首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
FERRY  JOHN M. 《Journal of Petrology》1995,36(4):1039-1053
Contact-mctamorphic assemblages in ophicarbonate from the Bergellaureole correspond either to model isobaric invariant T-XCO2points [Atg-Cal-Di-Tr-Fo (6 samples) and Atg-Cal-Tr-Fo-Dol (2)]or to isobaric univariant T-XCO2, curves [Tr-Cal-Di-Atg (18),Tr-Dol-Atg-Cal (1), Atg-Cal-Fo-Di (1), and Atg-Cal-Tr-Fo (1)].Calcite-dolomite thermometry and mineral-fluid equilibria inthe invariant assemblages record T=440–540C at P=3•5kbar. Equilibrium metamorphic fluids were very H2O rich withX CO2,=0•001–0•027. In the invariant assemblagesTr + Fo were produced by prograde decarbonation-dehydrationreactions. In contrast, measured modes and reaction texturesin samples with univariant assemblages indicate thai Tr wasproduced by carbonation reactions. The apparent paradox of simultaneousdecarbonation reactions in the model isobaric invariant assemblagesand carbonation reactions in univariant assemblages is resolvedby local mineral-fluid equilibrium and fluid flow through ophicarbohatesin the direction of decreasing temperature as the aureole heated.Time-integrated flux (q) was computed from measured reactionprogress in 28 samples for models of both horizontal and verticaldown-temperature flow. Results are similar, with q decreasingrapidly from (0•2–5•1) 105 cm3 fluid/cm2 rock1•3–1•7 km from the intrusion to 0–0•6105cm3/cm2 at 1•8–4•0 km. The decrease in q ismore consistent with vertical than horizontal flow. Variationsin time-integrated flux of more than an order of magnitude arerecorded by samples from the same outcrop. The absence of carbonatein adjacent metaperidotite indicates that flow was confinedto the ophicarbonate. Channelized, spatially heterogeneous,vertical flow can be explained by the brecciation and strongvertical foliation of the ophicarbonate relative to surroundingmassive metaperidotite. Generation of metamorphicfluids by decarbonation-dehydrationreactions within the ophicarbonates explains larger averageflux 1–2 km from the intrusion compared with more distalpoints. KEY WORDS: Bergell; contact metamorphism; fluid flow; ophicarbonate *Telephone: (410) 516-8121. Fax: (410) 516-7933  相似文献   

2.
Potassic volcanic rocks from the Wudalianchi, Erkeshan and Keluo(WEK) fields in NE China are located between the Mesozoic SongliaoBasin and the Palaeozoic Xing'am Mountains fold belt. Theserocks erupted during three main eruptive episodes-Miocene (9•6–7•0Ma), Pleistocene (0•56–0•13 Ma) and Recent (AD1719–1721)-and are subdivided into three types-olivineleucitite, leucite basanite and trachybasalt—on the basisof modal composition. In comparison with Cenozoic alkaline basaltsfrom East China that are similar to oceanic island basalts (OIBs),WEK volcanic rocks are lower in Al2O3, CaO, Fe2O3 and Sc, buthigher in K2O (3•5–7•1 wt %), K2O/Na2O (>1)and incompatible elements. High 87Sr/86Sr (0•7050–0•7056),low 143Nd/144Nd (0•51238–0•51250) and 206Pb/204Pb(17•06–16•61) ratios also distinguish them fromoceanic and Chinese basalts. Trace element and isotope dataindicate that a post-Archaean subcontinental lithospheric mantlesource similar to the postulated EM1 component (enriched mantlewith low l43Nd/144Nd and moderate high 87Sr/86Sr) must haveplayed a significant role in magma generation. The source rockis considered to be refractory phlogopite-bearing garnet peridotiteheterogeneously enriched in both large ion lithophile elementsand light rare earth elements by ancient metasomatism duringProterozoic times. This source may have mixed recently withOIB-like melts, but has not been modified by subduction of theKula-Pacific plate. Primitive WEK potassic magma was generatedby a low degree of partial melting, initiated by an extensionalphase beginning in the late Tertiary, at pressures of 20–45kbar and in the presence of mixed volatile components of H2O,CO2 and halogens. KEY WORDS: potassic volcanic rocks; NE China; geochemistry; montle sourc *Corresponding author. Present address: Centre for Petrology and Lithoipheric Studies, School of Earth Sciences, Macquarie University, NSW 2109, Australia  相似文献   

