首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sr-Nd isotopic data for selected granitoids of the Central Bohemian Pluton show a broad negative correlation with the total range of (87Sr/86Sr)330 = 0.7051–0.7129 and Nd 330 = +0.2 to –8.9. The older intrusions have more depleted Sr-Nd compositions and calc-alkaline geochemistry (Sázava suite), whereas the younger intrusions shift towards K-rich calc-alkaline (Blatná suite) and shoshonitic rocks (íany and ertovo bemeno suites) with more evolved isotopic signatures. The distribution of the data is interpreted as reflecting a diversity of sources and processes, rather than a single progressive crustal contamination trend. The Sázava suite could have originated by partial melting of metabasites, or of a mantle source with an isotopic composition close to bulk earth, or by hybridization of crustally-derived tonalitic and mantle-derived magmas. Variation within the Blatná suite is modelled by mixing between a moderately enriched [(87Sr/86Sr)330 0.708, Nd 330 –3] mantle component with either an isotopically evolved metasedimentary component, or with more evolved magmas of the suite. The íany suite was most probably produced by partial melting of peraluminous lithologies, possibly of the adjacent Moldanubian unit. The ertovo bemeno suite evolved from strongly enriched mantle-derived magmas [(87Sr/86Sr)3300.7128, Nd 330 –7], either through closed-system fractional crystallization or interaction with magma corresponding to leucogranites of the Central Bohemian Pluton.  相似文献   

2.
Since Mesozoic time, Java and Bali have formed part of an evolving system of island arcs comprising the Sunda arc of Indonesia. The present tectonic setting is relatively simple with subduction occurring at the Java Trench to the south. A north-dipping Benioff seismic zone delineates an underthrust lithospheric slab to depths of approximately 600 km beneath the Java Sea. Quaternary lavas of the normal island arc association range from tholeiites to high-K calc-alkaline lavas over Benioff zone depths from 120–250 km, respectively. More abundant calc-alkaline lavas lie between these extremes. High-K alkaline lavas are found over Benioff zone depths in excess of 300 km.Both within and between these groups of rocks there are consistent spatial variations in the observed geochemistry. For approximately 200 rocks, incompatible elements such as K, Rb, Cs, Sr, Ba, light REE, U and Th show an increase in abundance of almost an order of magnitude with increasing depth to the seismic zone. Abundances of compatible elements show little consistent variation and trace elements such as Ni, Co, Cr, and Sc are characteristically depleted except in some of the alkaline lavas. Major element abundances in rocks of the normal island arc association show little variation, except for K and P, which both increase in abundance across the arc and Al, which shows a relative decrease.The major and trace element data are inconsistent with the derivation of the analyzed rocks by partial melting of the crustal component of the subducted lithosphere. On the other hand, low Ni abundances (20 ppm) in the basalts suggest that most of the lavas are fractionated and few if any represent primary mantle-derived melts. The spatial variations in the geochemistry of erupted lavas across Java and Bali are best explained by a combination of two processes: melting of a geochemically zoned mantle source and smaller degrees of partial melting of that material at progressively greater depths. Primary tholeiitic magmas could be formed by 20–25% melting at depths of 30–40 km, primary high-K calc-alkaline magmas by 5–15% melting at 40–60 km depth, and primary alkaline magmas by 5% melting at depths of 80–90 km. The geochemical zoning in the mantle, which is also manifested by increasing 87Sr/86Sr ratios in lavas across the arc, is interpreted to result from the addition of a small melt fraction derived from the crustal component of the subducted lithosphere.  相似文献   

3.
Volcanism and orogenic belts — The origin of andesites   总被引:2,自引:0,他引:2  
  相似文献   

4.
Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy   总被引:11,自引:0,他引:11  
L. Beccaluva  P. Di Girolamo  G. Serri 《Lithos》1991,26(3-4):191-221
The volcanism in the Roman Province of Italy can be modelled by the partial melting of heterogeneously enriched mantle sources. The heterogeneity was created by materials derived from a subducted slab which can still be traced geophysically beneath the central Apennines.

New petrographical and chemical data are presented for the high-K calc-alkaline and the shoshonitic volcanics of the Campania region. Primary magmas are present only locally. The existence of spatial zonation in the volcanism of Campania is documented for the first time. The shoshonitic, leucite-basanitic and leucititic volcanics of the Phlegraean Fields-Procida-Ischia and the Somma-Vesuvius areas are, at similar degrees of evolution, about two times richer in Nb and Ba than those of northwestern Campania and the Latium part of the Roman Province. Accordingly, distinct north-western and south-eastern subprovinces can be defined. The evaluation of enrichment factors, that is the abundance ratio between the average contents of each element in the relatively primitive lavas of the low K- and the high K suites, shows that the mantle sources prior to K-metasomatism were different in the two sub-provinces of the Roman Province. In the north-western one, they resembled the sources of ocean-island tholeiites and moderately enriched MOR-basalts. In the south-east they were similar to those of ocean island alkaline lavas and enriched MORB's.

