首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

2.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

3.
The Aravalli–Delhi Mobile Belt in the northwestern partof India demonstrates how granulite enclaves and their hostgneisses can be utilized to unravel multistage metamorphic historiesof orogenic belts, using three suites of metamorphic rocks:(1) an enclave of pelitic migmatite gneiss–leptynite gneiss;(2) metamorphosed megacrystic granitoids, intrusive into theenclave; (3) host tonalite–trondhjemite–granodiorite(TTG) gneisses associated with an interlayered sequence of garnetiferousmetabasite and psammo-pelitic schist, locally migmatitic. Basedon integrated structural, petrographic, mineral compositional,geothermobarometric studies and P–T pseudosection modellingin the systems NCKFMASH and NCFMASH, we record three distincttectonothermal events: an older, medium-pressure granulite-faciesmetamorphic event (M1) in the sillimanite stability field, whichis registered only in the enclave, a younger, kyanite-gradehigh-pressure granulite-facies event (M2), common to all thethree litho-associations, and a terminal amphibolite-faciesmetamorphic overprint (M3). The high-P granulite facies eventhas a clockwise P–T loop with a well-constrained prograde,peak (M2, P 12–15 kbar, T 815°C) and retrograde (M2R,6·1 kbar, T 625°C) metamorphic history. M3 is recordedparticularly in late shear zones. When collated with availablegeochronological data, the metamorphic P–T conditionsprovide the first constraint of crustal thickening in this belt,leading to the amalgamation of two crustal blocks during a collisionalorogeny of possible Early Mesoproterozoic age. M3 reactivationis inferred to be of Grenvillian age. KEY WORDS: Northwestern India; polycyclic granulite enclave; pseudosection; high-pressure metamorphism; P–T path  相似文献   

4.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

5.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

6.
Cretaceous melange of the Cordillera de la Costa belt, north–centralVenezuela, there are knockers of eclogite, barroisite-bearingeclogite, and pelitic glaucophane schist. These occur in a metamorphicmelange matrix that locally consists of marble, serpentinite,amphibolite, actinolite schist, feldspathic schist and gneiss,graphitic schist, chloritoid schist, and garnet-bearing micaschist. The protoliths for these various rock types exhibita wide age range (Cambrian to Early Cretaceous?). Recently discoveredknockers of pelitic glaucophane schist contain Mg-glaucophane+ paragonite + kyanite + garnet + talc + graphite + rutile +quartz. The coexistence of kyanite and Mg-glaucophane suggestsminimum P 2000 MPa at T > 600°C. Eclogite knockers fromthe same outcrop contain garnet and clinopyroxene which yield500°C for cores, 700°C for rims, and P 1200 MPa. Theassemblage garnet–biotite–phengite–albitewithin schists of the melange matrix of this locality indicatesmetamorphic conditions of T = 450–520°C at P = 1800MPa. Because all lithologies in this outcrop record high-P conditions,this metamorphic melange formed before or during peak metamorphismin a mid-Cretaceous subduction zone. KEY WORDS: geothermobarometry; high-P pelitic schist; eclogite; Puerto Cabello; Venezuela  相似文献   

7.
The Southern Yenisey Range (Eastern Siberia) consists of thegranulite-facies Kanskiy complex bordered by the lower-gradeYeniseyskiy and Yukseevskiy complexes. Samples of metapeliteof the Kanskiy complex typically show characteristic garnet-formingreaction textures and near-isobaric cooling PT paths.An important new result of this study concerns the differencein shape of the PT paths from different parts of theKanskiy granulite complex: metapelites collected 8 km from theboundary with the Yeniseyskiy complex followed a linear pathwith dP/dT 0·006 kbar/°C; metapelites collected3 km from this boundary reveal a kinked PT path withan interval of burial cooling (dP/dT –0·006 kbar/°C).The difference in the shape of the PT paths is supportedby the chemical zoning of garnet studied in the second groupof samples. A mechanism of buoyant exhumation of granulite issuggested by comparison with the results of numerical modelling,which indicate that such a diversity of PT paths mayresult from a transient disturbance of the thermal structureby rapid differential movement of material from different crustallevels. To arrive at a correct tectonic interpretation, thewhole assemblage of interrelated PT paths of metamorphicrocks collected from different localities within the same complexmust be studied. KEY WORDS: crustal diapirism; exhumation; granulites; numerical modelling; PT path  相似文献   

