首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wind-induced circulation and the distribution of hypoxia corresponding to the upwelling of oxygen-depleted water (called “Aoshio” in Japan and “Sumishio” locally in Omura Bay) in Omura Bay, Japan, was examined field observations and by three-dimensional modeling. During the calm weather in summer, well-mixed strait water, in rich oxygen at the mouth of the bay intruded into the middle layer of the bay, southward and northward along the west and east coast, respectively, forming basin-scale cyclonic circulation. A stagnant water mass was formed below the center of this cyclonic circulation, and it became hypoxic water. As a result of the prevailing strong southeast (northeast) wind, the bottom hypoxia moved in a southeasterly (northeasterly) direction. This induces the upwelling of hypoxic water, accompanied by mass mortality of marine organisms.  相似文献   

2.
Coastal hypoxia and anoxia have become a serious environmental problem in many coastal ecosystems, and recent evidence suggests an increase in the number of systems experiencing hypoxia globally and an increased frequency and duration of hypoxia in many historically hypoxic systems. Eutrophication, low physical energy and large freshwater input are some of the most important factors, which lead to the development of hypoxia in coastal areas. The Amvrakikos Gulf, located in western Greece, is one of the most important protected areas in Greece and in Europe and past studies indicated that some regions of the Gulf experience hypoxia. Despite the importance of the Amvrakikos Gulf ecosystem, little is known about key ecological, chemical, and physical processes in the Gulf and their relationship with oxygen depletion. In the present study, authors try to answer some important questions regarding the distribution and variation of the hypoxic zone. After a year of measurements, it was concluded that according to spatial distribution of DO, the gulf can be divided into two parts, the western and eastern areas, with important differences occurring between them. Within the western area, the water column was well oxygenated during winter and spring and hypoxic conditions occurred only in summer and autumn. The eastern area was hypoxic throughout the year and anoxic conditions occurred only during autumn. In conclusion, taking into account the author’s measurements and previous studies, the seasonally hypoxic eastern area in 1987 converted into a seasonally anoxic area in 2009 and the western part of the gulf, remained seasonally hypoxic, indicating the degradation of the gulf’s environmental state within the last 20 years.  相似文献   

3.
Recently, bivalves have been massively killed by anoxia or hypoxia in summer at the northern part of Isahaya Bay, Japan, which constituted a major problem for fisheries. However, the mechanism behind the occurrence of hypoxic water masses is unclear. It is known that the bottom water dissolved oxygen (DO) in this area is affected by the inflow of seawater into the northern mouth of Isahaya Bay. To understand the mechanism of hypoxia, it is necessary to determine the physical processes that cause changes in the bottom DO concentrations in this area. This study shows that there is a neap-spring tidal variation in bottom DO due to a change in vertical tidal mixing, and it also suggests that the decrease in bottom DO was generated by a baroclinic flow, which is due to the internal tide, and a shear flow, which is induced by the external tide in the bottom boundary layer. In addition, our study suggests that the source of cold and hypoxic water that appears in the bottom layer at low tide is the inner area of the Ariake Sea.  相似文献   

4.

In this study, we investigated the mechanism of eutrophication and hypoxia in the upper Gulf of Thailand from August 2014 to June 2015 based on field observation data, box model analysis, and the unscaled trophic status index (UNTRIX). Fresh water residence time derived from a simple box model was long (38.61 days) during the transition period between the southwest to northeast monsoon in September 2014. In contrast, fresh water residence time was short (2.63 days) during the late northeast monsoon in February 2015. Long residence time was related to the development of widespread strong hypoxia in near-bottom waters in over half of the gulf during the transition between the southwest and the northeast monsoon, when river discharge was also very large. UNTRIX is used to assess water trophic levels, and is based on water qualities including concentrations of chlorophyll-a (Chl-a), dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP). Hypertrophic and eutrophic conditions were observed at river mouths; their seasonal eutrophication was related to river discharge and circulation. Nutrients were mainly increased by river discharge. Water column stratification and long residence time were required for the development of severe hypoxia in the study area.

