首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

2.
This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear walls and the steel bracings in retrofitting the building was examined through nonlinear static and dynamic analyses. By using the nonlinear static analysis, retrofitted buildings seismic performances under lateral seismic load were compared with each other. Moreover, the performance points and response levels of the existing and retrofitting cases were determined by way of the capacity-spectrum method described in ATC-40 (1996). For the nonlinear dynamic analysis the records were selected torepresent wide ranges of duration and frequency content. Considering the change in the stiffness and the energy dissipation capacities, the performance of the existing and retrofitted buildings were evaluated in terms of story drifts and damage states. It was found that each earthquake record exhibited its own peculiarities, dictated by frequency content, duration, sequence of peaks and their amplitude. The seismic performance of retrofitted buildings resulted in lower displacements and higher energy dissipation capacity depending mainly on the properties of the ground motions and the retrofitting strategies. Moreover, severe structural damage (irreparable or collapse) was observed for the existing building. However, buildings with retrofit alternatives exhibited lower damage levels changing from no damage to irreparable damage states.  相似文献   

3.
Historic adobe structures pose a high seismic risk mainly because of the poor out-of-plane bending response of their walls that may produce fatalities and significant economic, cultural, and heritage losses. In this paper, we propose a retrofitting technique that increases the wall strength for both in-plane and out-of-plane directions. This technique consists of vertical and horizontal timber elements symmetrically installed on each face of the wall to form a confining wood frame, supplemented with vertical tensors that pre-compress the wall. This study evaluates the performance of this retrofitting technique with a two-set experimental program on full-scale historic adobe walls. On the first set, four specimens were subjected to a static overturning test with boundary conditions representing the confinement effect at both ends by orthogonal walls. On the second set, three full-scale specimens, one unretrofitted and two retrofitted, were subjected to four ground motion records on a shaking table to assess the out-of-plane dynamic behavior of typical corner walls. The unretrofitted specimen collapsed during the second motion (peak ground acceleration [PGA] = 0.39 g), while both retrofitted walls survived all four motions (maximum PGA of 0.75 g) proving the high effectiveness of the proposed retrofitting. The addition of base anchors as a variation of the retrofitting technique significantly reduced the rocking effects and the residual drifts of the system, thus improving its overall seismic performance. Further research is needed to develop guidelines for seismic retrofit of heritage buildings including multistory full-scale tests of specimens with various types of openings and retrofitting strategies that minimize their architectural impact.  相似文献   

4.
李然 《地震工程学报》2018,40(5):891-896
隔震器与填充墙对建筑抗震性能有很大作用。为了探究填充墙布置形式及填充材料和隔震器协同作用对钢筋混凝土框架结构动力特性及抗震性能的影响,采用等效斜撑理论,对3种不同填充墙布置形式与隔震器协同作用的抗震系统方案进行对比分析,研究发现顶层不布置填充墙与隔震器协同抗震系统钢筋混凝土框架结构的抗震性能最佳。在此系统上分析了不同填充材料对钢筋混凝土框架结构抗震性能的影响,结果表明,加气混凝土砌块填充墙的钢筋混凝土框架结构抗震性能最好。  相似文献   

5.
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace,termed glass-fiber-reinforced-polymer(GFRP)-tube-confined-concrete composite brace,is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation.Together with a contribution from the GFRP-tube confined concrete,the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting.An analysis model is established and implemented in a general finite element analysis program-OpenSees,for simulating the load-displacement behavior of the composite brace.Using this model,a parametric study of the hysteretic behavior(energy dissipation,stiffness,ductility and strength)of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered.To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete(RC)frame structure was retrofitted with the composite braces.Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records.The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.  相似文献   

6.
This study presents a nonlinear modelling technique for reinforced concrete (RC) frames retrofitted with metallic yielding devices to predict the seismic response using a computer software OpenSees. The numerical model considers the axial–flexure interaction, shear force–displacement response and the bond-slip characteristics of the frame members. The predicted hysteretic response has been compared with the results of slow-cyclic testing. The validated numerical model is then used to predict the seismic response of a five-story RC frame with soft-story. Nonlinear cyclic pushover and dynamic analyses are conducted to investigate the effectiveness of the proposed retrofitting scheme in enhancing the lateral strength and energy dissipation potential and in controlling the premature failure of the study frame. Analysis results showed significant improvement in the seismic response of RC frames with soft-story using the proposed retrofitting technique.  相似文献   