Modelling based on K, P, Ce, Sr, Rb, Ba, Th, Sm, Eu, Gd, Y, Nb and 87Sr/86Sr was carried out. It indicates that the range of mantle sources of the volcanics in northwestern Campania and Latium can be modelled by the addition of 3 to 20% of materials derived by partial melting of carbonaceous pelites to a Sr-enriched mantle wedge comparable to the Honolulu mantle source least enriched in Nb.

The production of Sr-enriched mantle wedge requires either the action of fluids produced by dehydration of subducted oceanic crust, or a small amount of metasomatism caused by the presence of carbonatite melts.

The near absence of Ti, Ta, Nb, Yb and the highly fractionated REE in the metasomatizing component requires the presence of residual garnet and accessory Ti-rich minerals during the partial melting of the subducted sediments. The writers propose that the mantle wedge overlying the subducted slab was hybridized by melts produced by partial fusion of subducted material derived from the continental crust, probably sediments. This process played a dominant role in the generation of the mantle sources from which the high-K calc-alkaline, shoshonitic, leucite-basanitic and leucititic magmas of the Roman Province were derived.  相似文献   


5.
The East Kunlun Orogenic Belt(EKOB),which is in the northern part of the Greater Tibetan Plateau,contains voluminous Late Triassic intermediate-felsic volcanic rocks.In the east end of the EKOB,we identified highly differentiated peralkaline-like Xiangride rhyolites(~209 Ma)that differ from the wide-spread andesitic-rhyolitic Elashan volcanics(~232-225 Ma)in terms of their field occurrences and min-eral assemblages.The older,more common calc-alkaline felsic Elashan volcanics may have originated from partial melting of the underthrust Paleo-Tethys oceanic crust under amphibolite facies conditions associated with continental collision.The felsic Elashan volcanics and syn-collisional granitoids of the EKOB are different products of the same magmatic event related to continental collision.The Xiangride rhyolites are characterized by elevated abundances of high field strength elements,especially the very high Nb and Ta contents,the very low Ba,Sr,Eu,P,and Ti contents;and the variably high 87Sr/86Sr ratios(up to 0.96),exhibiting remarkable similarities to the characteristic peralkaline rhyolites.The primitive magmas parental to the Xiangride rhyolites were most likely alkali basaltic magmas that underwent pro-tracted fractional crystallization with continental crust contamination.The rock associations from the early granitoids and calc-alkaline volcanic rocks to the late alkaline basaltic dikes and peralkaline-like rhyolites in the Triassic provide important information about the tectonic evolution of the EKOB from syn-collisional to post-collisional.We infer that the transition from collisional compression to post-collisional extension occurred at about 220 Ma.  相似文献   

6.
Obduction of the late Ordovician Solund-Stavfjord Ophiolite Complex (443±3 Ma), west Norwegian Caledonides, involved generation and high-level emplacement of granitic and granodioritic dikes and plutons. Initial 87Sr/86Sr ratios in the granites are low (0.7042–0.7059), suggesting either a mantle component or a Rb-poor crustal source. Initial Nd (Nd(t)) ranges from-0.8 to-8.8, indicating that the granites represent recycling of old crustal rocks, which is supported by Precambrian inheritance in zircons from two of the studied granites. I argue that the Rb-Sr and the Sm-Nd isotope systems are decoupled in the sense that the Sr-and the Nd-isotopes derive their dominant signals from two different sources, a mantle source and a crustal source respectively. The granites are metaluminous to peraluminous and typically have high Sr, Ba and Na2O/K2O ratios. SiO2 contents range from 66 to 74 wt%. REE abundances are highly variable; the La contents range from 80 to 200 times chondrite, and are inversely correlated with the contents of SiO2. The concentration of Nd in the granites decreases asymptotically with decreasing Nd(t) suggesting fractional crystallization of accessory phases and assimilation of continental crust. This argument is supported by the presence of partly dismembered xenoliths in the granites with Nd(t)-values that are significantly lower than Nd(t)-values in the host granite. The following models are suggested for the granites. When the ophiolite complex obducted, an outboard subduction zone approached the continental margin, and subduction-related magmas accumulated beneath the continental margin, and probably intruded the overlying eugeosynclinal deposits. The mantle-derived magmas most likely evolved to granitoid composition by assimilation of these eugeosynclinal sediments and by fractional crystallization of amphibole, feldspar, sphene, and allanite. Alternatively, but less likely, the heat content of the mantle-derived magmas caused extensive melting of immature graywackes and calc-alkaline volcaniclastic rocks in the deepest portions of the eugeosyncline. Either way, during ascent, the compositions of the granitic melts were modified by fractional crystallization of LREE-rich phases and by assimilation of continental metasediments.  相似文献   

