首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

2.
Sapphirine granulite occurring as lenses in charnockite at Anantagiri,Eastern Ghat, India, displays an array of minerals which developedunder different P-T-X conditions. Reaction textures in conjunctionwith mineral chemical data attest to several Fe-Mg continuousreactions, such as
  1. spinel+rutile+quartz+MgFe–1=sapphirine+ilmenite
  2. cordierite=sapphirine+quartz+MgFe–1
  3. sapphirine+quartz=orthopyroxene+sillimanite+MgFe–1
  4. orthopyroxene+sapphirine+quartz=garnet+MgFe–1
  5. orthopyroxene+sillimanite=garnet+quartz+MgFe–1
  6. orthopyroxene+sillimanite+quartz+MgFe–1=cordierite.
Calculated positions of the reaction curves in P-T space, togetherwith discrete P-T points obtained through geothermobarometryin sapphirine granulite and the closely associated charnockiteand mafic granulite, define an anticlockwise P-T trajectory.This comprises a high-T/P prograde metamorphic path which culminatedin a pressure regime of 8?3 kb above 950?C, a nearly isobariccooling (IBC) path (from 950?C, 8?3 kb, to 675?C, 7?5kb) anda terminal decompressive path (from 7?5 to 4?5 kb). Spinel,quartz, high-Mg cordierite, and sapphirine were stabilized duringthe prograde high-T/P metamorphism, followed by the developmentof orthopyroxene, sillimanite, and garnet during the IBC. Retrogradelow-Mg cordierite appeared as a consequence of decompressionin the sapphirine granulite. Deformational structures, reportedfrom the Eastern Ghat granulites, and the available geochronologicaldata indicate that prograde metamorphism could have occurredat 30001?00 and 2500?100 Ma during a compressive orogeny thatwas associated with high heat influx through mafic magmatism. IBC ensued from Pmax and was thus a direct consequence of progrademetamorphism. However, in the absence of sufficient study onthe spatial variation in P-T paths and the strain historiesin relation to time, the linkage between IBC and isothermaldecompression (ITD) has remained obscure. A prolonged IBC followedby ITD could be the consequence of one extensional mechanismwhich had an insufficient acceleration at the early stage, orITD separately could be caused by an unrelated extensional tectonism.The complex cooled nearly isobarically from 2500 Ma. It sufferedrapid decompression accompanied by anorthosite and alkalinemagmatism at 1400–1000 Ma.  相似文献   

3.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

4.
Mineral chemistries and textures are described from a suiteof sapphirine-bearing granulites from the Gruf Complex of theItalian Central Alps. The granulites contain combinations ofgarnet, orthopyroxene, sapphirine, sillimanite, cordierite,biotite, quartz, spinel, corundum, staurolite, plagioclase,K-feldspar, ilmenite and rutile, in assemblages with low (usuallynegative) variance. They are outstanding in that they preservea textural and chemical record of a protracted metamorphic evolution. Reaction textures are common and include: (i) pseudomorphs (e.g.of sillimanite after kyanite); (ii) relatively coarse-grainedmonomineralic reaction rims (e.g. of cordierite between sapphirineand quartz); (iii) fine-grained symplectitic coronas (e.g. oforthopyroxene + sapphirine round garnet); (iv) inclusions, ingarnet cores, of minerals (e.g. staurolite) not found elsewherein the rocks. Detailed microprobe study has revealed large chemical variationswithin each phase. Different textural types of each phase havedifferent compositions, and strong zoning is preserved in garnet(Mg/(Mg + Fe) from 0.30 to 0.61) and coarse sapphirine. Inclusionpopulations in garnet correlate with host composition. The textural and chemical features are interpreted in termsof successive equilibrium assemblages and reactions. Metamorphicconditions operative at each stage in the evolution are calculatedusing published geothermometers and geobarometers as well asthermodynamically calibrated MAS and FASH equilibria. The resultsare used to construct a P—T-time path for the sapphirine-granulites,which can be summarized as follows: (i) Increasing T at high P (>7 kb). Partial melting. (ii) A maximum T of 830 ?C attained at 10 kb. (iii) Almost isothermal decompression, reaching 750 ?C at 5kb, under conditions of low µH2O. (iv) Further cooling, and decompression. Localized hydration.Rocks exposed. The P—T-time path is interpreted as the product of a singlemetamorphic cycle (the tertiary ‘Lepontine’ event)and is extrapolated to the Gruf Complex as a whole. When combinedwith published geochronological data, the results indicate anaverage uplift rate in excess of 2 mm/yr for the Gruf Complexbetween 38 and 30 Ma ago. An in situ partial melting origin for the sapphirine-granulitesis favoured. Extraction of an iron-rich granitic liquid froma normal pelitic palaeosome could generate a refractory residuewith the required Mg, Al-rich composition. The change in bulksolid composition during partial melting is thought to accountfor the extraordinarity strong zoning in the garnets.  相似文献   

