首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Four runs of experimental landform development, with the same uplift rate, different rainfall intensity, and the same material of different permeability adjusted by the degree of compaction, showed complicated effects of rainfall and mound-forming material. In the run with more rainfall on less permeable material, low separated ridges developed in the uplifted area, because abundant overland flow promoted valley erosion and slope processes from early stages. In the run with less rainfall on less permeable material, valley incision proceeded mostly in major valleys where surface water converges. Canyons developed during early stages and later a high massive mountain emerged. The effect of rainfall difference, however, appeared completely opposite on more permeable material accompanied by lower shear strength. In the run with more rainfall on more permeable material, a massive mountain similar to that with less rainfall on less permeable material appeared, and low separated ridges appeared in the run with less rainfall on more permeable material as in the run with more rainfall on less permeable material. In the former case, similar amount of water available for Hortonian overland flow in early stages estimated from rainfall rate and permeability can explain the development of similar landforms. In the latter case, while abundant surface water with more rainfall on less permeable material made fluvial erosion active from early stages, the deficiency in surface water with less rainfall on more permeable material apparently attenuated fluvial erosion but possibly accentuated slope processes and slope failures by seepage water flow through more permeable material of low shear strength. The active erosion from early stages apparently resulted in the development of enduring similar low landforms later in the dynamic equilibrium stage. These experimental results indicate that similar landforms can emerge from different environmental and lithologic controls, and that process does not necessarily follow from form.  相似文献   

2.
太湖蓝藻水华的年度情势预测方法探讨   总被引:2,自引:2,他引:0  
在太湖、巢湖、滇池、洱海、三峡水库等我国重要湖泊和水库,蓝藻水华时常发生但年际之间藻情往往有较大差异,给蓝藻水华的防控物资及人员投入、湖库水源地水质安全保障带来较大的挑战,亟待探索周年尺度的蓝藻水华强度预测方法.本文收集了太湖连续15年的蓝藻水华情势观测数据和同步的气象、水文数据用于构建蓝藻水华预测模型,提出了利用遥感反演的蓝藻水华面积(A_(BL))及人工观测的水体浮游植物叶绿素α浓度([Chl.a]_(LB))共同表征的蓝藻水华强度指标(BI).分析了太湖年尺度的BI值与环境条件的关系,提出了基于年初能够掌握的气象、水文、营养盐等综合环境指标进行年度BI预测的统计模型.结果表明,太湖年度BI值与冬季及初春(12-3月)日均水温(WT_(12-3))、冬春季有效积温(AT_(12-3))、前一年降雨总量(RF_(YB))等环境因子呈显著正相关,与冬季及初春的水体总氮(TN_(12-3))、溶解性总氮(DTN_(12-3))、总磷(TP_(12-3))及溶解性总磷(DTP_(12-3))不存在统计上的显著相关关系.此外,本研究开展了基于上述因子(BI为因变量,其余环境因子为自变量)的多元(或一元)回归分析,并遴选出最优模型.总体而言,最优模型的模拟计算结果与实测浓度具有较高的一致性,因此本研究得出的模型对太湖蓝藻水华年际强度预测具有较高精度.本研究对太湖等富营养化湖库蓝藻水华的中长期预测具有指导意义.  相似文献   

3.
为探究在三峡水库特殊分层异重流背景下降雨对水华消退的影响,以香溪河为例,对库湾降雨前后水动力、生态环境因子开展连续三维立体跟踪监测。结果表明:降雨对水华的消退作用显著,降雨后香溪河库湾叶绿素a(Chl.a)浓度明显下降。热分层稳定指数(RWCS/H)变化不大,库湾近河口处分层较弱、中上游分层较强的特性并未随此次降雨发生较大变动。受降雨影响,藻类在表层水体聚集程度降低,藻类聚集度指数(MI)、微藻群体平均深度(MRD)下降。库湾流态随降雨发生而变得复杂,库湾水体浊度明显增加,异重流倒灌形式由近表层倒灌向中下层倒灌转变,雨后又逐渐转变为中层倒灌,长江干流水体倒灌进入库湾的影响范围、潜入深度增加。水体水平输移增强,分散下沉的藻类易随水体环流流出库湾,水华消退。雨后库湾入库流量增加,大部分上游来流依旧由上层流向河口,与中层倒灌异重流形成逆时针环流,藻类无法在表层水体稳定生长,库湾Chl.a浓度能在较长时间内保持较低水平,不会再次迅速暴发水华。  相似文献   