  相似文献   

5.
Tidal flooding and surface drainage patterns have often been used to describe mangrove species zonation. However, in mangrove forests exhibiting little topography, ambiguous species distributions and/or few species, such approaches are ineffective. We identified four physiognomic mangrove forest types (Riverine, Fringing, Overwash and Basin) at Coombabah Lake, a tidal lake in southeast Queensland, Australia and investigated tidal flooding patterns using synoptic surveys of tidal observations at the local Standard Port combined with local water depth observation. Subsequently three sub-types of the basin forest type were identified: (1) Deep Basin Forest with mature trees, ∼50 cm standing water and ∼3 tides per year; (2) Medium Depth Basin Forest with intermediate tree development, ∼15–30 cm standing water and 20–40 tides per year; and (3) Shallow Basin Forest with relatively recent mangrove establishment, 5–15 cm standing water and ∼80 tides per year. These three basin sub-types were found to flood at different tide heights with the Shallow Basin flooding for tides above mean high water springs and the Deep Basin flooding only for tide heights approaching the highest astronomical tide. We propose that these basin types represent a succession in mangrove forest development that corresponds with increasing water depth and tree maturation over time. The succession not only represents increasing age but also change in basin substrate composition. This is manifest as increasing pneumatophore density and an increasing area of basin surface occupied by contiguous pneumatophore cover. As a result, it seems that mangrove development is able to modify tidal flooding into the basin by increasingly impeding water movement.  相似文献   

6.
赵紫涵  宋贵生  赵亮 《海洋学报》2020,42(10):144-154
溶解氧(DO)是海洋生物生存不可缺少的要素。随着人类活动的增加,全球近岸海域低氧情况愈发严重,已经成为威胁海洋生态系统健康的重要因素。通过对2017年5?9月秦皇岛外海区域的观测调查,探讨了该海域低氧与酸化的形成机制并计算了月平均耗氧速率。结果表明,5月秦皇岛外海水体混合较为均匀,表、底层DO浓度一致,均大于8 mg/L;6月开始形成密度跃层,与此同时底层DO浓度和pH开始下降;8月底层呈现明显的低氧和酸化状态,DO浓度下降至2~3 mg/L,pH下降至7.8以下;9月随着层化消失,底层水体DO浓度和pH逐渐升高。相关性分析显示,DO和叶绿素a (Chl a)以及pH具有良好的耦合性,说明秦皇岛外海区域的低氧发生过程主要为局地变化。同时表明DO浓度和pH主要受水体中浮游植物的光合作用和有机物有氧分解的影响。通过箱式模型计算得到2017年6?8月密度跃层以下水体及沉积物耗氧速率为951~1193 mg/(m2·d)[平均为975 mg/(m2·d)]。综合来看,水体分层是秦皇岛外海低氧和酸化发生的先决条件,跃层以下的有机物分解耗氧则是底层水体发生低氧和酸化的重要原因。  相似文献   

7.
Observation data obtained in the 32°N transect (transect E) in 1975–1995 were used to analyze the long-term changes in dissolved oxygen (DO) concentration and near-bottom hypoxic water in the East China Sea (ECS). A declining trend in annual average DO concentration and the degree of DO saturation was observed. Consequently, the apparent oxygen utilization in the western waters of transect E was on the rise. There was a seasonal hypoxic phenomenon in near-bottom water in the western water of transect E. The width of hypoxic water formed in summer gradually extended eastward along the continental shelf (transect E) at the rate of 3.12 km year−1. Three potential reasons might have caused the formation and maintenance of near-bottom hypoxic water. First, the special hydrological topography and hypoxic deep water of the Taiwan Warm Current provided a backdrop for the hypoxic zone. Second, in summer, the strength of water column stratification restricts water exchange. Third is the occurrence and decay of the phytoplankton bloom. In surface water, nutrient concentrations increased gradually, and chlorophyll (Chl a), primary production, and phytoplankton biomass in summer increased. On the other hand, the community structure of phytoplankton, zooplankton, and zoobenthos became simple. Blooming phytoplankton consumed plenty of nutrients in the surface, but the upwelling of nutritious bottom water was suppressed by the strong thermocline. As a result, sinking of phytoplankton was enhanced because of nutrient deficiency. In recent years, a serious lack of zoobenthos in the study area corresponded to a higher degree of hypoxia. This phenomenon would have a major effect on the evolution of ecological dynamic systems in the ECS.  相似文献   