7.
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel‐brace‐link system to represent those with good ductility capacity and then retrofitted with RC squat infill shear panels (SISPs) to represent those with relatively poor ductility capacity. The evaluation of the DCM of FEMA 440 and associated NLSP is then performed by comparing the roof displacements (target displacements), maximum interstory drifts, and maximum plastic hinge rotations of the original and retrofitted buildings obtained from NLSP (at the target displacement level of DCM) with those obtained from nonlinear response history (NRH) analyses for three different seismic performance levels. It is observed that the DCM, and hence, the NLSP fail to accurately predict the NRH analyses results mainly due to uncertainties in the coefficient C1 of the DCM in the short period range, the inability of the DCM to capture the failure of structural members beyond a certain lateral displacement or plastic rotation limit and associated soft story mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Experimental tests have shown that unreinforced masonry (URM) infill walls are affected by simultaneous loading in their in-plane and out-of-plane directions, but there have been few attempts to represent this interaction in nonlinear time history analysis of reinforced concrete (RC) buildings with URM infill walls. In this paper, a recently proposed macro-model that accounts for this interaction is applied to the seismic analysis of RC framed structures with URM infill walls representative of Mediterranean building stock and practices. Two RC framed structures that are representative of low and mid-rise residential buildings are analysed with a suite of a bidirectional ground motions, scaled to three different intensities. During the analyses, the in-plane/out-of-plane interaction is monitored, showing that cracking of the infills occurs predominantly by in-plane actions, while failure occurs due to a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. Along the frame height, the bottom storeys are generally the most damaged, especially where thin infill walls are used. These results are consistent with observations of damage to URM infill walls in similar buildings during recent earthquakes.  相似文献   

9.
Reinforced concrete (RC) buildings in Nepal are constructed with RC frames and masonry infill panels. These structures exhibit a highly non-linear inelastic behavior resulting from the interaction between the panels and frames. This paper presents an extensive case study of existing RC buildings in Nepal. Non-linear analyses were performed on structural models of the buildings considered as a bare frame and with masonry infill, in order to evaluate the influence of infill walls on the failure mechanisms. Five three-storey buildings with different structural configurations and detailing were selected. The effect of masonry infill panels on structural response was delineated by comparing the bare-framed response with the infill response. Seismic performance is evaluated with regard to global strength, stiffness, energy dissipation, inter-storey drift, and total deflection of the structure. A parametric analysis of structures with masonry infill is also performed. For this, the influence of different material properties is studied, namely diagonal compressive stress, modulus of elasticity and tensile stress of masonry infill panels. Study results show that masonry infill increases the global strength and stiffness of the structures; it decreases the inter-storey drift and hence the total displacement of the structure. The results quantify the influence of the infill panels on structural response and, in particular, the effect of the diagonal compressive strength of the masonry wall.  相似文献   

10.
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.  相似文献   

11.
Experimental studies have proven that clay brick infills, confined with carbon-fiber-reinforced polymers (CFRP) in reinforced concrete (RC) frames, have some advantages in terms of stiffness, strength, energy dissipation capability and damage intensity. Owing to these advantages, existing infill walls in RC frames may be retrofitted with CFRP strips, especially in low-rise buildings in earthquake-prone areas. There is a gap in the literature concerning their behavior model, for use in structural analysis. A piecewise linear capacity curve model called “DUVAR” is proposed here, which estimates the envelope of force-vs.-displacement hysteresis, depending on the data compiled from the literature and the completed experimental studies. A nonlinear shear spring element is utilized in the model to represent the bare and retrofitted infills. The ultimate shear strength and the corresponding displacement, the ratio of cracking stiffness to initial stiffness, the ratio of ultimate strength to cracking strength, and the ductility ratio are the five key parameters of the model. The model is validated against the experimental results of two sovereign studies. Finally, the model is employed in the performance evaluation of an existing three-story RC building to exemplify its straightforward application.  相似文献   

12.
Yang  Cantian  Xie  Linlin  Li  Aiqun  Zeng  Demin  Jia  Junbo  Chen  Xi  Chen  Min 《地震工程与工程振动(英文版)》2020,19(4):839-853

