首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》2001,14(1-3):45-55
Field studies on the Neogene successions in south of İzmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the Early–Middle Miocene period. The lacustrine sediments underwent an approximately N–S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N–S-trending, fault-bounded graben basin, the Çubukludağ graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukludağ graben began to work as a cross graben between the E–W grabens, since that period.  相似文献   

2.
Abstract

Field studies on the Neogene successions in south of ?zmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the early-Middle Miocene period. The lacustrine sediments underwent an approximately N-S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N-S-trending, fault-bounded graben basin, the Çubukluda? graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukluda? graben began to work as a cross garden between the E–W grabens, since that period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

3.
The Pliocene–Early Pleistocene Mangas Basin in SW New Mexico, USA, was a N–NW-trending full graben that changed southward to an eastward-tilted half graben. Unlike the facies distribution predicted in existing models, the half-graben part of the Mangas Basin was characterized by broad alluvial fans derived from the footwall scarp, smaller hangingwall-derived alluvial fans, and a shallow, closed lake (Lake Buckhorn) that locally lapped onto the hangingwall hills. The distribution of facies within the full-graben part of the Mangas Basin was also unlike that predicted in current models, primarily because of a broad belt of alluvial-fan sediment derived from the eastern footwall scarp and a narrow belt of axial-fluvial sediment adjacent to the western footwall scarp. The distribution of facies in the Mangas Basin does not appear to have been controlled by the eastward tilt of the floor of the half graben or ‘see-saw’ motion of the floor of the full graben, as predicted by existing models, but rather by the large size of the alluvial fans on the eastern side of the basin. These fans were derived from large, high-relief catchments on the footwall scarp of the Mogollon Mountains, the uplift of which began during Early Miocene. This example illustrates how earlier uplift and drainage development in a mountain range may influence facies distribution in a younger extensional basin.  相似文献   

4.
A group of alluvial fans formed in the early Paleogene represent marginal sedimentary facies at the foot of the South Tianshan Mountain, Kuqa Depression, Tarim Basin, Xinjiang province. Two types of fans occurred in the middle–late Paleogene Kumugeliemu and Suweiyi formations: one alluvial, and the other fan delta deposited in a lacustrine setting. Within the early Neogene Jidike Formation, coastal subaqueous fans developed, probably in a deeper water lacustrine setting. The three types of fans are stacked vertically in outcrop with the sequence in ascending order: bottom alluvial, middle fan-delta, and top subaqueous. The subaqueous is a typical coarse-fan deposit occurring in the glutinite member of the Jidike Formation in some wells. Laterally, from the foreland to the lacustrine settings, the distribution pattern of sedimentary facies represents the same three fan types sequentially. The spatial distribution of these fans was controlled by the Paleogene–Neogene Basin transformation, and evolution with different types of fans developed in the Kuqa Depression in response. In the Paleogene, the Kuqa Depression was a rift basin where an alluvial fan was deposited in the foreland setting, which, by early Neogene, became a foreland basin when the lake level changed. With any rise in lake level, fan-deltas migrated from lacustrine to foreland settings, whereas when the lake level fell, fan migration was reversed. In the early Neogene, with increasing slope and rising lake level, fans progressed and covered the previous fan-delta and lacustrine mudstone. Eventually, subaqueous fans developed, forming the present spatial configuration of these three fan types.  相似文献   

5.
A group of alluvial fans formed in the early Paleogene represent marginal sedimentary facies at the foot of the South Tianshan Mountain,Kuqa Depression,Tarim Basin,Xinjiang province. Two types of fans occurred in the middle-late Paleogene Kumugeliemu and Suweiyi formations:one alluvial,and the other fan delta deposited in a lacustrine setting.Within the early Neogene Jidike Formation,coastal subaqueous fans developed,probably in a deeper water lacustrine setting.The three types of fans are stacked vertic...  相似文献   