8.
Talc-phengite, an assemblage hitherto believed to be rare, isfound in regional distribution in the Gran Paradiso area, whereit occurs in the characteristic mineral association chloritoid-talc-phengite(Si3·43·5). Talc contains up to 15 moleper cent minnesotaite, and chloritoid up to 45 mole per centof the magnesium end member. The talc-phengite stability resultsbasically from the disappearance of chlorite + quartz in rockswith low and moderate MgO/FeO ratios through the divariant reactionsfirst recognized here: Fe-Mg-Chlorite+quartz talc + garnet + H2O and Fe-Mg-chlorite + quartz talc + Chloritoid + H2O These reactions imply the disappearance of the join biotite-chloritein the presence of quartz and thus open a talc-phengite stabilityfield (±garnet or chloritoid or Mg-chlorite) which extends,with increasing P and T, toward Mg-richer compositions. Whetheror not it reaches the magnesian subsystem in the Gran Paradisoarea cannot be ascertained. However, the sporadic occurrenceof the high-pressure assemblage talc-kyanite-chloritoid 50 to70 km further northeast in the vicinity of the Monte Rosa massifwithin the same lithological unit (Zermatt-Saas Fee zone s.l.)indicates the instability of any chlorite in quartz-bearingrocks, and implies that talc-phengite must also be stable forpurely magnesian compositions in that area. This progressivestabilization of talc-phengite with increasing metamorphic gradesupports Abraham & Schreyer's (1976) hypothesis of a high-pressurefield for this assemblage, and rules out Chernosky's construction(1978) implying a low-pressure field. The following paragenetic sequence is proposed for pelitic compositionswith intermediate Mg/Fe ratios and excess quartz subjected tohigh-pressure metamorphism with maximum temperatures near 400–500°C: chlorite-illite chlorite-phengite chloritoid-talc-phengite.The absence of biotite is a compositional effect due to thehigh degree of phengite substitution in the white mica. *Present address: Institut fr Mineralogic, Ruhr-Universitt, Postfach 10 21 48, D-4630 Bochum 1, Federal Republic of Germany.  相似文献   

9.
Pelitic schists and quartzites in the Picuris Range of northernNew Mexico exhibit mineral 18O and D compositions that indicaterock-buffered isotopic exchange during metamorphism at uniformphysical conditions of T 530C and P 4 kbar. Phase assemblagesand major-element compositions among silicates and oxides areuniform within stratigraphic units, but they change abruptlyacross lithologic contacts, yielding distinctive mineral Mg/Fe2+ratios and inferred f(O2) values. Mineral compositions reflectthe pre-metamorphic compositions of individual rock units. O-and H-isotopic compositions of quartz and muscovite are alsodiscontinuous across lithologic boundaries, showing intra-layerhomogeneity and bulk-rock isotopic compositions retained fromsedimentary protoliths. Uniform 18 OQu-Ms values indicate isotopicequilibrium at peak metamorphic conditions. Sharp discontinuitiesin mineral and fluid isotopic compositions reflect limited isotopicexchange between units. The isotopic system in these units wasprobably one of rock-buffered exchange, in which the sedimentarycompositions of individual rock units exerted the dominant controlon mineral and fluid isotopic composition over short distancesin a relatively closed metamorphic system. Fluid migration duringprogressive metamorphic devolatilization in this simple systemwas probably non-pervasive, and it was probably influenced bycontrasting rock permeability. Consequently, our study suggeststhat pervasive exchange between interlayered units may be uncommonin regionally metamorphosed terrains that show weak initialgeochemical gradients. In contrast, the chemical and isotopichomogenization that attends pervasive fluid flow and high fluidfluxes may be restricted to settings characterized by extremegeochemical gradients, such as interlayered silicates and carbonates,or terrains that host plutonic hydrothermal systems. KEY WORDS: fluids; metamorphism; stable isotopes; New Mexico *Corresponding author. E-mail: jgoodgc{at}sun.cis.smu.edu.. Telephone (214) 768–4140. Fax (214) 768–2701  相似文献   