5.
The pressure-temperature-compositional (P-T-X) dependence ofthe solubility of Al2O3 in orthopyroxene coexisting with garnethas been experimentally determined in the P-T range 5–30kilobars and 800–1200 ?C in the system FeO—MgO—Al2O3—SiO2(FMAS). These results have been extended into the CaO—FeO—MgO—Al2O3—SiO2(CFMAS) system in a further set of experiments designed to determinethe effect of the calcium content of garnet on the Al2O3 contentsof coexisting orthopyroxene at near-constant Mg/(Mg + Fe). Startingmaterials were mainly glasses of differing Mg/(Mg + Fe) or Ca/(Ca+ Mg + Fe) values, seeded with garnet and orthopyroxene of knowncomposition, but mineral mixes were also used to demonstratereversible equilibrium. Experiments were performed in a piston-cylinderapparatus using a talc/pyrex medium. Measured orthopyroxene and corrected garnet compositions werefitted by multiple and stepwise regression techniques to anequilibrium relation in the FMAS system, yielding best-fit,model-dependent parameters Goy= –5436 + 2.45T cal mol–1,and WM1FeA1= –920 cal mol–1. The volume change ofreaction, Vo, the entropy change, So970 and the enthalpy changeHo1,970, were calculated from the MAS system data of Perkinset al. (1981) and available heat capacity data for the phases.Data from CFMAS experiments were fitted to an expanded equilibriumrelation to give an estimate of the term WgaCaMg = 1900 ? 400cal/mole cation, using the other parametric values already obtainedin FMAS. The experimental data allow the development of a arnet-orthopyroxenegeobarometer applicable in FMAS and CFMAS: where This geobarometer is applicable to both pelitic and metabasicgranulites containing garnet orthopyroxene, and to garnet peridoditeand garnet pyroxenite assemblages found as xenoliths in diatremesor in peridotite massifs. It is limited, however, by the necessityof an independent temperature estimate, by errors associatedwith analysis of low Al2O3 contents in orthopyroxenes in high-pressureor low-temperature parageneses, and by uncertainties in thecomposition of garnet in equilibrium with orthopyroxene. Ananalysis of errors associated with this formulation of the geobarometersuggests that it is subject to great uncertainty at low pressuresand for Fe-rich compositions. The results of application ofthis geobarometer to natural assemblages are presented in acompanion paper.  相似文献   

6.
ULIANOV  A.; KALT  A. 《Journal of Petrology》2006,47(5):901-927
Basanites of the Chyulu Hills (Kenya Rift) contain mafic Mg–Aland Ca–Al granulite xenoliths. Their protoliths are interpretedas troctolitic cumulates; however, the original mineral assemblageswere almost completely transformed by subsolidus reactions.Mg–Al granulites contain the minerals spinel, sapphirine,sillimanite, plagioclase, corundum, clinopyroxene, orthopyroxeneand garnet, whereas Ca–Al granulites are characterizedby hibonite, spinel, sapphirine, mullite, sillimanite, plagioclase,quartz, clinopyroxene, corundum, and garnet. In the Mg–Algranulites, the first generation of orthopyroxene and some spinelmay be of igneous origin. In the Ca–Al granulites, hibonite(and possibly some spinel) are the earliest, possibly igneous,minerals in the crystallization sequence. Most pyroxene, spineland corundum in Mg–Al and Ca–Al granulites formedby subsolidus reactions. The qualitative PT path derivedfrom metamorphic reactions corresponds to subsolidus cooling,probably accompanied, or followed by, compression. Final equilibrationwas achieved at T 600–740°C and P <8 kbar, inthe stability field of sillimanite. The early coexistence ofcorundum and pyroxenes (± spinel), as well as the associationof sillimanite and sapphirine with clinopyroxene and the presenceof hibonite, makes both types of granulite rare. The Ca–Alhibonite-bearing granulites are unique. Both types enlarge thespectrum of known Ca–Al–Mg-rich granulites worldwide. KEY WORDS: granulite xenoliths; corundum; sapphirine; hibonite; Kenya Rift  相似文献   