3.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

4.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

5.
PT conditions and prograde PT paths have beencalculated for amphibolite-grade pelites and amphibolites fromCordillera Darwin, Tierra del Fuego, Chile. Peak PT conditionsare nearly all within the kyanite stability field; temperaturesgenerally show an increase with increasing grade, but pressureshave a less consistent trend, possibly increasing slightly fromgarnet to kyanite grade. PT paths from pelites show heatingby 80–100C during loading of 0•2–3 kbar. Texturalanalysis and previous structural work indicate that this segmentof the path correlates with back-folding deformation. PTpaths from two Mg-rich garnet amphibolites suggest a decreasein pressure of as much as 3 kbar with 25–50C of heatingfrom the kyanite stability field to the sillimanite, and areconsistent with pervasive, minor development of fibrolitic sillimanitealong plagioclase grain boundaries. Together, the PTpath segments from pelites and amphibolites constitute a clockwisePT trajectory. The proposed clockwise PT paths are consistent with theinterpretation that Cordillera Darwin represents an extensionallyexhumed metamorphic core complex, in which loading during garnetgrowth in the pelitic rocks was succeeded by differential upliftduring garnet growth in magnesian amphibolites. * Present address: Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706  相似文献   

6.
The spinel–garnet transition in Cr/Al-enriched peridotiticbulk compositions is known from experimental investigationsto occur at 20–70 kbar, within the pressure range sampledby kimberlites. We show that the Cr2O3–CaO compositionsof concentrate garnets from kimberlite have maximum Cr/Ca arrayscharacterized by Cr2O3/CaO 0·96–0·81, andinterpret the arrays as primary evidence of chromite–garnetcoexistence in Cr-rich harzburgitic or lherzolitic bulk compositionsderived from depth within the lithosphere. Under Cr-saturatedconditions on a known geotherm, each Cr/Ca array implicitlydelineates an isobar inside a garnet Cr2O3–CaO diagram.This simplification invites a graphical approach to calibratean empirical Cr/Ca-in-pyrope barometer. Carbonaceous chromite–garnetharzburgite xenoliths from the Roberts Victor kimberlite tightlybracket a graphite–diamond constraint (GDC) located atCr2O3 = 0·94CaO + 5·0 (wt %), representing a pivotalcalibration corresponding to 43 kbar on a 38 mW/m2 conductivegeotherm. Additional calibration points are established at 14,17·4 and 59·1 kbar by judiciously projecting garnetcompositions from simple-system experiments onto the same geotherm.The garnet Cr/Ca barometer is then simply formulated as follows(in wt %):
if Cr2O3 0·94CaO + 5, then P38 (kbar) = 26·9+ 3·22Cr2O3 – 3·03CaO, or
if Cr2O3 <0·94CaO + 5, then P38 (kbar) = 9·2+ 36[(Cr2O3+ 1·6)/(CaO + 7·02)].
A small correction to P38 values, applicable for 35–48mW/m2 conductive geotherms, is derived empirically by requiringconventional thermobarometry results and garnet concentratecompositions to be consistent with the presence of diamondsin the Kyle Lake kimberlite and their absence in the Zero kimberlite.We discuss application of the P38 barometer to estimate (1)real pressures in the special case where chromite–garnetcoexistence is known, (2) minimum pressures in the general casewhere Cr saturation is unknown, and (3) the maximum depth ofdepleted lithospheres, particularly those underlying Archaeancratons. A comparison with the PCr barometer of Ryan et al.(1996, Journal of Geophysical Research 101, 5611–5625)shows agreement with P38 at 55 ± 2 kbar, and 6–12%higher PCr values at lower P38. Because the PCr formulationsystematically overestimates the 43 kbar value of the GDC by2–6 kbar, we conclude that the empirical Cr/Ca-in-garnetbarometer is preferred for all situations where conductive geothermsintersect the graphite–diamond equilibrium. KEY WORDS: Cr-pyrope; chromite; P38 barometer; mantle petrology; lithosphere thickness  相似文献   