6.
《Sedimentary Geology》2005,173(1-4):373-408
The Alaşehir (Gediz) Graben exemplifies clastic sedimentation in a long-lived continental half-graben in a semi-arid setting, developed within relatively incompetent metamorphic rocks. Early Miocene to Recent rift-related sediments are exhumed on both flanks of the graben, allowing detailed three-dimensional study. During the Early Miocene, small fan-delta lobes were shed northwards from the rugged Menderes Metamorphic Massif into a bordering lacustrine basin. During Early to Mid-Miocene time, large alluvial fans prograded northwards into this basin. Through-drainage to the Aegean Sea was established as the basin widened and filled. Discrete lobes of coarse alluvial fan sediments of latest Miocene(?)–Pliocene age, also shedding northwards, are likely to have been climatically influenced. Quaternary alluvium party infills the modern Alaşehır rift basin.The sedimentary information can be used to test two alternative tectonic models for the Alaşehır Graben. In the first model, an E–W graben bounded by high-angle faults was active during latest Miocene(?)–Recent time, whereas earlier Miocene sedimentation was controlled by N–S faulting related to a N–S compressional stress regime. In the second hypothesis, the Alaşehır Graben was initiated much earlier, in the Early Miocene and was then either continuously or episodically active until Recent. Our results, especially facies and palaeocurrent data from alluvial sediments, indicate that clastic sedimentation was controlled by mainly E–W faulting in a N–S stress regime. Assuming the Early Miocene clastic sediments are correctly dated, this supports the second (long-lived extension) model. However, rather than steady-state extension for ca. 15 Ma, the sedimentary evidence and regional context are consistent with a pulsed extension model, whereby initial Early to Mid-Miocene extension and related clastic sedimentation was followed by a second phase of extension in latest Miocene(?)–Pliocene time. The driving force of initial, Early Miocene extension was probably gravity spreading towards a south-Aegean subduction zone, whereas the inferred second extension pulse is seen as being triggered by westward “tectonic escape” of Anatolia towards the extending Aegean back-arc region.  相似文献   

7.
Alluvial fans and shallow carbonate lakes interfered in the Teruel half‐graben during the Late Miocene–Pliocene. Tectonic influence is recorded in alluvial and lacustrine–palustrine successions, with long‐term climate changes being recorded in detail in the isotopic signatures of carbonates. Episodes of tectonic activity induced alluvial fan progradation and lake retraction in the whole basin. Three lacustrine stages have been identified, which support the idea that climate also exerted an important control on sedimentation. The transition between stages 1 and 2 occurred during a tectonically calm episode due to an increase in aridity in the Early Turolian; small fans with source areas next to the lake margin prograded, inducing lake‐shore retraction. The transition from stage 2 to 3 was caused by the superimposition of increasing tectonic activity and aridity effects. Our study demonstrates that discrimination of allogenic factors controlling sedimentation in continental closed basins is possible using sequence stratigraphy in combination with other techniques such as geochemistry of carbonates.  相似文献   

8.
《Geodinamica Acta》2001,14(1-3):57-69
There is a N–S lying narrow strip of Neogene outcrop between the towns of Kuşadası and Söke in western Anatolia. It contains remnants of successive Neogene graben basins. The first graben began to form under the control of a N40–70°E-trending oblique fault system during the Early Miocene. At the initial phase of the opening coarse clastic rocks were deposited in front of the fault-elevated blocks as scree deposits and fanglomerates. Later the graben advanced into a large lake basin. Towards the end of the Middle Miocene the lacustrine sediments of the Early–Middle Miocene age underwent an approximately N–S compressional deformation and elevated above the lake level, and were partly eroded. During the Late Miocene a new graben basin began to form as a consequence of the development of E–W-trending normal faults, formed under the N–S extensional regime. This graben also turned later into a lake environment. The lake extended far beyond the limits of the fault zones, and covered the entire regions stretching from the south of Bafa Lake in the south to Kuşadası and beyond in the north. Micritic clayey limestones were predominantly deposited in the lake. A severe erosional phase followed the termination of the lake basin. This corresponds to the cessation of the N–S extension. When the N–S extension regenerated during the Pliocene(?)–Pleistocene, the Büyük Menderes graben system began to form. In the western part of the graben, a conjugated pair of oblique faults, the Priene–Sazlı fault and the Kuşadası fault, have formed. The faults having important strike-slip components, bounded a tectonic wedge, which began to move westward into the Aegean Sea region. Major morphological features of the region were formed under the effective control of these fault zones.  相似文献   