10.
Experimental Crystallization of Leucogranite Magmas   总被引:25,自引:8,他引:17  
Both crystallization and melting experiments have been carriedout on two natural, biotite-muscovite (DK) and tourmaline-muscovite(GB) High Himalayan leucogranites (HHL) at 4 kbar, logfO2 =FMQ–05, aH2O = 1–0•03, and at five temperaturesbetween 803 and 663C H2O contents of the quenched glasses wereanalysed by ion microprobe. Plagioclase and biotite are theliquidus phases for reduced melt H2O contents and H2O-rich conditions,respectively. H2O saturation limits range from 8 to 10 wt%.DK has a wider crystallization interval than GB (150 vs 80Cfor conditions close to H2O saturation), and a slightly higherH2O-saturated solidus (645 compared with 630C for GB). Tourmalinenever crystallized spontaneously from the melt. Tourmaline seedsalways reacted out to biotite in the biotite-muscovite sample,whereas they remained stable in the tourmaline-muscovite sample.Biotite is replaced by hercynite as the main ferromagnesianphase at high temperature and reduced aH2O. Muscovite crystallizationis restricted to near-solidus conditions. The compositions ofplagioclase, alkali feldspar, biotite and muscovite are givenas a function of bulk composition, temperature and aH2O. Glasscompositions are richer in normative quartz than the 4 kbarH2O-saturated Qz–Ab–Or eutectic, and become moreperaluminous and less mafic with increasing fractionation. Biotitecrystallization in peraluminous liquids is favoured by elevatedFe, Mg and Ti contents. Muscovite crystallization is not promotedunder H2O-saturated conditions. Tourmaline stability is stronglydependent on aH2O. For GB, tourmaline is present at elevatedtemperatures for intermediate values of aH2O (803 C, 0–7),but not above 650C for H2O-saturated conditions. Comparisonof the natural crystallization sequence with experiments suggestsinitial water contents between 5 and 75 wt % for the DK magma,and > 7 wt% for the GB magma. Plagioclase core compositionsgive minimum temperatures of 700C for GB and 750C for DK,consistent with an emplacement of these HHL as almost entirelyliquid bodies. The restricted occurrence of biotite in the GBgranite suggests that it reacted out during the magmatic evolution,owing to a marked change in fO2 toward more oxidizing conditions.Tourmaline leucogranites can be generated from biotite leucogranitesby fractional crystallization under conditions of increasingdegree of oxidation. KEY WORDS: leucogranite; melting experiments; crystlization experiments; Himalayas; phase relations *Corresponding author  相似文献   

11.
Detailed petrographic and geochemical data and Sr and Nd isotopecompositions of enclaves and host-granite are reported for oneof the largest strongly peraluminous cordierite-bearing intrusionsof the Hercynian Sardinia-Corsica Batholith: the San BasilioGranite. Compared with other peraluminous series, the San BasilioGranite has a ‘non-minimum melt’ composition andshows variations primarily owing to fractionation of early-crystallizedplagioclase, quartz and biotite. Crystallization age is constrainedat 305 Ma, by Rb-Sr whole-rock age [30523 Ma with (87Sr/86Sr)i= 0.711050.00041], and occurred during late Hercynian tectonicevents. Nd(305Ma) values range from –7.8 to –7.5.The San Basilio Granite contains both magmatic and metamorphicenclaves. Magmatic enclaves, similar to mafic microgranularenclaves common in calc-alkaline granitoids, are tonalitic incomposition and show a variation in silica content from 60.3to 67.7 wt % correlating with a variation in (87Sr/86 Sr) (305Ma)and Nd (305 Ma) from 0.7092 to 0.7109 and from –6.6 to–7.4, respectively. Together with petrographic and othergeochemical data, the Sr and Nd isotopic data record differentstages in a complex homogenization process of an unrelated maficmagma with a crustal melt. A process of simple mixing may accountfor the variations of nonalkali elements and, to some extent,of Sr and Nd isotopes, whereas the distribution of alkali elementsrequires diffusioncontrolled mass transfer. Petrographic andmineralogical data on metamorphic enclaves and geochemical modellingfor trace elements in granite indicate melt generation by high-degreepartial melting involving biotite breakdown of a dominantlyquartzo-feldspathic protolith at about T>750–800Cand P>6 kbar leaving a granulite facies garnet-bearing residue,followed by emplacement at 3 kbar. Nd(305Ma) values of thegranite fall within the range defined by the pre-existing metamorphicrocks but (87Sr/86Sr) (305Ma) ratios are lower, indicating involvementof at least two distinct components: a dominant crustal componentand a minor well-mixed mafic end-member. These data point toa decoupling between the Sr-Nd isotope systematics and majorand trace element compositions, suggesting that the effect ofthe mafic component was minor on granite major and trace elementconcentrations, but significant on Sr and Nd isotopes. The studyof the magmatic enclaves and the isotopic evidence demonstratethat unrelated mafic magmas, probably derived from the mantle,had a close spatial and temporal association with the productionof ‘on-minimum melt’ strongly peraluminous granites,and support the proposal that heat from the mafic magma contributedto crustal melting. KEY WORDS: cordierite-bearing granite; enclaves; felsic-mafic interaction; Sardinia-Corsica Batholith; Sr and Nd isotopes *Corresponding author.  相似文献   