7.
Al2SiO5 reaction textures in aluminous schist and quartziteof the northern Picuris range, north-central New Mexico, recorda paragenetic sequence of kyanite to sillimanite to andalusite,consistent with a clockwise PT loop, with minor decompressionnear the Al2SiO5 triple-point. Peak metamorphic temperaturesare estimated at 510–525°C, at 4·0–4·2kbar. Kyanite and fibrolite are strongly deformed; some prismaticsillimanite, and all andalusite are relatively undeformed. Monaziteoccurs as inclusions within kyanite, mats of sillimanite andcentimetre-scale porphyroblasts of andalusite, and is typicallyaligned subparallel to the dominant regional foliation (S0/S1or S2) and extension lineation (L1). Back-scatter electron imagesand X-ray maps of monazite reveal distinct core, intermediateand rim compositional domains. Monazite–xenotime thermometryfrom the intermediate and rim domains yields temperatures of405–470°C (±50°C) and 500–520°C(±50°C), respectively, consistent with the progradeto peak metamorphic growth of monazite. In situ, ion microprobeanalyses from five monazites yield an upper intercept age of1417 ± 9 Ma. Near-concordant to concordant analyses yield207Pb–206Pb ages from 1434 ± 12 Ma (core) to 1390± 20 Ma (rim). We find no evidence of older regionalmetamorphism related to the 1650 Ma Mazatzal Orogeny. KEY WORDS: Al2SiO5; metamorphism; monazite; thermochronometry; triple-point  相似文献   

8.
We present a combined Sr, Nd, Pb and Os isotope study of lavasand associated genetically related megacrysts from the Biu andJos Plateaux, northern Cameroon Volcanic Line (CVL). Comparisonof lavas and megacrysts allows us to distinguish between twocontamination paths of the primary magmas. The first is characterizedby both increasing 206Pb/204Pb (19·82–20·33)and 87Sr/86Sr (0·70290–0·70310), and decreasingNd (7·0–6·0), and involves addition of anenriched sub-continental lithospheric mantle-derived melt. Thesecond contamination path is characterized by decreasing 206Pb/204Pb(19·82–19·03), but also increasing 87Sr/86Sr(0·70290–0·70359), increasing 187Os/188Os(0·130–0·245) and decreasing Nd (7·0–4·6),and involves addition of up to 8% bulk continental crust. Isotopicsystematics of some lavas from the oceanic sector of the CVLalso imply the involvement of a continental crustal component.Assuming that the line as a whole shares a common source, wepropose that the continental signature seen in the oceanic sectorof the CVL is caused by shallow contamination, either by continent-derivedsediments or by rafted crustal blocks that became trapped inthe oceanic lithosphere during continental breakup in the Mesozoic. KEY WORDS: crustal contamination; CVL; megacrysts; ocean floor; osmium isotopes  相似文献   

9.
A suite of garnetiferous amphibolites and mafic granulites occuras small boudins within layered felsic migmatite gneiss in thenorthern part of the Sausar Mobile Belt (SMB), the latter constitutingthe southern component of the Proterozoic Central Indian TectonicZone (CITZ). Although the two types of metabasites are in variousstages of retrogression, textural, compositional and phase equilibriastudies attest to four distinct metamorphic episodes. The earlyprograde stage (Mo) is represented by an inclusion assemblageof hornblende1 + ilmenite1 + plagioclase1 ± quartz andgrowth zoning preserved in garnet. The peak assemblage (M1)consists of porphyroblastic garnet + clinopyroxene ±quartz ± rutile ± hornblende in mafic granulitesand garnet + quartz + hornblende in amphibolites and stabilizedat pressure–temperature conditions of 9–10 kbarand 750–800°C and 8 kbar and 675°C, respectively.This was followed by near-isothermal decompression (M2), andpost-decompression cooling (M3) events. In mafic granulites,the former resulted in the development of early clinopyroxene2A–hornblende2A–plagioclase2Asymplectites at 8 kbar and 775°C (M2A stage), synchronouswith D2 and later anhydrous clinopyroxene2B–plagioclase2B–ilmenite2Bsymplectites and coronal assemblages at 7 kbar, 750°C (M2Bstage) and post-dating D2. In amphibolites, ilmenite + plagioclase+ quartz ± hornblende symplectites appeared during M2at 6·4 kbar and 700°C. During M3, coronal garnet+ clinopyroxene + quartz ± hornblende-bearing symplectitesin metabasic dykes and hornblende3–plagioclase3 symplectitesembaying garnet in mafic granulites were formed. PT estimatesshow near-isobaric cooling from 7 kbar and 750°C to 6 kbarand 650°C during M3. It is argued that the decompressionin the mafic granulites is not continuous, being punctuatedby a distinct heating (prograde?) event. The latter is alsocoincident with a period of extension, marked by mafic dykeemplacement. The combined PT path of evolution has aclockwise sense and provides evidence for a major phase of earlycontinental subduction in parts of the CITZ. This was followedby a later continent–continent collision event duringwhich granulites of the first phase became tectonically interleavedwith younger lithological units. This tectonothermal event,of possibly Grenvillian age, marks the final amalgamation ofthe North and the South Indian Blocks along the CITZ to producethe Indian subcontinent. KEY WORDS: Central Indian Tectonic Zone; clockwise PT path; continental collision; metabasite  相似文献   

