首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 187 毫秒
1
1.
The pressure-sensitive equilibrium among anorthite, quartz and the Ca-tschermak component in clinopyroxene (CaAl2SiO6; CaTs), CaAl2SiOCpx6+SiOQtz2=CaAl2Si2OPl8 (SCAn) ,can be used as a geobarometer in granulites with the proper assemblage, and has been calibrated using mineral composition data from partial melting experiments of natural assemblages and from phase equilibrium experiments on the end-member CMAS system. The experimental data cover the P – T  range 4–32  kbar and 900–1400  °C. Linear least-squares regression analysis of the experimental data resulted in the following empirical expressions for pressure in terms of composition and temperature: P = 5.066 [±0.760]+ 1300 [±800] T  −ln K 276 [±16] · T  [±2.5  kbar]or P = 6.330 [±0.116]−ln K 301 [±9]· T  [±1.0  kbar] ,where K = a PlAn a CpxCaTs  .The first equation incorporates an enthalpy term, but is less accurate than the second equation, in which the enthalpy of reaction is ignored. Application of these expressions to natural and experimental equilibrium mineral assemblages demonstrates that the empirical barometers are applicable over a wide range of pressures (≥4  kbar), temperatures (≥700  °C) and bulk compositions (Mg#≥32.5).  相似文献   
2.
Vapor-Absent Melting of Tonalite at 15-32 kbar   总被引:13,自引:0,他引:13  
The behavior of igneous continental crust during subductionis modeled by means of vapor-absent partial melting experimentson a tonalite, containing equal amounts of biotite and hornblende,at pressures of 15–32 kbar. The experiments produce leucograniticmelts coexisting with garnet + omphacitic clinopyroxene + K-feldspar+ kyanite + quartz/coesite ± phengite ± zoisite.Experimental constraints and geometrical analysis of phase equilibriashow that the hydrous phases that control dehydration-meltingof tonalites in deep thickened continental crust and in theupper mantle are phengite and zoisite. The negatively slopingamphibole + quartz vapor-absent solidus characteristic of amphibolitesis largely suppressed in tonalites, because amphibole is eliminatedby water-conserving reactions that also consume K-feldspar andkyanite and produce phengite and zoisite. The temperature atwhich melt first appears in the experiments varies from <900°Cat 15 kbar, to 1000°C at 27 kbar, to <925°C at 32kbar. Moderate degrees of partial melting (20–30%) yieldresidual assemblages with mantle-like densities but which canstill contain minor amounts of hydrous phases. Partial meltingof tonalitic crust during continental subduction can thus generateincompatible element-rich residues that would be able to remainin the mantle indefinitely, acting as long-term sources of metasomaticfluids. KEY WORDS: mantle; melting; metasomatism; tonalite; UHP metamorphism  相似文献   
3.
Experimental Constraints on Hercynian Anatexis in the Iberian Massif, Spain   总被引:13,自引:4,他引:9  
We have studied experimentally the melting relationships ofthe Ollo de Sapo gneiss (OSG), an important crustal protolithfor the Iberian leucogranites, of possible volcanoclastic origin.The results of this study are compared with previously determinedPTt paths, allowing us to interpret the mechanisms of meltingand granitoid production during the Hercynian orogenic cycle.Phase relationships determined in fluid-absent experiments indicatethat the OSG is a fertile source for peraluminous leucogranites.The slope of the fluid-absent solidus is strongly controlledby the breakdown of Ms in the presence of Qtz, Pl and Kfs. Thissolidus curve has a positive slope ranging from dP/dT = 30 bar/°Cat low P (<6 kbar) to dP/dT = 70 bar/°C at higher P (6–15kbar). The relationships between the Ms vapour-absent solidusand the PTt metamorphic paths in different sectors of the Iberianmassif have two important implications: (1) melt productivityis strongly favoured at low P; (2) anatexis in the Iberian massifprobably took place by decompression associated with crustalthinning and extension. These results are in agreement withthe relationships between granite production and tectonic deformationphases observed in the Iberian massif. Our results emphasizethat anatexis is a process that is strongly controlled bothby the phase relationships of the crustal protoliths and bythe thermal structure of the continental crust. Consequently,one must be careful when assigning potential crustal protolithsto particular granite associations exclusively on the basisof geochemical comparisons. KEY WORDS: anatexis; Hercynian orogen; Iberian massif  相似文献   
4.