4.
方菲  粟一帆  朱文涵  甘琳  张咏  杨柳燕 《湖泊科学》2023,35(4):1139-1152
随着工业和经济的发展,水体富营养化以及由此导致的蓝藻水华现象频发,严重影响水生态安全及健康。蓝藻水华形成过程包括休眠、复苏、生物量增加以及上浮聚集形成肉眼可见的水华4个阶段。蓝藻自身的生长机制是引发水华的重要原因,其中浮力调节机制是其重要的生存策略之一,在春季复苏、夏季大量增长及最终上浮至水体表面形成水华阶段均具有重要作用。了解蓝藻浮力调节机制及其在水华过程中的作用对于了解蓝藻生长特性及水华形成机理具有重要意义。气囊及细胞镇重物是常见的浮力调节机制。除此以外,新的研究发现光照条件下单细胞蓝藻产生的大量氧气泡可促使蓝藻上浮至水面形成水华。同时,野外蓝藻常以群体状态存在,群体内部形成的细胞间隙及光照条件下产生的大量氧气是促使蓝藻上浮至水体表面的另一重要原因。野外蓝藻群体在其内部形成微环境,其理化性质可随外界环境的改变发生快速变化,群体内外微环境相互作用,共同影响群体内部细胞间隙中溶氧浓度及浮力。了解蓝藻浮力调节机制及群体内部微环境理化性质对深入了解蓝藻的生长特性及从微观层面分析水华形成机理具有重要意义。本文综述了水华暴发过程中蓝藻的主要浮力调节机制,以期为从微观层面探明蓝藻水华暴发机理提供...  相似文献   

5.
The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.  相似文献   

6.
基于遥感藻总量和气象因子的巢湖不同湖区藻华预测   总被引:1,自引:0,他引:1  
湖泊能为人类提供不可或缺的资源,而全球普遍存在的湖泊富营养化导致的藻华频繁暴发正不断损害湖泊生态环境服务功能.为合理保护湖泊环境和防治藻华危害,需预测藻华暴发.以我国富营养巢湖为研究区,本文构建了一种基于遥感藻总量和气象因子的不同湖区藻华暴发概率预测方法.基于MODIS/Aqua数据,研究首先反演了2003—2019年日尺度的藻华分布和考虑垂向结构的水柱藻总量.然后,统计了西、中和东巢湖的藻华面积,判别了藻华/非藻华日,并匹配日平均藻总量和气象因子.最后,筛选出藻华形成的关键影响因子——藻总量、气温和水汽压,并构建了不同湖区日藻华暴发概率的Logistic预测模型.不同湖区月平均藻总量基本一致,但藻华暴发日占比呈“西高东低”特征.对西、中和东巢湖的藻华/非藻华检验样本,模型精度分别为90%、85%和89.5%,模型也适用于2020年夏秋季和冬春季藻华预测.湖泊藻华暴发是藻类大量增殖并在一定气象条件下的产物,故基于遥感藻总量和气象因子的藻华暴发概率预测科学合理,可推广应用于太湖等其他富营养湖泊.  相似文献   