9.
A thick sedimentary sequence comprising fluvial, lacustrine and volcano-sedimentary rocks is present in the Neogene Beypazari Basin, central Anatolia. These units display considerable lateral facies variation and interfinger with alkaline volcanic rocks along the north-eastern margin of the basin. The uppermost Miocene Kirmir Formation contains numerous evaporite horizons. The evaporite sequence is up to 250 m thick and may be divided into four lithofacies. In ascending stratigraphical order these are: (1) gypsiferous claystone facies, (2) thenardite-glauberite facies, (3) laminar gypsum facies and (4) crystalline gypsum facies. These facies interfinger with one another laterally along a section from the margins to central parts of the basin. The lithological and sedimentological features of the Kirmir Formation indicate fluvial, saline playa mudflat, hypersaline ephemeral playa lake and very shallow subaqueous playa lake depositional environments, which probably were influenced by alternating semi-arid and evaporative conditions.  相似文献   

10.
根据札达盆地河湖相剖面地层岩性、粒度、沉积构造、古生物等反映的沉积岩相,以及不整合面等沉积特征,可将札达盆地上新世—早更新世河湖相地层,初步划分为两个三级层序(Ⅰ、Ⅱ)。层序Ⅰ代表上新统地层层序,并进一步区分出退积准层序组和进积准层序组。对应上新世湖相沉积由低位体系域—湖泊扩张体系域—湖泊收缩体系域的演化,反映湖泊由源区水系冲积亚相—滨湖三角洲亚相—滨浅湖亚相—半深湖亚相—滨浅湖亚相的湖泊,由扩张到萎缩的一个完整的发展演化旋回。层序II代表下更新统地层层序,反映一个盆地受构造和气候(冰期—间冰期)双重控制的夭折型冰湖形成演化的由冰水冲积相到冰湖沉积相的不完整沉积旋回,为青藏高原新近系上新统与第四系的研究与划分提供了重要依据。  相似文献   

11.
《Geodinamica Acta》2001,14(1-3):31-43
This paper describes the Neogene evolution of northwestern Anatolia based on geological data collected in the course of a new mapping program. The geological history of the region, as recorded by the Neogene sedimentary and magmatic rocks that overlie the Paleozoic–Triassic basement, began after a lake invasion during the Early Miocene period with the deposition of shale-dominated successions. They were accompanied by calc-alkaline intermediate lavas and pyroclastic rocks ejected through NNE trending fractures and faults. The Lower–Middle Miocene successions were deformed under a compressional regime at the end of the Middle Miocene. The deposition of the overlying Upper Miocene–Lower Pliocene successions was restricted to within NE–SW trending graben basins. The graben bounding faults are oblique with a major strike-slip displacement, formed under approximately the N–S extension. The morphological irregularities formed during the Miocene graben formations were obliterated during a severe erosional phase to the end of the deposition of this lacustrine succession. The present E–W graben system as exemplified from the well-developed Edremit graben, postdates the erosional phase, which has formed during the Plio-Quaternary period.  相似文献   

12.
根据札达盆地河湖相地层实测剖面中的接触关系、沉积旋回、沉积体系、岩相、岩性、古生物特征和ESR、古地磁测年结果,笔者对札达盆地上新统一早更新统河湖相地层进行了重新划分和时代确定。结合该套河湖相沉积的岩石地层、生物地层、年代地层、磁性地层、层序地层和地质构造事件,对札达盆地上新统一早更新统河湖相地层进行了多重地层的划分与对比。将札达盆地河湖相地层划分为3个组、4个沉积相、7个沉积亚相、11个岩性段。由新到老划分为:早更新统香孜组(Qp^1-1X)、上新统古格组(N22g)和上新统托林组(N2^1t)。  相似文献   

13.
Abstract

This paper describes the Neogene evolution of north-Western Anatolia based on geological data collected in the course of a new mapping program. The geological history of the region, as recorded by the Neogene sedimentary and magmatic rocks that overlie the Paleozoic-Triassic basement, began after a lake invasion during the Early Miocene period with the deposition of shale-dominated successions. They were accompanied by calc-alkaline intermediate lavas and pyroclastic rocks ejected through NNE trending fractures and faults. The Lower-Middle Miocene successions were deformed under a compressional regime at the end of the Middle Miocene. The deposition of the overlying Upper Miocene-Lower Pliocene successions was restricted to within NE-SW trending graben basins. The graben bounding faults are oblique with a major strike-slip displacement, formed under approximately the N-S extension. The morphological irregularities formed during the Miocene graben formations were obliterated during a severe erosional phase to the end of the deposition of this lacustrine succession. The present E–W graben system as exemplified from the well-developed Edremit graben, postdates the erosional phase, which has formed during the Plio-Quaternary period. © 2001 Éditions Scientifiques et médicates Elsevier SAS  相似文献   