12.
We report the results of partial melting experiments between8 and 32 kbar, on four natural amphibolites representative ofmetamorphosed Archean tholeiite (greenstone), high-alumina basalt,low-potassium tholeiite and alkali-rich basalt. For each rock,we monitor changes in the relative proportions and compositionof partial melt and coexisting residual (crystalline) phasesfrom 1000 to 1150C, within and beyond the amphibole dehydrationreaction interval. Low percentage melts coexisting with an amphiboliteor garnet amphibolite residue at 1000–1025C and 8–16kbar are highly silicic (high-K2O granitic at 5%; melting, low-Al2O3trondhjemitic at 5–10%). Greater than 20% melting is onlyachieved beyond the amphibole-out phase boundary. Silicic tointermediate composition liquids (high-Al2O3 trondhjemitic-tonalitic,granodioritic, quartz dioritic, dioritic) result from 20–40%melting between 1050 and 1100C, leaving a granulite (plagioclase+ clinopyroxene orthopyroxene olivine) residue at 8 kbarand garnet granulite to eclogite (garnet + clinopyroxene) residuesat 12–32 kbar. Still higher degrees of melting ( 40–60%)result in mafic liquids corresponding to low-MgO, high-Al2O3basaltic and basaltic andesite compositions, which coexist withgranulitic residues at 8 kbar and edogitic or garnet granulitic(garnet + clinopyroxene + plagioclase orthopyroxene) residuesat higher pressures (12–28 kbar). As much as 40% by volumehigh-Al2O3 trondhjemitic-tonalitic liquid coexists with an eclogiticresidue at 1100–1150C and 32 kbar. The experimental datasuggest that the Archean tonalite-trondhjemite-granodiorite(TTG) suite of rocks, and their Phanerozoic equivalents, thetonalite-trondhjemite-dacite suite (including ‘adakites’and other Na-rich granitoids), can be generated by 10–40%melting of partially hydrated metabasalt at pressures abovethe garnet-in phase boundary (12 kbar) and temperatures between1000 and 1100C. Anomalously hot and/or thick metabasaltic crustis implied. Although a rare occurrence along modern convergentplate margins, subductionrelated melting of young, hot oceaniccrust (e.g. ocean ridges) may have been an important (essential)element in the growth of the continental crust in the Archean,if plate tectonic processes were operative. Coupled silicicmelt generation-segregation and mafic restite disposal may alsooccur at the base of continental or primitive (sub-arc?) crust,where crustal overthickening is a consequence of underplatingand overaccretion of mafic magmas. In either setting, net growthof continental crust and crustmantle recycling may be facilitatedby relatively high degrees of melting and extreme density contrastsbetween trondhjemitictonalitic liquids and garnet-rich residues.Continuous chemical trends are apparent between the experimentalcrystalline residues, and mafic migmatites and garnet granulitexenoliths from the lower crust, although lower-crustal xenolithsin general record lower temperatures (600–900C) and pressures(5–13 kbar) than corresponding residual assemblages fromthe experiments. However, geo-thermobarometry on eclogite xenolithsin kimberlites from the subcontinental mantle indicates conditionsappropriate for melting through and beyond the amphibole reactioninterval and the granulite-eclogite transition. If these samplesrepresent ancient (eclogitized) remnants of subducted or otherwisefoundered basaltic crust, then the intervening history of theirprotoliths may in some cases include partial melting. KEY WORDS: dehydration melting; metabasalt; continental growth; crust–mantle recycling *Corresponding author. Present address: Mineral Physics Institute and Center for High Pressure Research, Department of Earth and Space Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA  相似文献   