7.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

8.
Integrated metamorphic and geochronological data place new constraintson the metamorphic evolution of a Neoproterozoic orogen in eastAntarctica. Granulite-facies rocks from a 150 km stretch ofthe Kemp Land coast reflect peak conditions involving T 870–990°Cat P 7·4–10 kbar, with pressure increasing westwardtowards an Archaean craton. Electron microprobe-derived (Th+ U)–Pb monazite ages from metapelitic assemblages indicatethat the major mineral textures in these rocks developed duringthe c. 940 Ma Rayner Orogeny. Complex compositional zoning inmonazite suggests high-T recrystallization over c. 25 Myr. Diversityin metapelitic reaction textures reflects silica and ferromagnesiancontent: Si-saturated Fe-rich metapelites contain garnet thatis partially pseudomorphed by biotite and sillimanite, whereasSi-saturated Mg-rich metapelites and Si-undersaturated metapeliticpods have reaction microstructures involving cordierite enclosingorthopyroxene, garnet and/or sapphirine, cordierite + sapphirinesymplectites around sillimanite and coarse-grained orthopyroxene+ corundum separated by sapphirine coronae. Interpretationsbased on PT pseudosections provide integrated bulk-rockconstraints and indicate a clockwise PTt pathcharacterized by a post-peak PT trajectory with dP/dT 15–20 bar/ °C. This moderately sloped decompressive-coolingPT path is in contrast to near-isothermal decompressionPT paths commonly cited for this region of the RaynerComplex, with implications for the post-collisional tectonicresponse of the mid- to lower crust within this orogenic belt. KEY WORDS: electron microprobe monazite dating; granulite facies; Rayner Complex; sapphirine; THERMOCALCMinerals abbreviations: q, quartz; g, garnet; sill, sillimanite; ky, kyanite; opx, orthopyroxene; cd, cordierite; ksp, alkali feldspar; pl, plagioclase; bi, biotite; sp, spinel; ilm, ilmenite; mt, magnetite; ru, rutile; sa, sapphirine; cor, corundum; osm, osumilite; liq, silicate melt; mnz, monazite  相似文献   

9.
Talc-phengite, an assemblage hitherto believed to be rare, isfound in regional distribution in the Gran Paradiso area, whereit occurs in the characteristic mineral association chloritoid-talc-phengite(Si3·43·5). Talc contains up to 15 moleper cent minnesotaite, and chloritoid up to 45 mole per centof the magnesium end member. The talc-phengite stability resultsbasically from the disappearance of chlorite + quartz in rockswith low and moderate MgO/FeO ratios through the divariant reactionsfirst recognized here: Fe-Mg-Chlorite+quartz talc + garnet + H2O and Fe-Mg-chlorite + quartz talc + Chloritoid + H2O These reactions imply the disappearance of the join biotite-chloritein the presence of quartz and thus open a talc-phengite stabilityfield (±garnet or chloritoid or Mg-chlorite) which extends,with increasing P and T, toward Mg-richer compositions. Whetheror not it reaches the magnesian subsystem in the Gran Paradisoarea cannot be ascertained. However, the sporadic occurrenceof the high-pressure assemblage talc-kyanite-chloritoid 50 to70 km further northeast in the vicinity of the Monte Rosa massifwithin the same lithological unit (Zermatt-Saas Fee zone s.l.)indicates the instability of any chlorite in quartz-bearingrocks, and implies that talc-phengite must also be stable forpurely magnesian compositions in that area. This progressivestabilization of talc-phengite with increasing metamorphic gradesupports Abraham & Schreyer's (1976) hypothesis of a high-pressurefield for this assemblage, and rules out Chernosky's construction(1978) implying a low-pressure field. The following paragenetic sequence is proposed for pelitic compositionswith intermediate Mg/Fe ratios and excess quartz subjected tohigh-pressure metamorphism with maximum temperatures near 400–500°C: chlorite-illite chlorite-phengite chloritoid-talc-phengite.The absence of biotite is a compositional effect due to thehigh degree of phengite substitution in the white mica. *Present address: Institut fr Mineralogic, Ruhr-Universitt, Postfach 10 21 48, D-4630 Bochum 1, Federal Republic of Germany.  相似文献   