We present results of dehydration melting experiments [3–15kbar, 810–950C f(O2) QFM (quartz-fayalite-magetite)and Ni-NiO] on two Fe-rich mixtures of biotite (37%), plagioclaseAn38 (27%), quartz (34%) and ilmenite (2%), which differ onlyin their biotite compositions (mg-number 23 and 0.4). Dehydrationmelting of metagreywackes of constant modal composition generatesa wide range of melt fractions, melt compositions and residualassemblages, through the combined effects of pressure, Fe/Mgratio and f(O2). Crystallization of garnet is the chief controlon melting behavior, and is limited by two reactions: (1) thebreakdown of garnet + quartz to orthopyroxene + plagioclaseat low P, and (2) the oxidation of garnet to magnetite + anorthite+ quartz (enstatite), which is sensitive to both f(O2) andP. Because of these reactions, melting of Mg-rich metagreywackesis rather insensitive to f(O2) but strongly sensitive to P;the converse is true for Fe-rich metagreywackes. Garnet crystallizationrequires that plagioclase break down incongruently, liberatingalbite. This increases the Na2O content of the melts and enhancesmelt production. Thus, melting of metagreywacke in a reducingdeep-crustal environment (with garnet stable) would producemore, and more sodic, melt than would garnet-absent meltingof the same source material in a relatively oxidizing, shallow-crustalenvironment. KEY WORDS: anatexis; metasediments; gneisses; granites; garnet *Corresponding author. Telephone: 706-542-2394; fax: 706-542-2425; e-mail: alpatino{at}uga.cc.uga.edu  相似文献   
5.
Fluid-absent melting experiments on a zoisite- and phengite-bearingeclogite (omphacite, garnet, quartz, kyanite, zoisite, phengiteand rutile) were performed to constrain the melting relationsof these hydrous phases in natural assemblages, as well as themelt and mineral compositions produced by their breakdown. From1·0 to 3·2 GPa the solidus slopes positively from1·5 GPa at 850°C to 2·7 GPa at 1025°C,but bends back at higher pressures to 975°C at 3·2GPa. The melt fraction is always low and the melt compositionsalways felsic and become increasingly so with increasing pressure.The normative Ab–An–Or compositions of the initialmelts vary from tonalites at 1·0 GPa to tonalite–trondhjemitesat 1·5 GPa, adamellites at 2·1 and 2·7GPa, and to true granites at 3·2 GPa. At pressures <  相似文献   
6.
We describe a suite of metamorphic and migmatitic rocks fromthe Sierra de Comechingones (Sierras Pampeanas of Central Argentina)that include unmelted gneisses, migmatites and refractory granulites.The gneisses are aluminous greywackes metamorphosed in the amphibolitegrade and are likely to have been the protoliths for the higher-grademigmatites and granulites. Mineralogical characteristics andmajor and trace element compositions show that metatexite migmatites,diatexite migmatites and granulites are all melt-depleted rocks.The migmatites (both metatexites and diatexites) have undergoneH2O-fluxed melting and lost  相似文献   
7.
Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar   总被引:80,自引:20,他引:60  
We performed vapor-absent melting and crystallization experimentson two bulk compositions that model metamorphic rocks containinga single hydrous phase: a biotite gneiss [37% bio (mg-number55), 34% qtz, 27% plg (An38), 2% ilm] and a quartz amphibolite[54% hbl (mg-number 60), 24% qtz, 20% plg (An38), 2% ilm]. Experimentswere performed at 3 and 5 kbar in internally heated pressurevessels (IHPV), and at 7, 10, 125 and 15 kbar in piston cylinderapparatus (PC), from the vapor-absent solidi to (at least) thetemperature at which the hydrous mineral disappeared. Dehydration-meltingbegins at similar temperatures in both bulk compositions, rangingfrom T850C at P = 3 kbar T930C at P = 15 kbar. The hydrousmineral disappears 50C above the solidus in both systems, exceptin IHPV experiments at f(O2) above Ni–NiO, in which biotitestability extends up to atleast 80C above the solidus. At theT at which the hydrous minerals disappear the biotite gneissproduces 2–3 times more melt than the quartz amphibolite(50–60 wt% vs 20–30 wt%). In both systems, variationsin melt productivity with P are controlled by three competingfactors: (1) the positive d P/dT slopes of the solidi, (2) decreasingH2O activity with increasing P at constant H2O content, and(3) Na2O activity, which increases with P concomitantly withbreakdown of plagioclase. Melt productivities at T = 920–950Care maximized at intermediate pressures (7 kbar). The biotitegneiss produces strongly peraluminous granitic melts (SiO2>70wt%) and residual assemblages of quartz norite (P>125 kbar)or garnet pyroxenite (P>125 kbar). The quartz amphiboliteproduces strongly peraluminous granodioritic melts (SiO2>70wt%) that coexist with clinopyroxene + orthopyroxene + plagioclase+ quartz at P>10 kbar)garnet. The results of coupled meltingand crystallization experiments on the quartz amphibolite suggestthat strongly peraluminous granitoid rocks (e.g. cordierite-bearingand two-mica granites) can be derived from melting of Al-poorprotoliths. KEY WORDS: dehydration-melting; biotite gneiss; amphibolite; felsic magmas *Corresponding author  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号