14.
《Sedimentary Geology》2005,173(1-4):409-431
The neotectonic development of western Anatolia was characterized by the formation of numerous graben-type basins, which have been well documented by general mapping, although the cause and timing of the Neogene regional tectonic extension remain controversial. Previous interpretations of the origin and evolution of these Neogene basins were based mainly on regional-scale tectonic inferences, rather than detailed basin-fill analysis. The present study of the terrestrial intramontane Çameli Basin in the western Taurides combines detailed facies analysis with biostratigraphic dating (mammalian and molluscan fossils) and documents three pulses of crustal extension that are reflected in changes in the palaeogeography and sedimentary architecture of the basin.Development of the Çameli graben commenced in the Vallesian time (early Tortonian), and is marked by alluvial-fan, fluvial and lacustrine depositional systems, with freshwater molluscan fauna. A second pulse of tectonic extension occurred in the late Ruscinian time (early–middle Pliocene), producing a new normal fault that split the basin longitudinally into two compartments. The lake environment expanded and deepened, coastal peat-forming mires developed and abundant mammal fauna appeared by the early Villanian time (middle Pliocene), with the lacustrine deposits onlapping the basin-margin and intrabasinal fault escarpments. The lacustrine environment subsequently shrank, as the progradation of axial river deltas and basin-margin fan deltas caused water shallowing and shoreline regression. A third pulse of extension occurred at the end of Villanian time (late Pliocene), when the development of a new generation of normal faults further split the basin into still narrower half-graben compartments. The third pulse of rifting is estimated to have accounted for little more than 10% of the sub-basinal crustal extension, but caused the most striking changes in the basin palaeogeography and drainage pattern. The inward development of the successive normal faults indicated a high-rate crustal extension. This is the first regional case study of a terrestrial neotectonic graben employing detailed sedimentary facies analysis and mammal biostratigraphy and providing a time-stratigraphic framework for the rifting pulses in western Anatolia.  相似文献   

15.
山西榆社盆地上新世植物群及其环境意义   总被引:11,自引:0,他引:11       下载免费PDF全文
曹家欣  崔海亭 《地质科学》1989,6(4):369-375
山西榆社盆地,上新世河湖相地层十分发育,植物化石丰富。上新世早—中期的代表性植物有:Magnolia Liquidambar, PlatycaryaTsuga等,说明当时的榆社地区为北亚热带森林景观,但已有向干冷方向发展的趋势。上新世晚期,榆社地区为暖温带落叶阔叶林景观,同现在华北南部的植被相似。河湖的广泛分布和植被的特征表明,上新世的榆社地区属于季风气候,一年之中季节性的干湿变化和冷暖变化十分明显。  相似文献   

16.
中新世以来,受青藏高原造山隆起产生的侧向推挤,滇西及邻区发生向南东的哪构造逸脱,红河断裂发生右行走滑运动,在漠沙、逸萨等断裂弯曲地段由于应力松弛发生下陷,形成小型走滑松弛盆地,其特征有别于拉分盆地.本文以漠沙盆地为例,通过砂岩薄片粒度分析及砂岩碎屑组分定量分析,综合野外及室内地质研究,对此类盆地的岩石学特征、沉积环境、物源和构造特征等进行了详细的研究,并对其形成机制进行了初步的探讨.  相似文献   

17.
《Geodinamica Acta》2001,14(1-3):147-158
Central Anatolia has undergone complex Neotectonic deformation since Late Miocene–Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE–SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone.Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N–S convergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE–SW-trending extensional basin developed on this plateau in Late Miocene–Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline–alkaline volcanics. The volcanic sequence is unconformably overlain by Pliocene lacustrine–fluviatile deposits intercalated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained clastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional Hırka–Kızılırmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene–Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazlığı pull-apart basins. The Sultansazlığı basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Dağı).The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedge-like Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate.  相似文献   