10.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

11.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   

12.
Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar   总被引:80,自引:20,他引:60  
We performed vapor-absent melting and crystallization experimentson two bulk compositions that model metamorphic rocks containinga single hydrous phase: a biotite gneiss [37% bio (mg-number55), 34% qtz, 27% plg (An38), 2% ilm] and a quartz amphibolite[54% hbl (mg-number 60), 24% qtz, 20% plg (An38), 2% ilm]. Experimentswere performed at 3 and 5 kbar in internally heated pressurevessels (IHPV), and at 7, 10, 125 and 15 kbar in piston cylinderapparatus (PC), from the vapor-absent solidi to (at least) thetemperature at which the hydrous mineral disappeared. Dehydration-meltingbegins at similar temperatures in both bulk compositions, rangingfrom T850C at P = 3 kbar T930C at P = 15 kbar. The hydrousmineral disappears 50C above the solidus in both systems, exceptin IHPV experiments at f(O2) above Ni–NiO, in which biotitestability extends up to atleast 80C above the solidus. At theT at which the hydrous minerals disappear the biotite gneissproduces 2–3 times more melt than the quartz amphibolite(50–60 wt% vs 20–30 wt%). In both systems, variationsin melt productivity with P are controlled by three competingfactors: (1) the positive d P/dT slopes of the solidi, (2) decreasingH2O activity with increasing P at constant H2O content, and(3) Na2O activity, which increases with P concomitantly withbreakdown of plagioclase. Melt productivities at T = 920–950Care maximized at intermediate pressures (7 kbar). The biotitegneiss produces strongly peraluminous granitic melts (SiO2>70wt%) and residual assemblages of quartz norite (P>125 kbar)or garnet pyroxenite (P>125 kbar). The quartz amphiboliteproduces strongly peraluminous granodioritic melts (SiO2>70wt%) that coexist with clinopyroxene + orthopyroxene + plagioclase+ quartz at P>10 kbar)garnet. The results of coupled meltingand crystallization experiments on the quartz amphibolite suggestthat strongly peraluminous granitoid rocks (e.g. cordierite-bearingand two-mica granites) can be derived from melting of Al-poorprotoliths. KEY WORDS: dehydration-melting; biotite gneiss; amphibolite; felsic magmas *Corresponding author  相似文献   

13.
Textural evidence, thermobarometry, and geochronology were usedto constrain the pressure-temperature-time (P—T—t)history of the southern portion of the Britt domain in the CentralGneiss Belt, Ontario Grenville Province. Typical metapeliticassemblages are quartz+plagioclase+ biotite + garnet + kyanite alkali feldspar sillimanite rutile ilmenite staurolite gahnite muscovite. Metatonalitic assemblages have quartz+ plagioclase + garnet biotite + hornblende + rutile + ilmenite.Metagabbroic rocks contain plagioclase + garnet + clinopyroxene+ biotite + ilmenite hornblende rutile quartz. Notabletextural features include overgrowths of sillimanite on kyaniteand of spinel on staurolite. The spinel overgrowths can be modeledby the breakdown of staurolite via the reaction Fe-staurolite= hercynite +kyanite + quartz + H2O. The decomposition of stauroliteto her-cynite has a steep dP/dT slope and constrains the lateprograde path of a staurolite metapelite. Garnet—Al2SiO5—plagioclase—quartz(GASP) barometry applied to metapelitic garnets that preservecalcium zoning reveals a pressure decrease from 11 to 6 kbat an assumed temperature of 700 C. Garnet—plagioclase—ilmenite—rutile—quartzand garnet—clinopyroxene—plagioclase—quartzbarometry is in good agreement with pressures obtained withthe GASP barometer. Geochronologic data from garnet, allanite,and monazite in metapelitic rocks give ages that fall into twogroups, 1–4 Ga and 1.1 Ga, suggesting the presence ofat least two metamorphic events in the area. It is most reasonableto assign the 1.4 Ga age to the high-pressure data and the 1.1Ga age to the lower-pressure data. Collectively the P—T—tdata indicate a complex and protracted history rather than asingle cycle of burial and uplift for this part of the GrenvilleProvince.  相似文献   