10.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   

11.
Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar   总被引:80,自引:20,他引:60  
We performed vapor-absent melting and crystallization experimentson two bulk compositions that model metamorphic rocks containinga single hydrous phase: a biotite gneiss [37% bio (mg-number55), 34% qtz, 27% plg (An38), 2% ilm] and a quartz amphibolite[54% hbl (mg-number 60), 24% qtz, 20% plg (An38), 2% ilm]. Experimentswere performed at 3 and 5 kbar in internally heated pressurevessels (IHPV), and at 7, 10, 125 and 15 kbar in piston cylinderapparatus (PC), from the vapor-absent solidi to (at least) thetemperature at which the hydrous mineral disappeared. Dehydration-meltingbegins at similar temperatures in both bulk compositions, rangingfrom T850C at P = 3 kbar T930C at P = 15 kbar. The hydrousmineral disappears 50C above the solidus in both systems, exceptin IHPV experiments at f(O2) above Ni–NiO, in which biotitestability extends up to atleast 80C above the solidus. At theT at which the hydrous minerals disappear the biotite gneissproduces 2–3 times more melt than the quartz amphibolite(50–60 wt% vs 20–30 wt%). In both systems, variationsin melt productivity with P are controlled by three competingfactors: (1) the positive d P/dT slopes of the solidi, (2) decreasingH2O activity with increasing P at constant H2O content, and(3) Na2O activity, which increases with P concomitantly withbreakdown of plagioclase. Melt productivities at T = 920–950Care maximized at intermediate pressures (7 kbar). The biotitegneiss produces strongly peraluminous granitic melts (SiO2>70wt%) and residual assemblages of quartz norite (P>125 kbar)or garnet pyroxenite (P>125 kbar). The quartz amphiboliteproduces strongly peraluminous granodioritic melts (SiO2>70wt%) that coexist with clinopyroxene + orthopyroxene + plagioclase+ quartz at P>10 kbar)garnet. The results of coupled meltingand crystallization experiments on the quartz amphibolite suggestthat strongly peraluminous granitoid rocks (e.g. cordierite-bearingand two-mica granites) can be derived from melting of Al-poorprotoliths. KEY WORDS: dehydration-melting; biotite gneiss; amphibolite; felsic magmas *Corresponding author  相似文献   

12.
Chromite compositions in komatiites are influenced by metamorphicprocesses, particularly above 500°C. Metamorphosed chromiteis substantially more iron rich than igneous precursors, asa result of Mg–Fe exchange with silicates and carbonates.Chromite metamorphosed to amphibolite facies is enriched inZn and Fe, and depleted in Ni, relative to lower metamorphicgrades. Relative proportions of the trivalent ions Cr3+, Al3+and Fe3+ are not greatly modified by metamorphism up to loweramphibolite facies, although minor Fe3+ depletion occurs duringtalc–carbonate alteration at low temperature. SignificantAl is lost from chromite cores above 550°C, as a resultof equilibration with fluids in equilibrium with chlorite. ElevatedZn content in chromite is restricted to rocks with low (metamorphic)Mg/Fe ratios, and is the result of introduction of Zn duringlow-temperature alteration, with further concentration and homogenizationduring prograde metamorphism. Cobalt and Mn also behave similarly,except where carbonate minerals are predominant in the metamorphicassemblage. Chromite at amphibolite facies is typically extensivelyreplaced by magnetite. This is the result of incomplete metamorphicreaction between chromite and chlorite-bearing silicate assemblages.Magnetite compositions at the inner chromite–magnetiteboundary are indicators of metamorphic grade. KEY WORDS: chromite; komatiite; spinel; metamorphism; Zn  相似文献   