18.
塔里木盆地东北部新生代介形类与沉积环境   总被引:8,自引:2,他引:6  
塔里木盆地东北部库车以东地区下第三系化石罕见。该地区主要为红色含膏盐的粗碎屑岩沉积。中新世以来 ,由于喜马拉雅运动的影响 ,天山不断隆升 ,导致本区加速沉降 ,出现滨浅湖沉积环境 ,介形类逐渐繁盛。中新世中晚期半咸水介形类 Cyprideis爆发 ,广泛出现Cyprideis占绝对优势的半咸水浅湖环境含膏砂泥岩沉积 ,与东邻柴达木盆地阿尔金山以南地区相似。上新世以来 ,本区沉降速率猛增 ,堆积速率更快 ,基本上处于超补偿沉积 ,湖泊大规模萎缩 ,介形类数量锐减。由于喜马拉雅运动晚期的影响 ,天山山脉库车—库尔勒一线以北的山峰不断隆升 ,本区第四纪湖区规模比上新世大大扩展 ,湖泊范围比中新世显著向南迁移 ,Cyprideis再度繁盛并占优势 ,早更新世晚期距今大约不足百万年 ,本区尤其是库南 1井地区 ,除继续出现丰富的 Cyprideis外 ,突然出现淡水 -微咸水介形类 ,形成一个属种多样的高分异度介形类动物群 ,与柴达木盆地南部昆仑山北麓的介形类组合类似 ,主要有 Candona torosa,Candoniella lactea,Candona neglecta,Candona arcina,Cypridopsis vidua,Limnocythereinopinata,Cypris subglobosa,Ilyocypris gibba,Ilyocpyrisbiplicata,Eucyprisinflata,Candoniellaalbicans,Darwinula sp.,Stenocypris sp.等。  相似文献   

19.
受近南北向扩张机制控制,南海陆缘盆地或凹陷多呈NE向带状展布,总体上具有“南三北三”平行排列、外窄内宽的特点。新生代发生的4次重要区域构造运动具有穿时性,共发育3期盆地破裂不整合面,分别是早渐新世与晚渐新世之间、古近纪与新近纪之间、中中新世与晚中新世之间;由东往西,盆地破裂不整合面的时代逐渐变新。受构造运动与海平面升降影响,南海海域发育湖相、海陆过渡相和陆源海相3类烃源岩。由南北两侧向中央海盆,烃源岩类型由湖相逐渐过渡到海陆过渡相与陆源海相;从东向西,盆地主力烃源岩层位逐渐变新,由始新统-渐新统逐渐过渡到渐新统-中新统。南海海域烃源岩的分布规律与盆地破裂不整面存在密切关系:破裂不整合面形成早(早渐新世与晚渐新世之间)的盆地,主力烃源岩形成早(始新统湖相烃源岩);反之,破裂不整合面形成晚(中中新世与晚中新世之间)的盆地,则烃源岩形成晚(渐新统-中新统海陆过渡相到陆源海相烃源岩)。  相似文献   

20.
青藏高原晚新生代孢粉组合与古环境演化   总被引:10,自引:2,他引:10       下载免费PDF全文
对取自沱沱河盆地、通天河盆地、那曲盆地、东温泉盆地、乌郁盆地的新近纪湖相沉积与取自巴斯错、错鄂、纳木错的晚第四纪湖相沉积,进行孢粉分析;结合西宁—民和盆地、伦坡拉盆地、南木林盆地、渭河盆地的孢粉资料,分析青藏及邻区新生代晚期古植被和古环境的演化过程。发现渐新世晚期—中新世早期青藏与周边邻区的古环境发生了显著分异,导致青藏地区热带亚热带植物濒临消亡,与全球温暖气候条件和青藏地区古纬度环境不符,是青藏高原隆升的重要标志。中新世早期—第四纪晚期,青藏高原落叶阔叶林和针叶林呈现总体减少趋势和准周期性波动,与全球气候变化呈良好对应关系。第四纪晚期草本植物含量逐步增高,出现蒿—松—桦为主,针叶林、落叶阔叶林、灌木、草本植物混生的植被景观。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号