8.
In January 2008, most of the southern coastal zone of the Humboldt Current System was affected by an intense upwelling event. This caused an intrusion of equatorial sub-surface water into the coastal zone, generating severe hypoxic conditions (≤0.5 ml O2 l−1) three days after the beginning of the event. A rapid, massive die-off of marine organisms occurred in Coliumo Bay on January 3rd, affecting zooplankton, mollusks, crustaceans and fishes. Normal oxygen concentrations were observed on January 10th, seven days after the hypoxic event. Here we analyze the response of the epibenthic macrofauna community using data spanning three years of sampling which encompass the short-term hypoxic disturbance in the bay. We found that (i) strong changes in total density, total biomass, and diversity occurred immediately after the hypoxic event, negatively affecting crustaceans and fishes, while gastropods were favored, (ii) initial changes were reverted over a period of three months, (iii) on an inter-annual time scale, species richness and diversity decreased following the hypoxic event. Total density increased strongly, but total biomass showed no clear inter-annual trend. These results show that, while initial recovery from hypoxia was fast, over longer time scales the community exhibited a shift to an alternative structure dominated principally by Nassariid scavenger species.  相似文献   

9.
Eutrophication often causes hypoxia in estuarine and coastal systems, but the mechanisms that control hypoxic events vary among estuaries and are often difficult to discern. We monitored surface and bottom dissolved oxygen (DO) in the Upper Newport Bay (UNB), a tidally mixed estuary in southern California subject to anthropogenic nutrient loading, eutrophication and hypoxia. Our goal was to identify the environmental factors regulating DO dynamics. Six hypoxic events occurred between June and November and were associated with a combination of low solar radiation, increased freshwater discharge following precipitation, and enhanced haline stratification during reduced tidal range periods. At the head of the estuary, high macroalgal biomass and pronounced haline stratification resulted in high DO in the surface layer and low DO in the bottom layer. Oxygen-rich and oxygen-poor waters were transported down-estuary by ebb tides, resulting in DO heterogeneity throughout the UNB. Cross-wavelet analysis illustrated the down-estuary propagation of high/low DO signal correlated with the phases of diurnal photosynthetic and semi-diurnal tidal cycles.  相似文献   

10.
The monthly water mass variations in the Yellow Sea and the East China Sea are investigated using over 40 years of historical temperature and salinity observations via a cluster analysis that incorporates geographical distance and depth separation in addition to the temperature and salinity. Results delineate monthly variations in the major water masses and provide some insight into formation mechanisms and intermixing. The major water masses include the Kuroshio-East China Sea water (KE), the Yellow Sea surface water (YSS) and bottom cold water (YSB), mixed water (MW), and coastal water (CW). The distribution of the KE water mass reveals the intrusion pattern into the area west of Cheju. A separate mixed water type appears between the KE water mass and the Yellow Sea water masses during winter. The formation mechanism of the YSB appears to be the surface cooling and active mixing in winter. In the East China Sea, during summer, surface water is differentiated from the subsurface water while there is no differentiation during winter. In the Yellow Sea, a three layer system exists in the summer and fall (May–November) while a two layer system exists during the rest of the year. A fresh water mass generated by Yangtze River discharge (YD) is present over the northern East China Sea and the southern Yellow Sea during summer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The effect of the flood water salinity on the mobility of heavy metals was studied for intertidal sediments of the Scheldt estuary (Belgium). Soils and sediments of 4 sampling sites were flooded with water of different salinities (0.5, 2.5, and 5 g NaCl L−1). Metal concentrations were monitored in pore water and surface water. To study the potential effects of flood water salinity on metal bioavailability, duckweed (Lemna minor) was grown in the surface water. The salinity was found to primarily enhance the mobility of Cd and its uptake by duckweed. Cadmium concentrations in pore water of soils and sediments and surrounding surface waters significantly exceeded sanitation thresholds and quality standards during flooding of initially oxidized sediments. Moreover, the effect was observed already at lower salinities of 0.5 g NaCl L−1. This implies that risks related to Cd uptake by organisms and Cd leaching to ground water are relevant when constructing flooding areas in the brackish zones of estuaries. These risks can be reduced by inducing sulphide precipitation because Cd is then immobilised as sulphide and its mobility becomes independent of flood water salinity. This could be achieved by permanently flooding the polluted sediments, because sulphates are sufficiently available in the river water of the brackish part of the estuary.  相似文献   

12.
夏季长江口外低氧区的动态特征分析   总被引:5,自引:2,他引:3  
研究长江口外海域夏季低氧区的动态特征具有重要的科学意义和应用价值.通过对长江口外低氧区典型月份历史资料以及该海域生态环境演变的分析,揭示了长江口外海域低氧区北移、氧最低值波动下降和低氧区面积扩大的年代际变化趋势,阐明了低氧区的演变与富营养化以及海洋动力环境之间的关系,并对2006年夏半年(6-10月)低氧区的位置变化过...  相似文献   