13.
Quartz–calcite sandstones experienced the reaction calcite+ quartz = wollastonite + CO2 during prograde contact metamorphismat P = 1500 bars and T = 560°C. Rocks were in equilibriumduring reaction with a CO2–H2O fluid with XCO2 = 0·14.The transition from calcite-bearing, wollastonite-free to wollastonite-bearing,calcite-free rocks across the wollastonite isograd is only severalmillimeters wide. The wollastonite-forming reaction was drivenby infiltration of quartz–calcite sandstone by chemicallyreactive H2O-rich fluids, and the distribution of wollastonitedirectly images the flow paths of reactive fluids during metamorphism.The mapped distribution of wollastonite and modeling of an O-isotopeprofile across a lithologic contact indicate that the principaldirection of flow was layer-parallel, directed upward, withany cross-layer component of flow <0·1% of the layer-parallelcomponent. Fluid flow was channeled at a scale of 1–100m by pre-metamorphic dikes, thrust and strike-slip faults, foldhinges, bedding, and stratigraphic contacts. Limits on the amountof fluid, based on minimum and maximum estimates for the displacementof the wollastonite reaction front from the fluid source, are(0·7–1·9) x 105 cm3 fluid/cm2 rock. Thesharpness of the wollastonite isograd, the consistency of mineralthermobarometry, the uniform measured 18O–16O fractionationsbetween quartz and calcite, and model calculations all arguefor a close approach to local mineral–fluid equilibriumduring the wollastonite-forming reaction. KEY WORDS: contact metamorphism, fluid flow, wollastonite, oxygen isotopes, reaction front  相似文献   

14.
Peak metamorphism (800–850°C, 8–10 kbar) inthe Harts Range Meta-Igneous Complex (Harts Range, central Australia)was associated with localized partial melting by the reactionhornblende + plagioclase + quartz + H2O = garnet + clinopyroxene+ titanite + melt. In situ trace-element determinations of prograde,peak and retrograde minerals in migmatitic metabasites and associatedtonalitic melts using laser-ablation ICP–MS has allowedmonitoring of a range of partial-melting processes (melting,melt segregation and back-reaction between crystallizing meltand restitic minerals). Mass balance calculations indicate thattitanite is a major carrier of trace elements such as Ti, Nb,Ta, Sm, U and Th, and therefore may be an important accessoryphase to control the redistribution of these elements duringthe partial melting of amphibolites. Titanite preferentiallyincorporates Ta over Nb and, hence, residual titanite mightassist in the formation of melts with high Nb/Ta. The fact thatsingle minerals record different rare earth element (REE) patterns,from prograde to peak to retrograde conditions, demonstratesthat REE diffusion is not significant up to 800°C. Therefore,trace-element analysis in minerals can be a powerful tool toinvestigate high-grade metamorphic processes beyond the limitsgiven by major elements. KEY WORDS: Harts Range; laser-ablation ICP–MS; metabasites; partial melting; trace elements  相似文献   