The improvement of the seismic resilience of existing reinforced-concrete (RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an effective method for improving the resilient performance of such buildings, target-oriented quantitative improvements of the resilient performance of these buildings have been reported rarely. To address this gap, the seismic resilience of two existing RC frame buildings located in a high seismic intensity region of China were assessed based on the Chinese Standard for Seismic Resilience Assessment of Buildings. The critical engineering demand parameters (EDPs) affecting the seismic resilience of such buildings were identified. Subsequently, the seismic resilience of buildings retrofitted with different isolation schemes (i.e., yield ratios) were evaluated and compared, with emphasis on the relationships among yield ratios, EDPs, and levels of seismic resilience. Accordingly, to achieve the highest level of seismic resilience with respect to the Chinese standard, a yield ratio of 3% was recommended and successfully applied to the target-oriented design for the seismic-resilience improvement of an existing RC frame building. The research outcome can provide an important reference for the resilience-based retrofitting of existing RC frame buildings using seismic isolation in urban cities.

  相似文献   

13.
In seismic retrofitting of concrete buildings, frame bays are converted into reinforced concrete (RC) walls by infilling the space between the frame members with RC of a thickness of not more than their width. The cyclic behavior of the resulting wall depends on the connection between the RC infill and the surrounding RC members. The paper uses the results from 56 cyclic tests on such composite walls to express their properties in terms of the geometry, the reinforcement and the connection. Properties addressed are: (a) the yield moment at the story base; (b) the secant-to-yield-point stiffness over the shear span of the wall in a story; (c) the deflection at flexural failure in cyclic loading; (d) the cyclic shear resistance, including a sliding shear failure mode. Separate models are given for squat walls failing in shear and for those where the top of the column shears-off. The proposals are modifications of models developed in the past for monolithic RC walls from several hundred cyclic tests; blind application of these latter models as though the walls were monolithic gives, in general, unsafe predictions. By contrast, the diagonal compression strut approach in ASCE41-06 is safe-sided, but gives unacceptably large prediction scatter.  相似文献   

14.
在不规则结构中,填充墙的表现对框架结构的局部以及整体抗震性能的表现显得非常重要。随着阻尼填充墙的深入研究,大大提高了框架填充墙结构的抗震性能。但由于阻尼填充墙施工工艺复杂、施工成本较高,很难得以大规模使用。为了实现既降低施工的难度和成本又提高框架结构的抗震性能,本文选取一座不规则框架结构对其地震表现进行分析。采用局部优化布置阻尼填充墙的方法,达到既提高结构抗震性能又降低施工难度和成本的要求,为框架填充墙结构的设计提供一定的建议。  相似文献   