13.
The objective of this study was to determine the effects of transported hypoxic water on macrobenthic species composition in Isahaya Bay, Kyushu, Japan. To this end, we conducted a field survey of water quality, sediment quality, and the macrobenthic community across seasons. Hypoxic intensity, defined as the percentage of the time that a region exhibits hypoxic conditions [dissolved oxygen (DO) <?3.0 mg L?1], was calculated for the summer period from July 1 to September 30, 2014 based on continuous monitoring data derived from six monitoring towers in the bay. Here, we discuss how the hypoxia-induced damage, defined as the change in the species compositions of the macrobenthic communities in the bay due to hypoxia, differs between the inner and middle regions of the bay (with muddy sediment) and the outer regions of the bay (with sandy sediment). A decrease in the density of macrobenthic species that was correlated to the period of lowest DO concentration (<?1.0 mg L?1) was observed in the inner region of the bay. A large number of species disappeared from the macrobenthic community in the outer region after the DO concentration had dropped to its lowest level, even though this region presented the lowest hypoxic intensity (6.6%). The species that disappeared, including crustaceans and some polychaetes, were presumed to be sensitive to, and to have escaped from, hypoxia. Fewer species disappeared from the inner and intermediate regions of the bay, which had high hypoxic intensities of 14.0 and 26.7%, respectively, than from the outer region. The reason for this appeared to be a predominance of hypoxia-tolerant species in the inner and intermediate regions but not in the outer region. Our study suggests that estimating the effect of hypoxia in a spatially heterogeneous environment must be done with caution.  相似文献   

14.
An 18-year monitoring record (1978-1995) of dissolved oxygen within a region having hypoxia (dissolved oxygen less than 2 mgl(-1)) in the bottom layer was examined to describe seasonal and annual trends. The monitoring location was near or within a well-described summer hypoxic zone whose size has been up to 20,000 km(2). The monitoring data were used to hindcast the size of the hypoxic zone for before consistent shelfwide surveys started, and to predict it for 1989, when a complete shelfwide survey was not made. The concentration of total Kjeldahl nitrogen (TKN) in surface waters and concentration of bottom water oxygen were directly related, as anticipated if organic loading from surface to bottom was from in situ processes. The TKN data were used to develop a predictive relationship that suggested there was no substantial hypoxia before the 1970s, which was before nitrate flux from the Mississippi River to the Gulf of Mexico began to rise. The peak frequency in monthly hypoxic events is two to three months after both the spring maximum in discharge and nitrate loading of the Mississippi River. These results support the conclusion that persistent, large-sized summer hypoxia is a recently-developed phenomenon that began in the 1970s or early 1980s.  相似文献   

15.
为剖析长江口邻近海域春季硅藻藻华后期藻类沉降与底层水体缺氧现象之间的关系,作者于2011年春季,在长江口南部赤潮区采集了表层沉积物样品,并通过高效液相色谱法(HPLC),对浮游植物色素进行了分析。结果表明,硅藻藻华发生后,表层沉积物中叶绿素a(Chl a)、岩藻黄素(Fuco)和19’-丁酰氧基岩藻黄素(But-Fuco)含量有显著增加,高值区主要分布在调查海域东南侧50 m等深线外侧,与底层低氧水体分布区基本吻合。因此,硅藻藻华后沉降的藻类对于该海域夏季缺氧区的形成应具有一定作用,其具体过程和机制仍有待于研究。  相似文献   

16.
Hypoxia has occurred in Upper Charlotte Harbor, a shallow (∼3 m) estuary in Southwest Florida, during moderate to high freshwater flows from the Peace and Myakka Rivers and after hurricanes, due to nutrient loading and vertical stratification. This paper studies the annual hypoxia and water quality dynamics in Upper Charlotte Harbor in 2000, using CH3D-IMS, an integrated modeling system which includes coupled models of circulation, wave, sediment transport, and water quality. The CH3D-IMS simulations showed that bottom-water hypoxic conditions occur during periods with relatively steady moderate to high (5–40 m3/s) freshwater inflows and sediment oxygen demand (SOD). During periods of relatively steady moderate to high river discharge, strong vertical salinity stratification results in reduced vertical mixing which prevents surface water from supplying dissolved oxygen (DO) to bottom water where SOD continuously consumes DO. There was significant temporal fluctuation of the hypoxic water volume, as a result of significant temporal variation in vertical turbulent mixing associated with combinations of spring-neap tides and river discharge. The validated modeling system could be used to forecast hypoxia.  相似文献   