15.
We report the results of partial melting experiments between8 and 32 kbar, on four natural amphibolites representative ofmetamorphosed Archean tholeiite (greenstone), high-alumina basalt,low-potassium tholeiite and alkali-rich basalt. For each rock,we monitor changes in the relative proportions and compositionof partial melt and coexisting residual (crystalline) phasesfrom 1000 to 1150C, within and beyond the amphibole dehydrationreaction interval. Low percentage melts coexisting with an amphiboliteor garnet amphibolite residue at 1000–1025C and 8–16kbar are highly silicic (high-K2O granitic at 5%; melting, low-Al2O3trondhjemitic at 5–10%). Greater than 20% melting is onlyachieved beyond the amphibole-out phase boundary. Silicic tointermediate composition liquids (high-Al2O3 trondhjemitic-tonalitic,granodioritic, quartz dioritic, dioritic) result from 20–40%melting between 1050 and 1100C, leaving a granulite (plagioclase+ clinopyroxene orthopyroxene olivine) residue at 8 kbarand garnet granulite to eclogite (garnet + clinopyroxene) residuesat 12–32 kbar. Still higher degrees of melting ( 40–60%)result in mafic liquids corresponding to low-MgO, high-Al2O3basaltic and basaltic andesite compositions, which coexist withgranulitic residues at 8 kbar and edogitic or garnet granulitic(garnet + clinopyroxene + plagioclase orthopyroxene) residuesat higher pressures (12–28 kbar). As much as 40% by volumehigh-Al2O3 trondhjemitic-tonalitic liquid coexists with an eclogiticresidue at 1100–1150C and 32 kbar. The experimental datasuggest that the Archean tonalite-trondhjemite-granodiorite(TTG) suite of rocks, and their Phanerozoic equivalents, thetonalite-trondhjemite-dacite suite (including ‘adakites’and other Na-rich granitoids), can be generated by 10–40%melting of partially hydrated metabasalt at pressures abovethe garnet-in phase boundary (12 kbar) and temperatures between1000 and 1100C. Anomalously hot and/or thick metabasaltic crustis implied. Although a rare occurrence along modern convergentplate margins, subductionrelated melting of young, hot oceaniccrust (e.g. ocean ridges) may have been an important (essential)element in the growth of the continental crust in the Archean,if plate tectonic processes were operative. Coupled silicicmelt generation-segregation and mafic restite disposal may alsooccur at the base of continental or primitive (sub-arc?) crust,where crustal overthickening is a consequence of underplatingand overaccretion of mafic magmas. In either setting, net growthof continental crust and crustmantle recycling may be facilitatedby relatively high degrees of melting and extreme density contrastsbetween trondhjemitictonalitic liquids and garnet-rich residues.Continuous chemical trends are apparent between the experimentalcrystalline residues, and mafic migmatites and garnet granulitexenoliths from the lower crust, although lower-crustal xenolithsin general record lower temperatures (600–900C) and pressures(5–13 kbar) than corresponding residual assemblages fromthe experiments. However, geo-thermobarometry on eclogite xenolithsin kimberlites from the subcontinental mantle indicates conditionsappropriate for melting through and beyond the amphibole reactioninterval and the granulite-eclogite transition. If these samplesrepresent ancient (eclogitized) remnants of subducted or otherwisefoundered basaltic crust, then the intervening history of theirprotoliths may in some cases include partial melting. KEY WORDS: dehydration melting; metabasalt; continental growth; crust–mantle recycling *Corresponding author. Present address: Mineral Physics Institute and Center for High Pressure Research, Department of Earth and Space Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA  相似文献   

16.
The Paran continental flood basalt province is a voluminousbimodal volcanic sequence, with <5% silicic rocks (‘rhyolites’)lying on top of the basalts, concentrated towards the SouthAtlantic margin. Petrographically, the rhyolites have an anhydrousmineralogy (plagioclase, pyroxene, Fe–Ti oxides), and.two distinct groups are defined on the basis of phenocryst abundance.The Palmas group rhyolites are almost aphyric (<5% phenocrysts),in contrast to the plagioclase-rith Chapec group rhyolites(<25% phenocrysts). The plagioclase and clinopyroxene phenocrystsin the Palmas group rhyolites are rounded and poorly preserved,and are compositionally less evolved than those in the Chapecgroup. Calculated eruption temperatures are unusually high forsilicic magmas (950–1100C), and lie within the rangeof temperatures for the associated flood basalts. Chemically,the Palmas and Chapec group rhyolites are clearly distinguishable,with the most striking feature being the higher high field strengthelements, notably Ti, in the Chapec group. This mirrors thewell-documented low- and high-Ti division of the Paran basalts,and in addition there is a geographic correlation between thelow- and high- Ti basalt and rhyolite provinces, with high-Tivolcanics predominating in the north of the Paran Basin, andlow-Ti in the south. The Chapec group have Sr and Nd isotoperatios which overlap with those of the high-Ti basalts (87Sr/86Sr1300•705–0•708), whereas the Palmas group exhibita range towards high Sr isotope ratios (87Sr/86Sr130 0•714–0•727),continuing the trend of the low-Ti basalts to more radiogenicvalues. This suggests that assimilation of radiogenic materialhas occurred. Both rhyolite groups plot away from the isotopicfields for crustal basement types beneath the Paran, thus anorigin by simple crustal melting is discounted. Based on petrographic,chemical and isotopic data, petrogenetic models for the tworhyolite groups are developed, focusing on the clear geneticlink between the Palmas rhyolites and the low-Ti basalts, andthe Chapec rhyolites and the high-Ti basalts. The Chapec rhyolitesare modelled as partial melts ( 30%) of underplated high-Tibasalts, rather than fractionates, primarily because of thetime gap between eruption of the high-Ti basalts and Chapecrhyolites. However, the Palmas rhyolites are almost coeval withthe low-Ti basalts, and are modelled as the products of open-systemfractional crystallization from these low-Ti basaltic magmas.In addition, this low-Ti suite shows a continuous trend frombasalt to rhyolite in highly incompatible elements such as Zrand Hf consistent with a liquid line of descent, whereas thehigh-Ti magmas have a substantial gap in the concentration ofthese elements between the basalts and rhyolites. Experimentaldata support the derivation of both Paran rhyolite groups frombasaltic parents with moderately low water contents. Pressurecalculations suggest shallower ponding for the Palmas magmasthan for the Chapec magma (<5 kbar vs 5–15 kbar),and the style of eruption inferred for the two groups is explosive(rheoignimbritic) for the Palmas group, and effusive (lava flows)for the Chapec group. KEY WORDS: Paran; Brazil; rhyolits; petrogenesis; geochemistry *Corresponding author  相似文献   