14.
We present results of dehydration melting experiments [3–15kbar, 810–950C f(O2) QFM (quartz-fayalite-magetite)and Ni-NiO] on two Fe-rich mixtures of biotite (37%), plagioclaseAn38 (27%), quartz (34%) and ilmenite (2%), which differ onlyin their biotite compositions (mg-number 23 and 0.4). Dehydrationmelting of metagreywackes of constant modal composition generatesa wide range of melt fractions, melt compositions and residualassemblages, through the combined effects of pressure, Fe/Mgratio and f(O2). Crystallization of garnet is the chief controlon melting behavior, and is limited by two reactions: (1) thebreakdown of garnet + quartz to orthopyroxene + plagioclaseat low P, and (2) the oxidation of garnet to magnetite + anorthite+ quartz (enstatite), which is sensitive to both f(O2) andP. Because of these reactions, melting of Mg-rich metagreywackesis rather insensitive to f(O2) but strongly sensitive to P;the converse is true for Fe-rich metagreywackes. Garnet crystallizationrequires that plagioclase break down incongruently, liberatingalbite. This increases the Na2O content of the melts and enhancesmelt production. Thus, melting of metagreywacke in a reducingdeep-crustal environment (with garnet stable) would producemore, and more sodic, melt than would garnet-absent meltingof the same source material in a relatively oxidizing, shallow-crustalenvironment. KEY WORDS: anatexis; metasediments; gneisses; granites; garnet *Corresponding author. Telephone: 706-542-2394; fax: 706-542-2425; e-mail: alpatino{at}uga.cc.uga.edu  相似文献   

15.
Ultramafic xenoliths (harzburgite, olivine-orthopyroxenite,orthopyroxenite, websterite and clinopyroxenite) in a Plio-Quaternarystrombolian cone near Tissemt (Egg?r?, Hoggar, Algerian Sahara)contain large (up to 1 mm in diameter) euhedral flakes of graphite.These xenoliths are associated with mafic granulites free ofgraphite. Petrological, mineralogical, and geochemical dataindicate that these rocks have been scavenged from a Precambrianlayered intrusion emplaced in the deep crust. Textural evidencesuggests that the graphite could have crystallized relativelyearly from a silica-saturated melt: following cumulus crystallizationof olivine and orthopyroxene, the graphite crystallized, togetherwith olivine, orthopyroxene, and spinel, as a component of theintercumulus assemblage. The crystallization of graphite directlyfrom the melt is related to relatively high pressure (c. 5 kb)of carbon-rich fluid (CO+CO2+H2O) at relatively low oxygen fugacity(–logfo2, 10 at 1200 ?C).  相似文献   