17.
The infaunal bivalve Soletellina alba is susceptible to mass mortalities during annual winter flooding in the Hopkins River Estuary, southern Australia. Periods of low salinity (≤1) are the likely cause of these mass mortality events, which can occur in seasonally-closed estuaries when high winter flows are sufficient to flush all salt water from the estuary. Core samples of S. alba were collected from two water depths across four times and at three sites near the mouth of the estuary. Minimal to zero abundances of large S. alba (>1 mm) were expected to be sampled, particularly at the shallower water depth, during a typical winter flood event. However, the present study occurred during a period of drought, which led to the absence of winter flooding. This absence of winter flooding prevented the occurrence of lethal salinities (i.e. ≤1) in the estuary during this period and a greater number of living S. alba adults were sampled. Abundances of juvenile and adult S. alba were still variable, even in the absence of winter flooding, and reflected an interaction between date, site and water depth. However, no mass mortalities of adults were observed during the drought conditions in contrast to what occurs during typical winter flood events and provides support for the hypothesis that winter flooding is responsible for past mass mortalities.  相似文献   

18.
The Humboldt Current System (HCS) is dominated by two pelagic species; Peruvian anchovy or anchoveta (Engraulis ringens) and sardine (Sardinops sagax). Using data from 43 acoustic surveys conducted from 1983 through 2005 by the Peruvian Marine Institute (IMARPE), we examined the distribution of these two species relative to water masses. We tested the hypothesis that anchovy was found more frequently in upwelled cold coastal water (CCW) and mixed waters (MCW) than in other water types and that sardine was more associated with more offshore oceanic surface subtropical water (SSW). Surface temperature, salinity, latitude, season and distance to the coast data were used to define water masses. Results using generalized additive models (GAM), modelling sardine and anchovy presence–absence as a function of year, water body, bottom depth and latitude, showed that anchovy were primarily found in CCW and MCS, while sardine were more ubiquitous relative to water masses with some predilection for SSW. These results were supported by various indexes of anchovy and sardine distribution versus water mass as well as temporal and location variables.  相似文献   

19.
Heat balance of the upper 200 m of the sea south of Japan is studied, by the use of marine meteorological and oceanographic data at Ocean Weather Station T (29°N, 135°E), intensively obtained from June 1950 to November 1953. Local time change of the heat content in the surface layer and the net heat flux through the air-sea interface are calculated directly from these data, and the heat convergence in the sea is estimated from their residuals. Regarding the relative importance of one- and three-dimensional processes, it is found that, on a time scale of a few days to one month, the variation of heat content depends on heat convergence in the sea, while on a seasonal time scale, the heat content is determined primarily by the heat flux through the sea surface in December through February, by heat convergence within the sea from March to May, and by both processes from June to November. It is inferred that the heat convergence in the sea is caused by advection of water masses which are bounded by sharp fronts. Spectral analysis of sea surface temperature indicates that they typically take 2 to 3 days to pass the station, and their typical size is estimated as around 20 km by assuming the typical advection velocity of water masses to be 10 cm s?1.  相似文献   

20.
Temporal variations in water mass properties and the composition of phytoplankton pigments in the central part of Sagami Bay were investigated by monthly observations from June 2002 to May 2004. Eleven pigments were quantified using high-performance liquid chromatography (HPLC) from 100%, 20%, and 5% light depths relative to the surface; the class-specific composition of phytoplankton community was then obtained by CHEMTAX analysis. The study area was influenced by the Kuroshio water for most of the observation period. The mean contribution of diatoms in all samples was relatively low (29%), while that of flagellates, mainly chlorophytes or cryptophytes, was quite high (60%). The phytoplankton composition at the three depths was uniform throughout the observation period, indicating that the vertical structure of the phytoplankton community did not develop significantly over time. A distinct temporal pattern was observed: flagellates dominated during the summer of 2002 and the winters of 2002–2003 and 2003–2004, while diatoms dominated during the summer of 2003. This pattern was associated with water mass changes. The community in the summer of 2003 was influenced by coastal water. While no distinct spring bloom of phytoplankton was observed, a weak increase in chlorophyll a was observed during the spring of 2004. Ocean color satellite data showed that fluctuations in chlorophyll a concentrations at time scales much shorter than a month occurred during the spring of 2003 and that the elevations in chlorophyll a levels were not continuous. The fluctuations were probably associated with rapid flushing by the Kuroshio water, which has low chlorophyll a content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号