17.
Crystalline basement exposed in tectonic windows within theUngava Orogen records a polycyclic Archean granulite-faciesto Paleoproterozoic amphibolite-facies history. Amphibolite-faciesassemblages comprise garnet coronas around plagioclase, clinopyroxeneor cummingtonite coronas on orthopyroxene, hornblende coronason clinopyroxeneorthopyroxene, sodic rims on calcic plagioclase,and/or titanite coronas on ilmenite. Petrographic observationsand model reactions suggest that growth of coronitic garnetis closely associated with amphibolitization of twopyroxenegneisses. Calcic plagioclase constitutes a key reactant in allgarnet-producing reactions and possibly acted as a rate-controllingphase. Multi-equilibrium thermobarometric calculations showgood convergence of possible equilibria in the amphibolite-faciesrocks, indicating that coronitic textures need not imply completechemical disequilibrium. P—T determinations for the amphibolite-faciesgneisses beneath the thrust belt of Ungava Orogen are in therange 7.7–9.8 kbar and 585–723C. These values areconsistent with prograde determinations from pelitic schistswithin the thrust belt. Estimates of water activity clusterinto two populations. High aH2O values are obtained for highlystrained basement rocks adjacent to the thrust belt whereaslow aH2O values are derived for orthogneiss samples which showno thrust-related fabrics and are distal to the thrust belt. KEY WORDS: corona; high-P retrogression; multi-equilibrium thermo-barometry *Corresponding author. Telephone: (613) 995-4935. Fax: (613) 995-9273. Internet: mstonge{at}cc2smtp.emr.ca  相似文献   

18.
Low-grade Mn-rich metamorphic rocks of the Lienne syncline (westernpart of the Venn–Stavelot Massif, Belgian Ardennes) havebeen re-examined to evaluate the petrological significance ofcarpholite proper, Mn2$ Al2[Si2O6](OH)4. Metamorphic P–Tconditions of these rocks are estimated to be {small tilde}300C1–2 kbar, which is in accordance with the exclusive occurrenceof carpholite in low-P rocks such as hydrothermal environmentselsewhere. Carpholite of the Lienne syncline exclusively occursin quartz-rich segregations. Its composition is close to end-member.Thermodynamic calculations confirm that carpholite is a stablephase at low-pressure–low-temperature conditions, in contrastto ferro- and magnesiocarpholite, which are high-pressure minerals.No information is available on the high-P behaviour of carpholite.The occurrence of carpholite is partly closely associated withspessartine-bearing country rocks, or carpholite is alteredto assemblages with spessartine, sudoite, chlorite, muscoviteand paragonite. Spessartine in these rocks contains minor amountsof hydrogarnet component {(H/4)/[Si$(H/4)] = 0.03–0.06}.The presence of carpholite-spessartine assemblages in theselow-P rocks is in contrast to high-pressure metamorphic rocksfrom other areas, where parageneses such as fem/magnesiocarpholite–chloritoidor magnesiocarpholite–chlorite–kyanite occur. Theappearance of carpholite–garnet assemblages in low-P Mn-richrocks can be explained by contrasting phase relations becauseof a high Mn–Mg partition coefficient between the mineralsunder consideration. In rhodo-chrosite-bearing veins in theLienne syncline, nearly complete replacement of carpholite byspessartine and chlorite is due to the continuous reaction carpholite$ rhodochrosite $ quartz = spessartine $ chlorite $ H2O $ CO2,which defines a very low Xco, in the temperature range underconsideration. It is suggested that spessartine (possibly containingsome hydrogarnet component), during prograde metamorphism atlow pressure, becomes stable at a temperature of {small tilde}300C KEY WORDS: carpholite; spessartine; sudoite; Venn–Stavelot Massif; Ardemes *Corresponding author. Fax: x49/531/3918131. e-mail: t.theye{at}tu.bs.de  相似文献   