7.
The magma sources for granitic intrusions related to the Mesozoic White Mountain magma series in northern New England, USA, are addressed relying principally upon Nd isotopes. Many of these anorogenic complexes lack significant volumes of exposed mafic lithologies and have been suspected of representing crustal melts. Sm–Nd and Rb–Sr isotope systematics are used to evaluate magma sources for 18 felsic plutons with ages ranging from about 120 to 230 Ma. The possibility of crustal sources is further examined with analyses of representative older crust including Paleozoic granitoids which serve as probes of the lower crust in the region. Multiple samples from two representative intrusions are used to address intrapluton initial isotopic heterogeneities and document significant yet restricted variations (<1 in Nd). Overall, Mesozoic granite plutons range in Nd [T] from +4.2 to -2.3, with most +2 to 0, and in initial 87Sr/86Sr from 0.7031 to 0.709. The isotopic variations are roughly inversely correlated but are not obviously related to geologic, geographic, or age differences. Older igneous and metamorphic crust of the region has much lower Nd isotope ratios with the most radiogenic Paleozoic granitoid at Nd [180 Ma] of -2.8. These data suggest mid-Proterozoic separation of the crust in central northern New England. Moreover, the bulk of the Mesozoic granites cannot be explained as crustal melts but must have large mantle components. The ranges of Nd and Sr isotopes are attributed to incorporation of crust by magmas derived from midly depleted mantle sources. Crustal input may reflect either magma mixing of crustal and mantle melts or crustal assimilation which is the favored interpretation. The results indicate production of anorogenic granites from mantle-derived mafic magmas.  相似文献   

8.
The Cenozoic Mormon Mountain Volcanic Field (MMVF) of northern Arizona is situated in the transition zone between the Basin and Range and the Colorado Plateau. It is composed of alkalic to sub-alkalic basalts and calcalkalic andesites, dacites, and rhyodacites. Despite their spatial and temporal association, the basalts and the calcalkalic suite do not seem to be co-genetic. The petrogenesis of primitive MMVF basalts can be explained as the result of different degrees of partial melting of a relatively homogenous, incompatible element-enriched peridotitic source. The variety of evolved basalt types was the result of subsequent fractional crystallization of olivine, spinel, and clinopyroxene from the range of primitive basalts. Crustal contamination seems to have occurred, but affected only the highly incompatible element abundances. The formation of MMVF calcalkalic rocks is most readily explained by small to moderate amounts of partial melting of an amphibolitic lower crust. This source is LREE-enriched but depleted in Rb and relatively unradiogenic Sr (87Sr/86Sr 0.7040). Calcalkalic rhyodacites may also be derived from andesitic parents by fractional crystallization. The overall petrogenesis of the MMVF complex is the result of intra-plate volcanism where mantle-derived magmas intrude and pass through thick continental crust.  相似文献   

