 10−3 km3/yr) and the aerial volcanic activity lasted about 2 Ma (1.5 × 10−5 km3/yr).  相似文献   

18.
The Jan Mayen microcontinent was as a result of two major North Atlantic evolutionary cornerstones—the separation of Greenland from Norway (~54 Ma), accompanied by voluminous volcanic activity, and the jump of spreading from the Aegir to the Kolbeinsey ridge (~33 Ma), which resulted in the separation of the microcontinent itself from Eastern Greenland (~24 Ma). The resulting eastern and western sides of the Jan Mayen microcontinent are respectively volcanic and non-volcanic rifted margins. Until now the northern boundary of the microcontinent was not precisely known. In order to locate this boundary, two combined refraction and reflection seismic profiles were acquired in 2006: one trending S–N and consisting of two separate segments south and north of the island of Jan Mayen respectively, and the second one trending SW–NE east of the island. Crustal P-wave velocity models were derived and constrained using gravity data collected during the same expedition. North of the West Jan Mayen Fracture Zone (WJMFZ) the models show oceanic crust that thickens from west to east. This thickening is explained by an increase in volcanic activity expressed as a bathymetric high and most likely related to the proximity of the Mohn ridge. East of the island and south of the WJMFZ, oceanic Layers 2 and 3 have normal seismic velocities but above normal average crustal thickness (~11 km). The similarity of the crustal thickness and seismic velocities to those observed on the conjugate M?re margin confirm the volcanic origin of the eastern side of the microcontinent. Thick continental crust is observed in the southern parts of both profiles. The northern boundary of the microcontinent is a continuation of the northern lineament of the East Jan Mayen Fracture Zone. It is thus located farther north than previously assumed. The crust in the middle parts of both models, around Jan Mayen island, is more enigmatic as the data suggest two possible interpretations—Icelandic type of oceanic crust or thinned and heavily intruded continental crust. We prefer the first interpretation but the latter cannot be completely ruled out. We infer that the volcanism on Jan Mayen is related to the Icelandic plume.  相似文献   

19.
The southeastern extension of the Austral Islands volcanic chain terminates near 29°S, 140°W at the active Macdonald Seamount. The hotspot region near Macdonald consists of at least five other volcanic edifices each more than 500 m high, included in an area about 50–100 km in diameter. On the basis of the sea-floor topography, the southeastern limit of the hotspot area is located about 20 km east of the base of Macdonald, where it is defined by the 3950 m isobath. At the edge of the hotspot area, there is a marked deepening of the seafloor from c.3900 m down to 4000–4300 m. The deeper sea-floor is faulted and heavily sedimented. The Macdonald volcano itself stands 3760 m above the surrounding seafloor, and has a basal diameter of 45 km. Its summit in January 1987 was 39 m below sea level, and it seems likely that Macdonald will emerge at the surface in the near future.Recent (March and November 1986) phreatic explosions on Macdonald Seamount erupted fragments of ultramafic and mafic plutonic blocks together with basic lapilli (volcaniclastic sand). The plutonic blocks have been variably altered and metamorphosed, and in some cases show signs of mineralisation (disseminated sulphides). The blocks presumably come from deeper levels in the volcanic system. The volcanics so far dredged from Macdonald consist of olivine and clinopyroxene cumulus-enriched basalts, evolved basalts, and mugearite. On the basis of incompatible element variations, simple crystal fractionation seems to be controlling the chemical evolution of Macdonald magmas.  相似文献   

20.
Two main events determined the formation, geological history, magmatism, and geodynamics of the Jan Mayen microcontinent: (1) drift of this segment of the Laurasian plate over the Iceland plume in the Early Paleogene; (2) propagation of the rift zone of the mid-Atlantic Ridge into this region and separation of the Jan Mayen lithospheric block from northeastern Greenland. The lithosphere was reduced at the block boundary when it was separated. This process was accompanied by the formation of depressions intruded by magma of the Iceland plume, which resulted in the appearance of a new volcanic center with active volcanoes of the central type. They supplied pyroclastic material to the sedimentary cover of the expanding Norwegian?Greenland Basin in the Eocene and Oligocene. The wedging of the Jan Mayen plate (microcontinent) into the triple junction of the plates (Greenland, Eurasian, Jan Mayen) promoted intense volcanism and the formation of two large volcanic complexes: (1) the Greenland?Faroes and the (2) Trail?Vøring. Recent volcanoes of the Jan Mayen hot spot are fed by magma from the Iceland plume as well as from relict and newly formed cambers in a zone of deep-seated Jan Mayen transform faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号