16.
Garnet clinopyroxenite and garnet websterite layers occur locallywithin mantle peridotite bodies from the External Liguride Jurassicophiolites (Northern Apennines, Italy). These ophiolites werederived from an ocean–continent transition similar tothe present-day western Iberian margin. The garnet clinopyroxenitesare mafic rocks with a primary mineral assemblage of pyrope-richgarnet + sodic Al-augite (Na2O 2·5 wt %, Al2O3 12·5wt %), with accessory graphite, Fe–Ni sulphides and rutile.Decompression caused Na-rich plagioclase (An50–45) exsolutionin clinopyroxene porphyroclasts and extensive development ofsymplectites composed of secondary orthopyroxene + plagioclase(An85–72) + Al-spinel ± clinopyroxene ±ilmenite at the interface between garnet and primary clinopyroxene.Further decompression is recorded by the development of an olivine+ plagioclase-bearing assemblage, locally under syn-kinematicconditions, at the expense of two-pyroxenes + Al-spinel. Mg-richgarnet has been also found in the websterite layers, which arecommonly characterized by the occurrence of symplectites madeof orthopyroxene + Al-spinel ± clinopyroxene. The enclosingperidotites are Ti-amphibole-bearing lherzolites with a fertilegeochemical signature and a widespread plagioclase-facies myloniticfoliation, which preserve in places a spinel tectonite fabric.Lu–Hf and Sm–Nd mineral isochrons (220 ±13 Ma and 186.0 ± 1·8 Ma, respectively) have beenobtained from a garnet clinopyroxenite layer and interpretedas cooling ages. Geothermobarometric estimates for the high-pressureequilibration have yielded T 1100°C and P 2·8 GPa.The early decompression was associated with moderate cooling,corresponding to T 950°, and development of a spinel tectonitefabric in the lherzolites. Further decompression associatedwith plagioclase–olivine growth in both peridotites andpyroxenites was nearly isothermal. The shallow evolution occurredunder a brittle regime and led to the superposition of hornblendeto serpentine veining stages. The garnet pyroxenite-bearingmantle from the External Liguride ophiolites represents a raretectonic sampling of deep levels of subcontinental lithosphereexhumed in an oceanic setting. The exhumation was probably accomplishedthrough a two-step process that started during Late Palaeozoiccontinental extension. The low-pressure portion of the exhumationpath, probably including also the plagioclase mylonitic shearzones, was related to the Mesozoic (Triassic to Jurassic) riftingthat led to continental break-up. In Jurassic times, the studiedmantle sequence became involved in an extensional detachmentprocess that resulted in sea-floor denudation. KEY WORDS: garnet pyroxenite; ophiolite; non-volcanic margin; mantle exhumation; Sm–Nd and Lu–Hf geochronology  相似文献   

17.
Sapphirine occurs in the orthopyroxene-cordierite and feldspar-sillimanite granulites in the Sipiwesk Lake area of the Pikwitonei granulite terrain, Manitoba (97°40W, 55°05N). The orthopyroxene-cordierite granulites have extremely high Al2O3 (24.5 wt%) and MgO (24.6 wt%) contents and contain sapphirine (up to 69.2 wt% Al2O3), aluminous orthopyroxene (up to 8.93 wt% Al2O3), cordierite, spinel, phlogopite, and corundum. Sapphirine forms coronas mantling spinel and corundum. Corona sapphirine is zoned and its composition varies through the substitution (Mg, Fe, Mn) Si=2 Al as a function of the phases with which it is in contact. Textural and chemical relationships of sapphirine with coexisting phases indicate that spinel + cordierite reacted to form orthopyroxene + sapphirine under conditions of increasing pressure. Moreover, decreasing core to rim variation of Al2O3 in orthopyroxene porphyroblasts suggests decreasing temperature during sapphirine formation. On the basis of experimentally determined P-T stability of the assemblage enstatite + sapphirine + cordierite, and the Al content of hypothetical Fe2+-free orthopyroxene associated with sapphirine and cordierite, metamorphic temperatures and pressures are estimated to be 860–890° C and 3.0–11.2 kbar.In the feldspar-sillimanite granulites, sapphirine occurs as a relict phase mantled by sillimanite and/or by successive coronas of sillimanite and garnet. These textural relations suggest the reaction sapphirine + garnet + quartz = orthopyroxene + sillimanite with decreasing temperature. Compositions of minerals in the assemblage garnet-orthopyroxene-sillimanite-plagioclase-quartz, indicate metamorphic P-T conditions of 780–880° C and 9±1 kb.The metamorphic conditions estimated in this study suggest that the sapphirine bearing granulites in the Sipiwesk Lake area represent Archean lower crustal rocks. Their formation might be related to the crustal thickening processes in this area as suggested by Hubregtse (1980) and Weber (1983).  相似文献   