19.
Low-Pressure Experimental Constraints on the Evolution of Komatiites   总被引:1,自引:0,他引:1  
THY  P. 《Journal of Petrology》1995,36(6):1529-1548
Melting experiments were performed on a komatiitic basalt with17 wt% MgO from Munro Township, Ontario, at I-atm pressure andan oxygen fugacity controlled approximately to the fayalite-magnetite-quartzbuffer. The experiments showed that olivine appears at 1344±5°C,spinel at 1334±6°C plagioclase at 1185±5°C,augite at 1176±5°C and pigeonite at 1154±6°C.Compositionally, olivine varies from Fo90 to Fo74 and displaysan average KFe/MgD (ol/liq) of 0•32. The spinels are chromitesand chromian spinels with Mg/(Mg + Fe2+) ratios between 0•66and 0•;32, which show a marked correlation with meltingtemperature. The pyroxenes show an average KFe/MgD (px/liq)of 0•26, identical for augite and pigeonite. Plagiodaseranges compositionally between An82 and An72 Plotted in thepseudo-quaternary basalt phase diagram, the liquid line of descentis similar to that observed for quartz tholeiitic magmas. Therefore,the low-pressure, late-stage evolution products of komatiiteand basaltic komatiite parental magmas will chemically and mineralogicallybe ferrobasaltic quartz tholeiites. High-temperature and high-pressuremodeling suggests that the main observed compositional variationof Munro komatiites can be explained by low-pressure crystalfractionation and accumulation of olivine into komatiite liquidswith below 21•5–23•5 wt% MgO and eruptive temperaturesbelow 1435–1465°C for oxygen fugacities between thefayalite-magnetite quartz (FMQ) and iron-wiistite (IW) buffers.The maximum magnesium content of liquid komatiites, assumingequilibrium Fo94 olivine, is 27–29 wt% MgO and eruptivetemperatures are between 1515 and 1540°C. KEY WORDS: komatiites; experimental petrology; Munro Township; Ontario  相似文献   

20.
The Wrangellia terrane of North America contains a large volumeof Middle to Late Triassic oceanic flood basalts which wereemplaced on top of a preexisting island arc. Nd-, Sr-, and Pb-isotopiccompositions reflect derivation from a plume source with Nd(T)+6 to + 7, 87Sr/86Sri0•7034, and 206Pb/204Pbi19•0.Major and trace element compositions suggest the Wrangelliaflood basalts (WFB) formed through relatively small degreesof partial melting at greater depths than estimated for otheroceanic plateaux such as Ontong Java. It appears that the WFBdid not form in a rifting environment, and that preexistingarc lithosphere limited the ascent and decompression meltingof the source plume. Rocks from the preexisting arc are stronglydepleted in high field strength elements (HFSEs) relative tolarge ion lithophile elements (LILEs), but the WFB are not.Assimilation of arc lithospheric mantle or crust was thereforegenerally minor. However, some contamination by arc componentsis evident, particularly in basalts erupted in the early stagesof volcanism. Minor isotopic shifts, to lower Nd(T) and 206Pb/204Pbiand higher 87Sr/86Sri, are accompanied by shifts in trace elementratios towards more arclike signatures, e.g. low Nb/Th and Nb/La.Arc contamination is greatest in the most evolved basalts, indicatingthat assimilation was coupled with fractional crystallization.A comparison of the WFB with other continental and oceanic floodbasalts reveals that continental flood basalts generally formthrough smaller degrees of melting than oceanic flood basaltsand that the contribution of material from the crust and litho-sphericmantle is significantly greater. KEY WORDS: oceanic flood basalts; Wrangellia terrane; petrogenesis; Sr-Nd-Pb isotopes *Corroponding author  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号