9.
The Toquima caldera complex (TCC) lies near the middle of a west-northwest-trending belt of Oligocene to early Miocene volcanic rocks that stretches from southwestern Utah to west-central Nevada. Three overlapping to eccentrically nested calderas, called Moores Creek, Mt. Jefferson, and Trail Canyon, comprise the TCC. The calderas formed due to eruption of the tuffs of Moores Creek, Mt. Jefferson, and Trail Canyon at 27.2 Ma, 26.4 Ma, and 23.6 Ma, respectively. In total, 900+ km3 of magma was erupted from the complex. The high-silica rhyolite tuff of Moores Creek is the least strongly zoned in silica (78.0–76.8 wt% SiO2), and the tuff of Mt. Jefferson is the most strongly zoned (77.5–65.3 wt% SiO2); the tuff of Trail Canyon is moderately zoned (75.9–70.4 wt% SiO2). All eruptive products contain plagioclase, sanidine, quartz, biotite, Fe–Ti oxides, and accessory zircon, allanite, and apatite. Amphibole and clinopyroxene join the assemblage where compositions of bulk tuff are 74 wt% SiO2 and 70 wt% SiO2 respectively. Proportions and compositions of phenocrysts vary systematically with composition of the host tuff. Compositional zoning trends of sanidine and biotite suggest the presence of a high Ba-bearing magmatic component at depth or its introduction into the Mt. Jefferson and Trail Canyon magma chambers at a late stage of magmatic evolution. Rocks of the complex constitute a high-K, calc-alkaline series.Empirical data from other systems and results of published phase-equilibria and thermo-chemical studies suggest that magma erupted from the TCC was oxidized ( 1.5 to 2.0 log units above NNO), thermally zoned ( 700–730° C for high-silica rhyolite to 800–840° C for dacite) and water-rich (5.0–5.5. wt% H2O for highsilica rhyolite to 4.0 wt% H2O for dacite). Geologic relations and amphibole compositional data are consistent with total pressures of 1.5 to 2 kbars.Onset of mid-Tertiary magmatism in vicinity of the TCC began with intrusion of a small granodioritic stock and a northeast-trending dike swarm at 37–34 Ma. The dikes are broadly bimodal assemblage of silicic andesite and rhyolite. Voluminous ash-flow-tuff magmatism commenced at 32.3 Ma and persisted for 9 m.y. without eruption of intermediate to mafic magmas (<62 wt% SiO2). As such, the TCC is probably a remnant of a more extensive complex of calderas whose identities are obscured by recurrent volcanism and by late Tertiary basin-range block faulting. The change from small-volume, broadly bimodal volcanism to voluminous outpourings of silicic magma is similar to that which occurred in east-central Nevada, where magmatism and rapid crustal extension overlapped in space and time. Although supracrustal extension at the time of formation of the TCC apears limited, the comparable magmatic histories and compositional characteristics of rocks erupted from east-central Nevada and the TCC suggest that fundamentally similar magmatic processes acted at depth and that extension may have been more pronounced in the lower and middle crust below the TCC and vicinity. Because strain is partitioned heterogeneously in the upper crust, the magmatic record, rather than surface structural features, may reflect better the actual state of crustal stress during volcanism.Mid-Tertiary magmatism in the TCC and vicinity probably began with intrusion of mantle-derived basalt into the lower crust, which led to crustal heating, local partial melting of crustal rocks, and intrusion of rhyolitic melts and contaminated basaltic differentiates (alkalirich andesite) into the upper crust. With time, intrusion to extrusion ratios increased as silicic melts retarded the rise of mafic magmas and mixing between mafic magmas and crustal partial melts occurred. The oxidized, water-rich, and low-temperature nature of these magmas reflects protracted crustal residence and interaction prior to eruption. The resulting hybridized and differentiated magmas ultimately erupted to form extensive deposits of silicic ash-flow tuff. By contrast, silicic lavas are scarce possibly because of coherent roof rocks that limited volatile degassing between major pyroclastic eruptions.  相似文献   

10.
Late Precambrian crustal evolution in the North Eastern Desert of Egypt occurred in a strongly extensional tectonic environment and was accompanied by abundant bimodal igneous activity. The extrusive and intrusive expressions of this magmatism, known as the Dokhan Volcanics and Pink Granites, respectively, were studied in detail from two areas. The Dokhan Volcanics and associated feeder dikes consist of a mafic suite dominated by andesites (60% SiO2) and smaller volumes of basalt and a felsic suite composed of rhyolite tuffs, ignimbrites and hypabyssal intrusions (72–78% SiO2). The rocks of the mafic suite display calc-alkaline trends on an AFM diagram but are enriched in incompatibles such as TiO2, P2O5, K2O, Rb, Sr, Ba, Zr, Y, Nb, and LREE. Rare earth element patterns are steep, with (Ce/Yb)n = 7.7 to 16.8. They contain moderate Ni (60 ppm) and Cr (95 ppm), indicating limited low-P fractionation. The melts of the mafic suite are interpreted to have formed either by 25% batch melting of eclogite or by 10% batch melting of LREE-enriched garnet lherzolite. The rocks of the felsic suite include Dokhan rhyolites and the epizonal Pink Granites. These contain 72–78% SiO2, are metaluminous and peraluminous, and have the high K2O/Na2O and FeO*/(FeO*+MgO) characteristic of post-tectonic, A-type granites. They are moderately enriched in incompatible elements, but their REE patterns overlap with those of the mafic suite, from which they can be distinguished by deep europium anomalies (Eu/Eu*=0.08–0.64) and flat HREE patterns=((Yb/Er)n=0.90–1.16). They share with the rocks of the mafic suite isotopic characteristics of depleted mantle, precluding anatexis of much older continental crust. The europium anomalies covary with Sr contents and indicate that plagioclase control was important, while the flat HREE patterns preclude residual garnet in the source. Hence the felsic melts could not have formed by anatexis of garnet-bearing mafic lower crust. Such melts could have formed by anatexis of amphibolite-facies crust, an interpretation which is not favored because the melts are not saturated with P2O5. Alternatively, the felsic melts may have formed via low-P fractional crystallization of the mafic melts, with about 2/3 removal of mostly plagioclase and amphibole along with minor apatite and zircon. This may have been accompanied in the latest stages of magmatic evolution by liquid-state fractionation such as thermo-gravitational diffusion or halide complexing.  相似文献   