13.
At Kabbaldurga, infiltration of carbonic fluids along a systemof ductile shears and foliation planes has led to partial transformationof Archaean grey biotite–hornblende gneiss to coarse-grainedmassive charnockite at about 2.5 b.y. ago. The dehydration ofthe gneiss assemblage was induced by a marked metasomatic changeof the reacting system from granodioritic to granitic, and obviouslytook place under conditions of an open system at 700–750?C and 5–7 kb. Extensive replacement of plagioclase (An16–30)by K-feldspar through Na, Ca–K exchange reactions withthe ascending carbonic fluids led to strong enrichment in K,Rb, Ba, and SiO2, and to a depletion in Ca. Progressive dissolutionof hornblende, biotite, magnetite, and the accessory mineralsapatite and zircon resulted in a marked depletion in Fe, Mg,Ti, Zn, V, P, and Zr. Most important is the recognition of REEmobility: with advancing charnockitization, the moderately fractionatedREE distribution patterns of the grey gneisses (LaN270; LaN/YbN= 5–20; EuN27; Eu/Eu* = 0.6–0.3) give way to stronglyfractionated REE patterns with a positive Eu-anomaly (LaN200;LaN/YbN = 20–80; EuN22; Eu/Eu* = 0.6–1.8). The systematicdepletion especially in the HREE is due to the progressive dissolutionof zircon, apatite (and monazite), which strongly concentratethe REE. Stable isotope data (18O of 6.9–8.0 per mille for gneissesand charnockites; 13C of –8.5 and –6.5 per millefor late carbonate) indicate a magmatogenic source for the carbonicfluids. In contrast to the currently favoured derivation ofcarbonic fluids by decarbonation of the upper mantle or degassingof underplated basaltic intrusions, it is discussed here thatabundant fluid inclusions in lower crustal charnockites providedan extensive reservoir of ‘fossil’ carbonic fluids.Shear deformation has tapped this reservoir and generated thechannel-ways for fluid ascent. Charnockitization of the Kabbaldurgatypethus appears to be a metasomatic process which is tectonicallycontrolled and restricted to the crustal level of the amphiboliteto granulite transition.  相似文献   

14.
The granulite complex at Anakapalle, which was metamorphosedat 1000 Ma, comprises orthopyroxene granulites, leptynite, khondalite,mafic granulites, calc-silicate rock, spinel granulites, andtwo types of sapphirine granulites—one quartz-bearingand migmatitic and the other devoid of quartz and massive. Reactiontextures in conjunction with mineral-chemical data suggest severalcontinuous and discontinuous equilibria in these rocks. In orthopyroxenegranulites, dehydration-melting of biotite in the presence ofquartz occurred according to the reaction biotite+quartz= garnet (Py37)+K-feldspar+orthopyroxene + liquid. Later, this garnet broke down by the reaction garnet (Py37)+quartz= orthopyroxene + plagioclase. Subsequently, coronal garnet (Py30) and quartz were producedby the same reaction but proceeding in the opposite direction.In spinel granulites, garnet (Py42) and sillimanite were producedby the breakdown of spinel in the presence of quartz. In thetwo types of sapphirine granulites, garnet with variable pyropecontent broke down according to the reaction garnet = sapphirine + sillimanite + orthopyroxene. The highest pyrope content (59 mol %) was noted in garnets fromquartz-free sapphirine granulites compared with the quartz-bearingone (53 mol % pyrope). The calculated positions of the mineralreactions and diserete P-T points obtained by thermobarometrydefine a retrograde P-T trajectory during which a steep decompressionof 1.5 kbar from P-Tmax of 8 kbar and 900C was followed bynear-isobaric cooling of 300C. During this decompression, garnetwith variable pyrope contents in different rocks broke downon intersection with various divariant equilibria. Near-isobariccooling resulted in the formation of coronal garnet around second-generationorthopyroxene and plagioclase replacing earlier porphyroblasticgarnet in orthopyroxene granulites. It has been argued thatthe deduced P-T trajectory originated in an extensional regimeinvolving either a crust of near-normal thickness of a slightlyoverthickened crust owing to magmatic underaccretion.  相似文献   