7.
Distribution and abundance of zooplankton in the North Sea during the Autumn Circulation Experiment (October 1987–March 1988) were examined. From shipboard egg production incubations and the distributions of eggs, nauplii and females, the productivity of various copepod species was described. Against the background of surface temperature, salinity and chlorophyll-a distributions, major seasonal changes in plankton biomass distributions and specific production of copepods were seen. High biomass levels in October rapidly declined into November and January, especially in the north. These changes were followed by early (January/February) production and biomass increases in the southeastern North Sea. Although lowest between November and January, depending on species and location, production continued for many copepod species throughout the winter, despite low temperatures and large predator populations. It was concluded that winter survival of herring larvae and other predators was enhanced by herbivore production in the southeastern North Sea, and that in the north, low herbivore production, competition and predation decreased the probabilities of predator survival. Copepod overwintering strategies and the implications of winter herbivore production and predator abundance for later plankton production processes are discussed.  相似文献   

8.
The seasonal variation of phytoplankton biomass and primary productivity in a heavily eutrophic embayment, Dokai Bay, Japan, was determined. Dokai Bay was characterized by high phytoplankton biomass and productivity during summer and low phytoplankton biomass and productivity during other seasons. The results suggested that phytoplankton growth was limited by only irradiance and water temperature under the high nutrient concentrations available for phytoplankton growth in the entire year. Moreover, in spite of sufficient nutrient for phytoplankton growth in the entire year, a red tide occurred only in the summer period in this bay. Our results suggested that a red tide occurred by the high phytoplankton growth rate in the summer season, but in other periods surface phytoplankton was flushed out of the bay before forming the red tide, because phytoplankton growth rate was low and could not form the red tide due to low irradiance and low water temperature.  相似文献   

9.
A spatially dynamic model for the productivity of spores and adults of green macroalgae (Enteromorpha sp.) was developed for a mesotidal estuary (Mondego estuary, Portugal). Many of the algal processes and parameters included in the model were experimentally obtained. Model predictions were compared to a real time series (1993-1997) of macroalgal biomass variation and the two sets show a good agreement (ANOVA, P<0.001). Results suggest that algal growth is highly sensitive to small changes in depth and exhibits different patterns of variation in different seasons. On a yearly basis, global calculations for the south channel of the estuary (137 ha) suggest that during bloom years, macroalgal biomass may reach about 21,205 ton DW compared to 240 ton DW in regular years. On a seasonal basis, the difference may be even more significant. The consequences of such variations on the nitrogen and phosphorus loading of the system and the adjacent coastal area are discussed.  相似文献   

10.
富营养化是现今各国面临的主要水环境问题,其中蓝藻水华暴发是全球富营养化水体最常见的现象之一.蓝藻水华将产生大量的蓝藻碎屑,其对水质及生物的影响还尚不清楚.本研究通过向中宇宙系统添加微囊藻碎屑,分析其对水体不同形态营养盐及水生生物生物量的影响.结果表明:微囊藻碎屑加入后,水体不同形态的营养盐浓度均在短期内迅速增加,其中水体总氮和总磷平均浓度最高分别达到3.86和0.36 mg/L;浮游植物生物量(用叶绿素a表示)在前9天随营养盐浓度的升高而增加,随后逐渐下降至实验初始水平.此外,附着藻类生物量在微囊藻碎屑加入后呈逐渐下降趋势,这可能与浮游植物快速增殖引起的水体透明度下降有关.微囊藻碎屑加入后,水丝蚓生物量随微囊藻碎屑的分解持续增长,在第20天达到生物量最大值.本研究通过模拟太湖梅梁湾生态系统,探讨微囊藻碎屑对水质及水生生物生物量的影响,结果有助于进一步了解蓝藻水华对水生态系统影响的途径及机理,为富营养化湖泊管理提供理论依据.  相似文献   