15.
Building structures damaged by a seismic event may be exposed to the risk of aftershocks or another event within a certain period. In this paper, the seismic assessment of damaged piloti‐type RC buildings was carried out to evaluate probabilistic retrofitting effects under successive earthquakes. First, a framework to evaluate the effectiveness of retrofitting was proposed, and then the proposed methodology was demonstrated with a structure retrofitted with buckling‐restrained braces (BRBs). For consideration of realistic successive earthquakes, past records measured at the same station were combined. Within the framework, a series of nonlinear time history analyses were performed for an as‐is model subjected to single earthquake, a damaged model subjected to successive earthquakes, and a damaged model retrofitted with BRBs subjected to successive earthquakes. In addition, fragility analysis was systematically applied in the framework for evaluation of effectiveness of the retrofitting strategy. The proposed framework was capable of quantifying the influence of successive earthquakes and evaluating the effectiveness of BRB retrofitting by considering the severity of the first earthquake damage and the hysteresis behavior of the retrofit element. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper reports the results of cyclic loading tests performed on four specimens consisting of reinforced concrete frames with brick infill walls. The brick infill is pre‐laid, followed by the cast in‐place RC columns and beams. Test parameters include the height‐to‐length ratio of the brick infill wall and the mortar compressive strength. Test results reveal that the in‐plane lateral strength of brick infill wall is related to the fracture path. The fracture path for brick infill walls with large height‐to‐length ratios includes bed joints, cross joints, and vertical splitting of bricks. As a result, the lateral strength of this type of brick infill wall is larger. In comparison, the fracture path for brick infill walls with small height‐to‐length ratios only passes through joints, which is the reason why they have lower lateral strength. Mortar with higher strength improves the lateral strength of brick infill wall. In addition to presenting experimental observations in detail, this paper compares the test results with those obtained from existing methods for assessment of seismic resistance. Comments and recommendations are offered with respect to the capabilities of the assessment methods in predicting stiffness, strength, and ultimate deformation capacity of brick infill walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Thousands of buildings were damaged by the devastating Chi‐Chi earthquake on September 21, 1999. Of all the public buildings, school buildings are the most vulnerable to earthquake damage, and the retrofitting of existing school buildings becomes a stringent issue. In addition to cost effectiveness, the impact of retrofitting methods on the functions of the school buildings needs to be considered. This paper therefore proposes the retrofitting of school buildings by adding sandwich columns onto partition brick walls. The sandwich column is divided into two parts and is added to the two sides of the partition brick wall held with pairs of U‐shaped bars. The retrofit does not require the removal of windows or doors in the longitudinal direction making the proposed method cost effective and minimizes the impact on the function of the school buildings. Five full‐scale specimens without and with retrofitting were designed and fabricated for testing based on the partition brick wall frames of the existing school buildings. The specimens were subjected to cyclic loading in the out‐of‐plane direction through a loading frame so that the columns deformed with double curvatures. The experimental results verified the feasibility of the proposed retrofit method. The data showed that the lateral strength of the retrofitted specimen doubled that which was not and that the residual strength of the retrofitted specimen was just as high as the ultimate strength of the specimen without retrofitting. The analytical results in lateral strength yielded conservative figures compared with experimental measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
为研究碳纤维布加固严重破坏砌体墙的有效性,开展了4片严重破坏墙体的碳纤维布加固试验,研究了试件在低周反复荷载作用下的试验性能,考查了其破坏形态和破坏特征,对比分析了墙体的承载力、延性和耗能能力等性能。研究表明:采用粘贴碳纤维布加固严重破坏墙体的方法是可行且有效的;加固后墙体的抗剪承载力、变形性能都较原墙墙体有明显提高;碳纤维布布置方法不同,对墙体的约束效果不同;碳纤维布破坏时其应变远小于其极限抗拉应变,建议碳纤维布加固严重破坏墙体时无须使用高强度的碳纤维布。  相似文献   

19.
As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplified empirical criteria that lead to a period shortening. The difference can be greatly decreased by using a structural identification methodology. In this study, an ambient vibration test was performed on four on-site reinforced concrete high-rise buildings, and the design results were compared with the PKPM models using corresponding finite element(FE) models. A diagonal strut model was used to simulate the behavior of the infill wall, and the identified modal parameters measured from the on-site test were employed to calibrate the parameters of the diagonal strut in the FE models. The SAP2000 models with calibrated elastic modulus were used to evaluate the seismic response in the elastic state. Based on the load-displacement relationship of the infill wall, nonlinear dynamic analysis models were built in PERFORM-3 D and calibrated using the measured modal periods. The analysis results revealed that the structural performance under small/large earthquake records were both strengthened by infill walls, and the contribution of infill walls should be considered for better accuracy in the design process.  相似文献   

20.
This paper presents the results of an experimental work in order to evaluate the performance of a novel proposed retrofitting technique on a typical dome‐roof adobe building by shaking table tests. For this purpose, two specimens, scaled 2:3, were subjected to a total of nine shaking table tests. The unretrofitted specimen, constructed by common practice, is designed to evaluate seismic performance and vulnerability of dome‐roof adobe houses. The retrofitted specimen, exactly duplicating the first specimen, is retrofitted based on the results obtained from unretrofitted specimen tests, and the improvement in seismic behavior of the structure is investigated. Zarand earthquake (2005) Chatrood Station is selected as the input ground motion that was applied consecutively at 25, 100, 125, 150 and 175% of the design‐level excitation. At 125% excitation level, the roof of the unretofitted specimen collapsed due to the walls' out‐of‐plane action and imbalanced forces. The retrofitting elements consist of eight horizontal steel rods drilled into the walls, passed through the specimen and bolted on the opposite wall surfaces. To improve walls in‐plane seismic performance, welded steel mesh without using mortar, covered less than half area of walls on the external face of the walls, is used. In addition to strain gauges for recording steel rod responses, several instrumentations including acceleration and displacement transducers are implemented to capture response time histories of different parts of the specimens. The corresponding full‐scaled retrofitted prototype tolerated peak acceleration of 0.62 g almost without any serious damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号