11.
The Kahoolawe shield volcano produced precaldera and caldera-filling tholeiites and mildly alkalic post-caldera lavas that petrographically and compositionally resemble such lavas from other Hawaiian shield volcanoes. However, Kahoolawe tholeiites display wide ranges in incompatible trace element ratios (e.g., Nb/Th=9–24, Th/Ta=0.6–1.3), 87Sr/86Sr (0.70379–0.70440), 143Nd/144Nd (0.51273–0.51298), and 206Pb/204Pb (17.92–18.37). The isotopic variation exceeds that at any other Hawaiian shield volcano, and spans about half the range for all Hawaiian tholeiites. Quasi-cyclic temporal evolution of Kahoolawe tholeiites is consistent with combined fractional crystallization and periodic recharge by primitive magmas. Ratios of highly incompatible trace elements and Sr, Nd, and Pb isotopic ratios from coherent sub-trends that reflect recurrent interactions between variably evolved magmas and two other mantle components whose compositions are constrained by intersections between these trends. The most MgO-rich Kahoolawe tholeiites are partial melts of a high Nb/Th (23.5) ascending plume, possibly comprising ancient subducted oceanic lithosphere. Slightly evolved tholeiites experienced combined crystal fractionation and assimilation (AFC) of material derived from a distinct reservoir (Nb/Th 9) of asthenospheric derivation. The most evolved tholeiites display compositional shifts toward a third component, having mid ocean ridge basalt-like isotopic ratios but enriched OIB-like trace element ratios, representing part of the lithospheric mantle (or melts thereof). Periodic recurrence of all three magma variants suggests that eruptions may have tapped coeval reservoirs distributed over a large depth range. Kahoolawe provides new evidence concerning the nature of the Hawaiian plume, the distribution of compositional heterogeneities in the suboeanic mantle, and the processes by which Hawaiian tholeiites form and evolve.  相似文献   

12.
Geochemistry of Viti Levu,Fiji, and its evolution as an island arc   总被引:1,自引:0,他引:1  
Available geochemical and field data suggest that three different periods of igneous activity have occurred on Viti Levu. Rocks of the first period are island arc tholeiites; of the second, a calc-alkaline series; and of the third, shoshonites. Each period has a geochemical distinctiveness. The temporal sequence also corresponds to a spatial zonation analogous to that observed in many currently active island arcs. K2O and the larger trace elements increase south to north and with time, whereas iron enrichment and Na2O/K2O ratios decrease. Initial Sr 87/86 ratios average about 0.7041 in rocks of all periods. If Viti Levu magmas were genetically related to underthrust oceanic crust, as is argued for comparable ones of modern island arcs, then the island must have drifted or been rotated to its present position within the last 5–10 m.y.  相似文献   

13.
The Izu–Bonin volcanic arc is an excellent example ofan intra-oceanic convergent margin. A total of 1011 chemicalanalyses of 17 Quaternary volcanoes of the arc are reviewedto estimate relative proportions of magmas erupted. Basalt andbasic andesite (SiO2 < 57 wt %) are the predominant eruptiveproducts of the Izu–Bonin arc, and rhyolite (SiO2 >70 wt %) forms another peak in volume. Such rhyolites possesscompositions identical to those of partial melts produced bydehydration-melting of calc-alkaline andesites at low pressure(<7 kbar). Meanwhile, the major element variation of theShirahama Group Mio-Pliocene volcanic arc suite, Izu Peninsula,completely overlaps that of the Quaternary Izu–Bonin arcvolcanoes, and groundmasses of Shirahama Group calc-alkalineandesites have compositions similar to those of Izu–Boninrhyolites. Moreover, phenocryst assemblages of calc-alkalineandesites of the Shirahama Group resemble restite phase assemblagesof dehydration-melting of calc-alkaline andesite. These linesof evidence suggest that the rhyolite magmas may have been producedby dehydration-melting of calc-alkaline andesite in the upperto middle crust. If so, then the presence of large amounts ofcalc-alkaline andesite (3–5 times more abundant than therhyolites) within the oceanic arc crust would be expected, whichis consistent with a recently proposed structural model acrossthe Izu–Bonin arc. The calc-alkaline andesite magmas maybe water saturated, and would crystallize extensively and solidifywithin the crust. The model proposed here suggests that rhyoliteeruptions could be triggered by an influx of hot basalt magmafrom depth, reheating and partially melting the calc-alkalineandesite component of the crust. KEY WORDS: bimodal magmatism; calc-alkaline andesite; oceanic arcs; rhyolite  相似文献   