18.
The melting relations of two proposed crustal source compositionsfor rhyolitic magmas of the Taupo Volcanic Zone (TVZ), New Zealand,have been studied in a piston-cylinder apparatus at 10 kb totalpressure and a range of water activities generated by H2O-CO2vapour. Starting materials were glasses of intermediate composition(65 wt.% Si02 representing a metaluminous ‘I-type’dacite and a peraluminous ‘S-type’ greywacke. Crystallizationexperiments were carried out over the temperature range 675to 975?C, with aH2O values of approximately 1?0, 0?75, 0?5,and 0?25. Talc-pyrex furnace assemblies imposed oxygen fugacitiesclose to quartz-fayalite-magnetite buffer conditions. Assemblages in both compositions remain saturated with quartzand plagioclase through 675–700?C at high aH2O, 725–750?Cat aH2O0?5, and 800–875?C at aH2O0?25, corresponding to<60–70% melting. Concentrations of refractory mineralcomponents (Fe, Mg, Mn, P, Ti) in liquids increase throughoutthis melting interval with increasing temperature and decreasingaH2O. Biotite and hornblende are the only mafic phases presentnear the solidus in the dacite, compared with biotite, garnet,gedritic orthoamphibole, and tschermakitic clinoamphibole inthe greywacke. Near-solidus melting reactions are of the type:biotite + quartz + plagioclase = amphibole ? garnet, potentiallyreleasing H2O for dehydration melting in the greywacke, butproducing larger amounts of hornblende and releasing littleH2O in the dacite. At aH2O0?25 and temperatures 825–850?C,amphibole dehydration produces anhydrous mineral phases typicalof granulite fades assemblages (clinopyroxene, orthopyroxene,plagioclase?quartz in the dacite; garnet, orthopyroxene, plagioclase?quartzin the greywacke) coexisting with melt proportions as low as40%. Hornblendce-saturated liquids in the dacite are weaklyperaluminous (0?3–1?6 wt.% normative C—within therange of peraluminous TVZ rhyolites), whereas, at aH2O0?25 andtemperatures 925?C, metaluminous partial melt compositions (upto 1?8 wt.% normative Di) coexist with plagioclase, orthopyroxene,and clinopyroxene. At all water activities, partial melts ofthe greywacke are uniformly more peraluminous (1?5–2?6wt.% normative C), reflecting their saturation in the componentsof more aluminous mafic minerals, particularly garnet and Al-richorthopyroxene. A metaluminous source for the predominantly Di-normativeTVZ rhyolites is therefore indicated. With decreasing aH2O the stability fields of plagioclase andquartz expand, whereas that of biotite contracts. These changesare reflected in the proportions of normative salic componentsin partial melts of both the dacite and greywacke. At high aH2O,partial melts are rich in An and Ab and poor in Or (trondhjemitic-tonalitic);with decreasing aH2O they become notably poorer in An and richerin Or (granodioritic-granitic). These systematic variationsin salic components observed in experimental metaluminous tostrongly peraluminous melts demonstrate that a wide varietyof granitoid magmas may be produced from similar source rocksdepending upon P-T-aH2O conditions attending partial melting.Some peraluminous granitoids, notably trondhjemitic leucosomesin migmatites, and sodic granodiorites and granites emplacedat deep crustal levels, have bulk compositions similar to nearsolidus melt compositions in both the dacite and greywacke,indicating possible derivation by anatexis without the involvementof a significant restite component.  相似文献   