11.
In drylands, water deficit is the primary factor limiting plant growth. In the present study, surface energy balance and plant growth (above‐ground and below‐ground biomass) were measured continuously during the 2002 growing season in semiarid grassland in the northern part of Kazakhstan, Central Asia. Although there was above normal total rainfall during the 2002 growing season (May–November; 244 mm over 183 days), there was a dry period during July and August. Evaporative water was effectively supplied by precipitation and surface soil moisture during the wet season (May and June), during which time above‐ground biomass increased. During the early stages of the dry period, mature plants were likely to tap deeper sources of soil moisture, representing stored snowmelt water. As the soil moisture content decreased during the summer dry period due to the high levels of evapotranspiration and lack of precipitation, the evaporative fraction and above‐ground biomass rapidly decreased, whereas the below‐ground biomass increased. These results suggest that in summer, soil moisture acts to store water, and that soil moisture is essential for plant growth as a direct source of water during the dry period in natural grasslands in the Kazakhstan steppe. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Annual phytoplankton productivity in Lake Constance is about 300 g C m−2, a value typical for mesoeutrophic lakes. Seasonal variations in phytoplankton biomass and productivity are exceptionally great because of a sequence of factors controlling the production process. During winter productivity is controlled by low energy inputs and high respiratory losses due to deep water column mixing. Biomass is low and water transparancy high. The spring phytoplankton growth is triggered by the thermal stabilization of the water column. The summer phytoplankton biomass maximum mainly depends on phosphorus availability. However, biomass yields comprise only 15–20% of values to be expected from the Redfield ratio because large proportions of POM are detritus and non-algal biota. Moreover, sedimentation during the second half of the year removes biomass from the euphotic zone. Water transparency and thus vertical distribution of algal photosynthesis is highly dependent on phytoplankton biomass. Self-shading causes considerably smaller seasonal variations in areal biomass and photosynthetic rates than in volume-based values. By light-shade adaptation effects of seasonal fluctuations in mean daily surface radiance fluxes on algal photosynthesis can to a significant extent be compensated for. At any given level of biomass daylength is the major determinant of daily production rates. Dedicated to Professor Elster on his 80th birthday.  相似文献   

13.
Extracellular polymeric substances (EPS) secreted by phytoplankton can induce bloom formation, and nutrients are considered the key factors that cause algal blooms outbreak. Thus, understanding the characteristics of EPS from blooming Microcystis under the influence of nitrogen (N) and phosphorus (P) is important. In this study, the effects of nitrogen (N) and phosphorus (P) nutrients on EPS released by Microcystis aeruginosa in Lake Taihu were examined in pure cultures. The characteristics of Microcystis EPS were evaluated by excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis (PARAFAC). Results indicated that the fluorescent characterization of EPS was affected more by N than by P. Low N concentration can stimulate cells to secrete large amounts of tyrosine-like substances directly into the culture medium, thus suggesting that Microcystis features a mechanism for adapting to low N conditions. Total fluorescent intensities in the EPS were significantly related to cell biomass. All fluorescent substances in the bound EPS fraction were positively and significantly correlated with Microcystis growth. As for the soluble EPS fraction, the humic-like and tryptophan-like substances were both significantly related to cell biomass, whereas only the tyrosine-like substances were significantly related to cell biomass under low N supply. PARAFAC analysis of the EEM spectra showed that N greatly affected the exudation of tyrosine-like substances and redistribution of the EPS fractions. Thus, protein-like fluorophore could be used as a potential indicator to evaluate the nutritional status of cyanobacteria during cyanobacterial blooms in Lake Taihu.  相似文献   

14.
巢湖蓝藻水华时空分布(2000-2015年)   总被引:4,自引:3,他引:1  
唐晓先  沈明  段洪涛 《湖泊科学》2017,29(2):276-284
巢湖是我国五大淡水湖之一,近年来水体富营养化严重,蓝藻水华频繁暴发.通过收集2000-2015年晴好天气下2478景MODIS Terra和Aqua影像,利用浮游藻类指数,提取巢湖蓝藻水华时空分布数据.结果显示,巢湖蓝藻水华覆盖面积、暴发频率以及持续时间都在增加,每年最初暴发时间提前.从分布上来看,西巢湖依然严重,中巢湖、东巢湖水华暴发面积较以往大大增加;过去16年内巢湖蓝藻水华暴发频率持续增长,其中2007年最为严重,2008-2010年暴发频率出现缓和,此后又出现增长趋势.这些研究结果有助于掌握蓝藻水华的情况,为巢湖科学治理提供了数据支持.  相似文献   