14.
Three Pan-African hypersthene-bearing monzogranitic and quartz–monzonitic plutons from the Eastern terrane of Nigeria have been investigated in detail. New major, trace and REE data, used to constrain their origin and nature, indicate that they display chemical features of ferro-potassic trans-alkaline affinity. Further trace element discrimination suggests (i) production of calc-alkaline medium-K diorite magmas by partial melting of fluid-metasomatised mantle wedge possibly combined with melts from the dehydration partial melting of altered oceanic crust; (ii) simultaneously production of the granite–quartz–monzonite ferro-potassic magmas from partial melting of hornblende-bearing granodioritic crustal sources; (iii) mixing of the two magmas. Sr initial ratios of 0.707 to 0.711 witness that the source of the granite magmas is the lower crust. Ages of the lower crustal granulitic protoliths is bracketed by Nd model ages between 1.9 and 2.2 Ga. Pb evaporation ages on single zircons constrain the emplacement of the three plutons around 580 Ma. 40Ar/39Ar ages of amphiboles at about 560 Ma suggest cooling rates around 15°C/Ma. Extensive field work has established that pluton emplacement occurred during a regional north–south dextral strike-slip tectonics following the 630–610 Ma stage of oblique continent–continent collision in this part of west Africa.  相似文献   

15.
The high-K Tuzgle volcanic center, (24° S, 66.5° W) along with several small shoshonitic centers, developed along extensional Quaternary faults of the El Toro lineament on the east-central Puna plateau, 275 km east of the main front of the Andean Central Volcanic Zone (CVZ). These magmas formed by complex mixing processes in the mantle and thickened crust (>50 km) above a 200 km deep scismic zone. Tuzgle magmas are differentiated from shoshonitic series magmas by their more intraplate-like Ti group element characteristics, lower incompatible element concentrations, and lower 87Sr/86Sr ratios at a given Nd. Underlying Mio-Pliocene volcanic rocks erupted in a compressional stress regime and have back-arc like calc-alkaline chemical characteristics. The Tuzgle rocks can be divided into two sequences with different mantle precursors: a) an older, more voluminous rhyodacitic (ignimbrite) to mafic andestitic (56% to 71% SiO2) sequence with La/Yb ratios <30, and b) a younger andesitic sequence with La/Yb ratios >35. La/Yb ratios are controlled by the mafic components: low ratios result from larger mantle melt percentages than high ratios. Shoshonitic series lavas (52% to 62% SiO2) contain small percentage melts of more isotopically enriched arc-like mantle sources. Some young Tuzgle lavas have a shoshonitic-like component. Variable thermal conditions and complex stress system are required to produce the Tuzgle and shoshonitic series magmas in the same vicinity. These conditions are consistent with the underlying mantle being in transition from the thick mantle lithosphere which produced rare shoshonitic flows in the Altiplano to the thinner mantle lithosphere that produced back-are calc-alkaline and intraplate-type flows in the southern Puna. Substantial upper crustal type contamination in Tuzgle lavas is indicated by decreasing Nd (-2.5 to-6.7) with increasing 87Sr/86Sr (0.7063 to 0.7099) ratios and SiO2 concentrations, and by negative Eu anomalies (Eu/Eu* <0.78) in lavas that lack plagioclase phenocrysts. Trace element arguments indicate that the bulk contaminant was more silicic than the Tuzgle ignimbrite and left a residue with a high pressure mineralogy. Crustal shortening processes transported upper crustal contaminants to depths where melting occurred. These contaminants mixed with mafic magmas that were fractionating mafic phases at high pressure. Silicic melts formed at depth by these processes accumulated at a mid to upper crustal discontinuity (decollement). The Tuzgle ignimbrite erupted from this level when melting rates were highest. Subsequent lavas are mixtures of contaminated mafic magmas and ponded silicic melts. Feldspar and quartz phenocrysts in the lavas are phenocrysts from the ponded silicic magmas.  相似文献   