15.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

16.
On the pseudobinary join CaO:3MgO:Al2O3:2SiO2:xH2O–CaO:1.25MgO:2.75 Al2O3: 0.25SiO2:xH2O clintonite mixed crystals Ca(Mg1+ xAl2 – x) (Al4 – xSixO10)(OH)2 with x rangingfrom 0.6 to 1.4 occur in the temperature range 600–830?C, 2 kb fluid pressure. On the MgSirich side clintonites coexistwith chlorite, forsterite, diopside, and calcite (due to smallamounts of CO2 in the gas phase) and, at lower temperatures,also with idocrase, hydrogrossularite, and aluminous serpentine.Decomposition of clintonite over a divariant temperature rangeoccurs above 830 ?C, 2 kb; clintonite-free subsolidus assemblagescomprising three or four solid phases are formed in the temperatureranges 890 ?–1120 ?C. The subsolidus assemblages can berepresented in a polyhedron defined by the corners forsterite,diopside, melilite, spinel, anorthite, corundum, and calciumdialuminate. Above 1120 ?C partial melting occurs. The upper thermal stability limits of three selected compositionshave been reversed in the P-T range 0.5–20 kb and 730–1050 ?C, respectively. Below some 4 kb breakdown is dueto the divariant reactions: (1)Ca(Mg2.25Al0.75)(Al2.75)(Si1.25O10)(OH)2 spinel+diopsidess+forsterite+clintonitess+vapor, (2)Ca(Mg2Al)(Al3SiO10)(OH)2 spinelx002B;melilitess+anorthite+clintonitess+vapor, (3)Ca(Mg1.75Al1.25)(Al3.25)(Si0.75O10)(OH)2 spinel+melilitess+corundum+clintonitess+vapor, At the terminations of the divariant temperature ranges (1)melilitess, (2) diopsidess, and (3) anorthite enter those assemblagesand clintonitess disappears completely. The reactions can berepresented by the following equations (1)log,H2O = 10.2879–8113/T+0.0856(P–1)/T, (2)log = 9.5852–7325/T+0.0794(P–1)/T, (3)log = 7.8358–5250/T+0.077(P–1)/T, with P expressed in bars and Tin ?K. Above 4 kb the upper thermalstability limit of clintonite is defined by incongruent melting,with grossularite participating at pressures above 9 kb. Thesecurves exhibit a very steep, probably even negative slope inthe P-T diagram. There is a close correspondence between natural clintonite-bearingassemblages and thosefound experimentally. The rarity of clintonitein nature is not due to special conditions of pressure and temperaturebut rather due to special bulk compositions of the rocks.  相似文献   

17.
The water-pressure temperature stability field of yoderite,ideally Mg2Al5.6Fe3 + 0.4Si4O18(OH)2, was determined at highoxygen fugacities by high-pressure bracketing runs on eightpossible breakdown reactions involving the phases chlorite,kyanite, talc, staurolite, pyrope, enstatite, boron-free kornerupine,cordierite, quartz, and invariably an excess of hematite. Yoderitewas found to be stable over the surprisingly large PT rangefrom 6 to 25 kbar water pressure and 590 to 795 C. It is thusa high-pressure mineral covering the upper amphibolite and portionsof the eclogite facies. In the presence of quartz its upperpressure stability is reduced to some 15 kbar, and its uppertemperature stability to 715 C. Two of the yoderite-producingreactions are anomalous as they show dehydration in the directiontowards lower temperatures. Importantly, this is also true forthe reaction kyanite + talc + hematite+H2O=yoderite+quartz whichis responsible for the only yoderite occurrence in nature atMautia Hill, Tanzania. Preliminary thermodynamic calculationsindicate that—owing to this unusual dehydration behavior—thestability field for the assemblage yoderite+quartz disappearsfor water activities lower than 0.5. The rarity of yoderitein natural rocks, which is in contrast to its large PT stabilityfield, must be explained on chemical rather than on physicalgrounds. Yoderite can only occur in whiteschist-type bulk compositionsrich in MgO, Al2O3, SiO2, and containing some iron, but poorin alkalis and CaO. Oxygen fugacities must be unusually highto keep Fe trivalent, and—at least for rocks with excessquartz—the water activity must be high as well. In anenvironment of this kind, yoderite formation in the Mautia Hillwhiteschist may have occurred even at constant total pressureand temperature simply by an influx of hydrous fluid duringthe late stages of metamorphism under amphibolite facies conditions.  相似文献   