15.
2022年我国长江流域经历了长期的高温干旱,对湖泊水生态环境和湖内藻情态势产生了深远影响。但目前关于干旱环境下湖泊水华的响应特征研究较少。以太湖为例,基于2005—2022年湖体营养盐与叶绿素a浓度的长期监测数据,结合卫星遥感影像反演的蓝藻水华面积变化,探讨了2022年高温干旱对太湖蓝藻的影响特征及驱动机制。结果表明,2022年蓝藻水华高发季节(5—9月),太湖蓝藻水华的平均面积和最大面积均明显下降,其中5月的水华面积仅为近5年同期平均面积的20%;水样采集分析获得的水体叶绿素a浓度和微囊藻生物量在春季也明显下降。营养盐方面,2022年太湖的总氮和总磷均值分别为1.41和0.084 mg/L,较近5年均值分别下降了30.6%和27.3%,均为2005年以来的最低值。氮磷浓度空间分布的克里金插值显示,除西北湖区(竺山湾)受河流入湖影响外,大部分湖区的溶解态氮磷也都处于较低状态,冬季溶解性总磷浓度小于0.02 mg/L的水域面积占全湖面积的79%。随机森林分析表明,总磷、水温和风速是影响春季微囊藻和藻类生物量的关键因子。冬季湖体磷水平低,加上春季外源负荷较少,致使2022年春季太湖大范围湖...  相似文献   

16.
An intense but short-lived phytoplankton bloom develops in the low-salinity melt waters at the edge of the Bering Sea ice as the ice melts and retreats each spring. In spring 1988 we followed the development of this bloom by sampling every 3 h while following a freely drifting drogue in the marginal ice-edge zone for two four-day periods. The first period (29 April–3 May) was at an early stage of the bloom while the second period (10–13 May) was at the peak of the bloom. Early in the bloom, the phytoplankton consumed all the nitrate (400 mmoles m−2) initially present in the surface water producing large accumulations of particulate carbon (>1000 mmoles C m−2). By the time of peak chlorophyll concentrations (35 mg M−3), nitrate concentrations had been depleted so that the sustained high productivity depended on either recycled or imported nutrients. After this point, there was little net additional accumulation of biomass. From these data plus cruise data from previous years, we find that the Bering Sea ice-edge bloom typically begins in the last week of April and appears to precede blooms in the adjacent ice-free waters by days to weeks. The variability in bloom onset observed over several years is not linked very closely to the large scale climatic variations found in this region, but rather appears to be related to local weather during the end of April and the first part of May, with calm, sunny weather being required to initiate the blooms.  相似文献   