16.
Late Precambrian granitoid rocks occurring within a 44,000 km2 area of the western Arabian Shield are subdivided on the basis of geology and petrology into older (820 to 715 Ma) and younger (686 to 517 Ma) assemblages. The older assemblage contains major complexes which can be assigned to either one of a granodioritic or trondhjemitic petrologic association. The earliest granitoid rocks are trondhjemitic tonalites (trondhjemite association), depleted in Ba, Ce, F, La, Li, Nb, Rb, Y and Zr compared to granitoids of the slightly younger granodiorite association, which are related to a calcic, calc-alkaline suite of rocks ranging in composition from gabbro through monzogranite. The plutonic rocks of the older assemblage were probably emplaced in the cores of contemporary island arcs.The younger plutonic assemblage is dominated by three, geochemically distinct, coeval granitic associations: the alkali granite, alkali-feldspar granite and monzogranite associations. The alkali granite association is composed of perthite granites (alkali granites and genetically related alkali-feldspar granites). Rocks of this association are marginally peralkaline or metaluminous and are characterized by low contents of Ba, Co, Li, Rb, Sc and Sr, and high contents of Be, Cu, F, REE, Nb, Sn, Y, Zn and Zr. The alkali-feldspar granite association is mainly composed of alkali-feldspar granites and syenogranites. Rocks of this association are marginally peraluminous or metaluminous and contain low Ba, Sr, and high F, Rb, Sn, Th and U. The monzogranite association consists mainly of monzogranites and granodiorites. Rocks of this association are peraluminous or marginally metaluminous and have the highest contents of Ba, Cu, Co, Li, Sc, Sr, Ta, and V, and the lowest contents of REE, Nb, Rb, Sn, Th, U, Y, Zn and Zr of the three granitic associations.These voluminous granitic magmas, together with the felsic component of a coeval sequence of bimodal volcanic rocks, are partial melts of the earlier island arc terrain produce during a prolonged fusion event. Subsolvus, highca granites of the monzogranite association have I-type features and represent partial melts of previously unfused crust, while low-Ca perthite granites of the alkali granite and alkali-feldspar granite associations have A-type features and represent partial melts of previously fused crust.This type of petrogenetic model can account for much of the petrologic diversity of the Pan-African granitic terrain of the Arabian Shield.  相似文献   

17.
Pliocene Polvadera Group rocks in the northwestern Rio Grande rift-marginal portion of the Jemez Volcanic Field record the rapid transition from weakly alkaline Lobato Basalt magmatism (48–52% SiO2; 7.9 Ma) through calc-alkaline Lobato andesite and dacite (53–64% SiO2) and Tschicoma dacite-rhyodacite magmatism (63–69% SiO2; 7.4 Ma). Petrologically, Lobato andesite and dacite and Tschicoma dacite-rhyodacite represent a cogenetic suite of differentiates (the La Grulla Plateau or LGP suite) distinctive from the bulk of Polvadera Group rocks including Tschicoma andesite. Increasing (87Sr/86Sr)O ratios with differentiation within the LGP suite from 0.7051 (54% SiO2) to 0.7064 (68% SiO2), trace element variations, and disequilibrium mineral assemblages suggest open system differentiation involving 87Sr-enriched upper crust. A likely parental magma is the voluminous Lobato Basalt ((87Sr/86)O= 0.7043–0.7050) which was erupted predominantly earlier and to the east toward the rift axis. The best model for petrogenesis involves bulk assimilation of locally wide-spread Proterozoic (1.4–1.6 Ga) upper crustal granite by fractionally crystallizing Lobato Basalt. Assimilation-fractional crystallization (AFC) modeling of Sr-isotope and trace element variation (DePaolo 1981) indicates that 40% crystallization of Lobato Basalt accompanied by 10% addition of granite reproduces the observed geochemical and Sr-isotopic diversity. Neither magma mixing, nor mafic recharge have complicated the magmatic evolution of the LGP suite. Crustal thickness and/or retarded tectonism could have facilitated conditions necessary for evolution by AFC to occur within the upper crust.  相似文献   