19.
Mid-Proterozoic ( 1000 Ma) granulite facies calc-silicates fromthe Rauer Group, East Antarctica, contain grossular-wollastonite-scapolite-dinopyroxene( + quartz or calcite) assemblages which preserve symplectiteand corona textures typically involving the growth of secondarywollastonite. The textures include (1) wollastonite rims betweenquartz and calcite; (2) wollastonite-plagioclase rims and intergrowthsbetween quartz and scapolite; (3) wollastonite-scapolite-clinopyroxeneinter-growths replacing grossular; and (4) wollastonite-plagioclasesymplectites replacing grossular or earlier symplectites (3). Reactions between grossular, scapolite, wollastonite, calcite,quartz, anorthite, and vapour, have been modelled in the CaO-Al2O3SiO2-H2O-CO2and more complex systems using the internally consistent data-setof Holland & Powell (1990). Reactions producing scapoliteand wollastonite consume vapour as temperature increases (i.e., carbonation), in agreement with the results of Moecher &Essene (1990). These calc-silicates can therefore behave asfluid sinks under high-grade conditions. Conversely, they maybe important fluid sources on cooling and contribute to theformation of post-metamorphic CO2rich fluid inclusions in isobaricallycooled granulites. P-T-CO2 diagrams calculated for typical phase compositions (e.g., garnet, scapolite) demonstrate that the observed texturesare a record of near-isothermal decompression at 800–850 C, consistent with P—rpath determinations based on otherrock types from the Rauer Group. For example, texture (2) resultsfrom crossing the reaction Scapolite + Quartz = Wollastonite + Plagioclase + V on decompression, at 6. 5–7 kb, 820 C, and aCO2 of0–4–0–5. Furthermore, correlations betweenmodes of product phases (e. g., wollastonitexlinopyroxene) andreactant garnet composition preclude open-system behaviour inthe formation of these textures, consistent with post-peak vapour-absentreactions such as Grossular + Calcite + Quartz = Wollastonite + Scapolite occurring on decomposition at high temperatures (>800C). Reaction textures developed in calc-silicates from other granuliteterranes often involve the formation of grossular ( + quartz calcite) as rims on wollastonite-scapolite, or replacementof wollastonite by calcite-quartz. These textures have developedprincipally in response to cooling below 780–810 C andmay be signatures of near-isobaric cooling. Infiltration ofhydrous fluid is not a necessary condition for the productionof garnet coronas in wollastonite-scapolite granulites. *Present address: Department of Earth Sciences, University ofMelbourne, Parkville, Victoria 3052, Australia  相似文献   

20.
On the pseudobinary join CaO:3MgO:Al2O3:2SiO2:xH2O–CaO:1.25MgO:2.75 Al2O3: 0.25SiO2:xH2O clintonite mixed crystals Ca(Mg1+ xAl2 – x) (Al4 – xSixO10)(OH)2 with x rangingfrom 0.6 to 1.4 occur in the temperature range 600–830?C, 2 kb fluid pressure. On the MgSirich side clintonites coexistwith chlorite, forsterite, diopside, and calcite (due to smallamounts of CO2 in the gas phase) and, at lower temperatures,also with idocrase, hydrogrossularite, and aluminous serpentine.Decomposition of clintonite over a divariant temperature rangeoccurs above 830 ?C, 2 kb; clintonite-free subsolidus assemblagescomprising three or four solid phases are formed in the temperatureranges 890 ?–1120 ?C. The subsolidus assemblages can berepresented in a polyhedron defined by the corners forsterite,diopside, melilite, spinel, anorthite, corundum, and calciumdialuminate. Above 1120 ?C partial melting occurs. The upper thermal stability limits of three selected compositionshave been reversed in the P-T range 0.5–20 kb and 730–1050 ?C, respectively. Below some 4 kb breakdown is dueto the divariant reactions: (1)Ca(Mg2.25Al0.75)(Al2.75)(Si1.25O10)(OH)2 spinel+diopsidess+forsterite+clintonitess+vapor, (2)Ca(Mg2Al)(Al3SiO10)(OH)2 spinelx002B;melilitess+anorthite+clintonitess+vapor, (3)Ca(Mg1.75Al1.25)(Al3.25)(Si0.75O10)(OH)2 spinel+melilitess+corundum+clintonitess+vapor, At the terminations of the divariant temperature ranges (1)melilitess, (2) diopsidess, and (3) anorthite enter those assemblagesand clintonitess disappears completely. The reactions can berepresented by the following equations (1)log,H2O = 10.2879–8113/T+0.0856(P–1)/T, (2)log = 9.5852–7325/T+0.0794(P–1)/T, (3)log = 7.8358–5250/T+0.077(P–1)/T, with P expressed in bars and Tin ?K. Above 4 kb the upper thermalstability limit of clintonite is defined by incongruent melting,with grossularite participating at pressures above 9 kb. Thesecurves exhibit a very steep, probably even negative slope inthe P-T diagram. There is a close correspondence between natural clintonite-bearingassemblages and thosefound experimentally. The rarity of clintonitein nature is not due to special conditions of pressure and temperaturebut rather due to special bulk compositions of the rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号