18.
Equilibrium crystallization experiments at atmospheric pressureand over a range of oxygen fugacity (fO2) have been carriedout on a ferro-basaltic composition similar to liquids proposedto have been parental to much of the exposed portion of theSkaergaard intrusion. Before Fe-Ti oxide saturation the liquidline of descent is little affected by fO2. However, the appearancetemperatures of the magnetite-ulvspinel solid solution (Mt)and the ilmenite-haematite solid solution (Ilm) depend stronglyon fO2. Above the fayalite-magnetite-quartz (FMQ) buffer Mtis the first oxide phase to appear on the liquidus, but belowthe FMQ buffer Ilm is the first oxide to crystallize. The appearancetemperature of Mt is 1100C at FMQ and the Mt liquidus slopeis 30C/log fO2 unit between FMQ–;2 and FMQJ+1. The Ilmliquidus is at 1100C between FMQ and FMQ–2, but movesto lower temperature at higher fO2 where Mt is the first oxidephase. The results indicate that the ferric iron content ofMt-saturated melts varies linearly with inverse temperature,and that Ilm saturation is closely related to melt TiO2 content.Mt saturation produces an immediate enrichment of SiO2 and depletionin FeO* in the melt phase, whereas Ilm saturation produces similarenrichment in SiO2, but inn enrichment may continue for 10Cbelow the ilmenite liquidus. The experimental liquids reacha maximum of 18 wt% FeO*, at 48 wt% SiO2 for ilmenite-saturatedmelts at low fO2, more differentiated melts having lower ironand higher silica. Cotectic proportions, derived from mass balancecalculations, are in good agreement with data from natural samplesand other experimental studies. Olivine resorption is inferredat all fO2, with the onset of resorption occurring 10C higherthan the appearance of magnetite. The effect of fO2 on silicatemineral compositions, and partitioning of elements between coexistingmineral-melt pairs, is small. Thermodynamic considerations suggestthat variations of Fe-Mg partitioning between the iron-richolivines, pyroxenes and melts produced in this study may beexplained by known non-idealities of Fe-Mg mixing in the crystallinephases, rather than nonidealities in the coexisting melts. Theseexperiments also provide insights into many features commonto natural tholeiitic series of volcanic and plutonic rocks,and provide experimental data required for modelling of fractionalcrystallization and crystallization closed to oxygen, processeswhich are not easily investigated experimentally. KEY WORDS: ferro-basalt; Fe-Ti oxides; oxygen fugacity; Skaergaard intrusion; iron enrichment *Corresponding author. Present address: Bayerisches Geoinstitut, Univerritt Bayreuth, D-95440 Bayreuth, Germany  相似文献   

19.
The Marum ophiolite complex in northern Papua New Guinea includesa thick (3–4 km) sequence of ultramafic and mafic cumulates,which are layered on a gross scale from dunite at the base upwardsthrough wehrlite, lherzolite, plagioclase lherzolite, pyroxenite,olivine norite-gabbro and norite-gabbro to anorthositic gabbroand ferrogabbro at the top. Igneous layering and structures,and cumulus textures indicate an origin by magmatic crystallizationin a large magma chamber(s) from magma(s) of evolving composition.Most rocks however show textural and mineralogical evidenceof subsolidus re-equilibration. The cumulate sequence is olivine and chrome spinel followedby clinopyroxene, orthopyroxene and plagioclase, and the layeredsequence is similar to that of the Troodos and Papuan ophiolites.These sequences differ from ophiolites such as Vourinos by thepresence of cumulus magnesian orthopyroxene, and are not consistentwith accumulation of low pressure liquidus phases of mid-oceanridge-type olivine tholeiite basalts. The cumulus phases show cryptic variation from Mg- and Ca-richearly cumulates to lower temperature end-members, e.g. olivineMg93–78, plagioclase An94–63. Co-existing pyroxenesdefine a high temperature solidus with a narrower miscibilitygap than that of pyroxenes from stratiform intrusions. Re-equilibratedpyroxene pairs define a low-temperature, subsolidus solvus.Various geothermometers and geobarometers, together with thermodynamiccalculations involving silica buffers, suggest the pyroxene-bearingcumulates crystallized at 1200 °C and 1–2 kb pressureunder low fO2. The underlying dunites and chromitites crystallizedat higher temperature, 1300–1350 °C. The bulk of thecumulates have re-equilibrated under subsolidus conditions:co-existing pyroxenes record equilibration temperatures of 850–900°C whereas olivine-spinel and magnetite-ilmenite pairs indicatefinal equilibration at very low temperatures (600 °C). Magmas parental to the cumulate sequence are considered to havebeen of magnesian olivine-poor tholeiite composition (>50per cent SiO2, 15 per cent MgO, 100 Mg/(Mg + Fe2+) 78) richin Ni and Cr, and poor in TiO2 and alkalies. Fractionated examplesof this magma type occur at a number of other ophiolites withsimilar cumulate sequences. Experimental studies show that suchlavas may result from ial melting of depleted mantle lherzoliteat shallow depth. The tectonic environment in which the complexformed might have been either a mid-ocean ridge or a back-arebasin.  相似文献   