18.
Origin and differentiation of picritic arc magmas,Ambae (Aoba), Vanuatu   总被引:3,自引:2,他引:1  
Key aspects of magma generation and magma evolution in subduction zones are addressed in a study of Ambae (Aoba) volcano, Vanuatu. Two major lava suites (a low-Ti suite and high-Ti suite) are recognised on the basis of phenocryst mineralogy, geochemistry, and stratigraphy. Phenocryst assemblages in the more primitive low-Ti suite are dominated by magnesian olivine (mg 80 to 93.4) and clinopyroxene (mg 80 to 92), and include accessory Cr-rich spinel (cr 50 to 84). Calcic plagioclase and titanomagnetite are important additional phenocryst phases in the high-Ti suite lavas and the most evolved low-Ti suite lavas. The low-Ti suite lavas span a continuous compositional range, from picritic (up to 20 wt% MgO) to high-alumina basalts (<5 wt% MgO), and are consistent with differentiation involving observed phenocrysts. Melt compositions (aphyric lavas and groundmasses) in the low-Ti suite form a liquid-line of descent which corresponds with the petrographically-determined order of crystallisation: olivine + Cr-spinel, followed by clinopyroxene + olivine + titanomagnetite, and then plagioclase + clinopyroxene + olivine + titanomagnetite. A primary melt for the low-Ti suite has been estimated by correcting the most magnesian melt composition (an aphyric lava with 10.5 wt% MgO) for crystal fractionation, at the oxidising conditions determined from olivine-spinel pairs (fo2 FMQ + 2.5 log units), until in equilibrium with the most magnesian olivine phenocrysts. The resultant composition has 15 wt% MgO and an mg Fe2 value of 81. It requires deep (3 GPa) melting of the peridotitic mantle wedge at a potential temperature consistent with current estimates for the convecting upper mantle (T p 1300°C). At least three geochemically-distinct source components are necessary to account for geochemical differences between, and geochemical heterogeneity within, the major lava suites. Two components, one LILE-rich and the other LILE- and LREE-rich, may both derive from the subducting ocean crust, possibly as an aqueous fluid and a silicate melt respeetively. A third component is attributed to either differnt degrees of melting, or extents of incompatible-element depletion, of the peridotitic mantle wedge.  相似文献   

19.
Miocene igneous rocks in the 1,600 km-long E–W Gangdese belt of southern Tibet form two groups separated at longitude ~89° E. The eastern group is characterized by mainly intermediate–felsic calc-alkaline plutons with relatively high Sr/Y ratios (23 to 342), low (87Sr/86Sr)i ratios (0.705 to 0.708), and high εNdi values (+5.5 to ?6.1). In contrast, the western group is characterized by mainly potassic to ultrapotassic volcanic rocks with relatively high Th and K2O contents, low Sr/Y ratios (11 to 163), high (87Sr/86Sr)i ratios (0.707 to 0.740), and low εNdi values (?4.1 to ?17.5). The eastern plutonic group is associated with several large porphyry Cu–Mo ± Au deposits, whereas the western group is largely barren. We propose that the sharp longitudinal distinction between magmatism and metallogenic potential in the Miocene Gangdese belt reflects the breakoff of the Greater India slab and the extent of underthrusting by the Indian continental lithosphere at that time. Magmas to the east of ~89° E were derived by partial melting of subduction-modified Tibetan lithosphere (mostly lower crust) triggered by heating of hot asthenospheric melt following slab breakoff. These magmas remobilized metals and volatile residual in the crustal roots from prior arc magmatism and generated porphyry Cu–Mo ± Au deposits upon emplacement in the upper crust. In contrast, magmas to the west of ~89° E were formed by smaller volume partial melting of Tibetan lithospheric mantle metasomatized by fluids and melts released from the underthrust Indian plate. They are less hydrous and oxidized and did not have the capacity to transport significant amounts of metals into the upper crust.  相似文献   

20.
埃达克质岩石是高Na、Al和Sr、低Y和HREE以及Nb、Ta亏损的钠质花岗质岩石,奥长花岗岩-英云闪长岩-花岗闪长岩(TTG)是早期(太古宙)大陆壳主要组分,成分与埃达克质岩石相似,这些成分独特的岩石总体上认为是俯冲洋壳、下地壳和拆沉的下地壳中变质玄武岩部分熔融的产物。文中综述我们近年来在变质玄武岩体系相平衡和矿物-熔体微量元素分配实验研究成果:相平衡实验和熔体微量元素特征研究表明,变质玄武岩部分熔融过程中金红石是导致TTG/埃达克岩浆Nb、Ta亏损的必要残留矿物,从而否定了前人“TTG由无金红石的角闪岩熔融产生”的观点;证实金红石仅仅在压力1.5GPa以上才能稳定存在,从而限定TTG/埃达克岩熔体必定产生在大约50km以上,表明TTG/埃达克岩是在相对较深的含金红石榴辉岩相条件下熔融产生的。矿物(石榴子石、角闪石,单斜辉石和金红石)-熔体微量元素分配系数测定和部分熔融模拟结果进一步限定俯冲洋壳和下地壳起源的TTG/埃达克岩浆由含金红石角闪榴辉岩熔融产生,而拆沉下地壳起源的埃达克岩浆的产生要求软流圈地幔高温,由无水或含有少量含水矿物的榴辉岩熔融产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号