17.
18.
太湖蓝藻水华的扩张与驱动因素   总被引:7,自引:6,他引:1  
张民  阳振  史小丽 《湖泊科学》2019,31(2):336-344
蓝藻水华表征指标及驱动因子的多样性增加了研究人员、湖泊管理部门对于蓝藻水华扩张驱动因素的困惑,本研究通过整合太湖蓝藻水华长尺度研究的成果,将蓝藻水华扩张区分为时间扩张、空间扩张和生物量扩张3个方面,分析各自的驱动因子,系统阐述了当下太湖蓝藻水华的扩张和驱动因素.太湖蓝藻水华的时间扩张呈现由夏季集中发生向春季和秋冬季节扩张的趋势,导致春季蓝藻水华发生的提前,以及年度峰值的推迟;空间扩张呈现由西北太湖向湖心和东部湖区、乃至全湖扩张的趋势;太湖蓝藻生物量自2003年以后一直呈现缓慢增加的趋势.蓝藻水华时间扩张的驱动因素相对独立,主要受气象因子的影响,风速和日照时间是主要驱动因子,风速降低和日照时间延长均有助于蓝藻水华时间的扩张;空间扩张和生物量扩张则受气象因子和富营养化的双重影响,其中影响水华空间扩张的因子较多,富营养化和气象因素的主次难以确定,一般偶发性大面积蓝藻水华受气象因子驱动,而频发性大面积蓝藻水华主要受营养盐空间分布影响;影响蓝藻生物量扩张的主要驱动因素为总磷,另外氮磷比、水下可利用光和风速的变化也在一定程度上驱动了太湖蓝藻生物量的扩张.目前表征蓝藻水华强度通常利用空间扩张或生物量扩张指标,但是均具有一定局限性,相互间也缺乏可比性,各指标用于长尺度趋势研究更为可靠,短尺度比较受方法缺陷影响较大,应进一步开发表征水华蓝藻总存量的指标以统一空间扩张和生物量扩张.  相似文献   

19.
放养鲢(Hypophthalmichthys molitrix)、鳙(Aristichthys mobilis)控制富营养化湖泊蓝藻水华暴发是当前最有效的手段之一.为评估富营养化初期湖泊鲢、鳙控藻的生态效果,2016年在洱海红山湾开展原位围栏鲢、鳙控藻实验,对围栏内外的浮游生物群落结构及水环境因子的变化进行对比分析,同时测定了围栏内鲢、鳙的生长及摄食节律.结果表明:围栏内鲢、鳙呈现匀速生长,围栏生存环境适宜.根据Egger''s模型估算鲢、鳙的日摄食量分别为24.96%和18.18%,鲢的日粮高于鳙;滤食率结果表明,鲢对浮游植物的摄食率高于鳙(分别为3.01和2.19 L/(g·h),而鳙对浮游动物的滤食率高于鲢(分别为18.61和13.54 L/(g·h)).研究期间,围栏内外水体理化因子无显著差异;但围栏内外微囊藻生物量差异明显,并且在7月达到生物量峰值(围栏内为1.7 mg/L,围栏外为2.4 mg/L).鲢、鳙对浮游植物的优势种类——微囊藻和隐藻有明显的削减效果,6-8月逐渐上升并在8月达到最高(64%);当浮游植物优势种由微囊藻替换为硅藻门和绿藻门的种类时,鲢、鳙的削减效率不明显(10-11月为负值).此外,鲢、鳙放养显著降低了浮游甲壳动物的总生物量和枝角类生物量.因此,结合实验结果得出,鲢具有更高的控藻能力,尤其对微囊藻水华,但同时具备了较高对浮游甲壳动物的削减能力,需要进一步分析富营养化初期湖泊——洱海中实施非经典生物操纵的适宜性.  相似文献   

20.
蓝藻水华在全球范围频繁暴发,鱼腥藻(Anabaena)水华出现频度仅次于微囊藻(Microcystis)水华,其中的一些鱼腥藻种类能产生多样的藻毒素或异味物质,鱼腥藻水华去除技术的研发备受关注.本研究以从武汉市新洲区土壤中分离筛选到的一株细菌WP为材料,通过分析其生理生化特征及16S r DNA序列对其进行分类地位鉴定,考察了该菌株对真紧密鱼腥藻(Anabaena eucompacta)CHAB 1799的溶藻特性.结果表明,菌株WP与Lysinibacillus fusiformis NRS-350的同源性达到了99.6%,故鉴定WP属于Lysinibacillus属.菌株WP对真紧密鱼腥藻CHAB 1799发生溶藻作用的细菌阈值为6×10~3cfu/ml,其生理状态不会明显影响溶藻效果,且对不同生长时期的藻液均有较强的溶藻作用.该菌株的溶藻方式为间接溶藻.本研究结果丰富了溶藻细菌的资源库,也为治理鱼腥藻水华提供了更多的技术支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号