20.
The Laki eruption involved 10 fissure-opening episodes thatproduced 15·1 km3 of homogeneous quartz-tholeiite magma.This study focuses on the texture and chemistry of samples fromthe first five episodes, the most productive period of the eruption.The samples comprise pumiceous tephra clasts from early falloutdeposits and lava surface samples from fire-fountaining andcone-building activity. The fluid lava core was periodicallyexposed at the surface upon lobe breakout, and its characteristicsare preserved in glassy selvages from the lava surface. In allsamples, plagioclase is the dominant mineral phase, followedby clinopyroxene and then olivine. Samples contain <7 vol.% of euhedral phenocrysts (>100 µm) with primitivecores [An* = 100 x Ca/(Ca + Na) >70; Fo > 75; En* = 100x Mg/(Mg + Fe) >78] and more evolved rims, and >10 vol.% of skeletal, densely distributed groundmass crystals (<100µm), which are similar in composition to phenocryst rims(tephra: An*58–67, Fo72–78, En*72–81; lava:An*49–70, Fo63–78, En57–78). Tephra and lavahave distinct vesicularity (tephra: >40 vol. %; lava: <40vol. %), groundmass crystal content (tephra: <10 vol. %;lava: 20–30 vol. %), and matrix glass composition (tephra:5·4–5·6 wt % MgO; lava: 4·3–5·0wt % MgO). Whole-rock and matrix glass compositions define atrend consistent with liquid evolution during in situ crystallizationof groundmass phases. Plagioclase–glass and olivine–glassthermometers place the formation of phenocryst cores at 10 kmdepth in a melt with 1 wt % H2O, at near-liquidus temperatures(1150°C). Phenocryst rims and groundmass crystals formedclose to the surface, at 10–40°C melt undercoolingand in an 10–20°C cooler drier magma (0–0·1wt % H2O), causing an 10 mol % drop in An content in plagioclase.The shape, internal zoning and number density of groundmasscrystals indicate that they formed under supersaturated conditions.Based on this information, we propose that degassing duringascent had a major role in rapidly undercooling the melt, promptingintensive shallow groundmass crystallization that affected themagma and lava rheology. Petrological and textural differencesbetween tephra and lava reflect variations in the rates of magmaascent and the timing of surface quenching during each eruptiveepisode. That in turn affected the time available for crystallizationand subsequent re-equilibration of the melt to surface (degassed)conditions. During the explosive phases, the rates of magmaascent were high enough to inhibit crystallization, yieldingcrystal-poor tephra. In contrast, pervasive groundmass crystallizationoccurred in the lava, increasing its yield strength and causinga thick rubbly layer to form during flow emplacement. Lava selvagescollected across the flow-field have strikingly homogeneousglass compositions, demonstrating the high thermal efficiencyof fluid lava transport. Cooling is estimated as 0·3°C/km,showing that rubbly surfaced flows can be as thermally efficientas tube-fed phoehoe lavas. KEY WORDS: lava; crystallization; basalt; cooling rate; pressure; geobarometry; PT conditions; plagioclase; degassing; Laki, Iceland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号