首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This study reports a multi-parameter geochemical investigation in water and sediments of a shallow hyper-eutrophic urban freshwater coastal lake, Zeekoevlei, in South Africa. Zeekoevlei receives a greater fraction of dissolved major and trace elements from natural sources (e.g., chemical weathering and sea salt). Fertilizers, agricultural wastes, raw sewage effluents and road runoff in contrast, constitute the predominant anthropogenic sources, which supply As, Cd, Cu, Pb and Zn in this lake. The overall low dissolved metal load results from negligible industrial pollution, high pH and elevated metal uptake by phytoplankton. However, the surface sediments are highly polluted with Pb, Cd and Zn. Wind-induced sediment resuspension results in increased particulate and dissolved element concentrations in bottom waters. Low C/N ratio (10) indicates primarily an algal source for the sedimentary organic matter. Variation in sedimentary organic C content with depth indicates a change in primary productivity in response to historical events (e.g., seepage from wastewater treatment plant, dredging and urbanization). Primary productivity controls the enrichment of most of the metals in sediments, and elevated productivity with higher accumulation of planktonic debris (and siltation) results in increased element concentration in surface and deeper sediments. Aluminium, Fe and/or Mn oxy-hydroxides, clay minerals and calcareous sediments also play an important role in adsorbing metals in Zeekoevlei sediments.  相似文献   

2.
A system of connected lignite mining pits (part of the former Goitsche mining complex, Germany) was flooded with river water between 1999 and 2002. A considerable accumulation of acid associated with oxidized sulfides in sediments was seen as a critical point for the development of the lake water. To characterize the components contributing to the supply of dissolved lake water SO4 hydro-chemical and isotope investigations with respect to groundwater, pore water in the sulfide bearing sediments, river water and lake water were performed. δ34S of pore water SO4 that was dominated by oxidized pyrites ranges around −25‰ VCDT and differs strongly from river water SO4 with about +4.4‰. Thus, interactions between lake water and sediments were particularly pronounced during the first phase of flooding. For this period, a more quantitative estimation of the SO4 components in the lake water was difficult because of the heterogeneous SO4 distributions between the different sub-basins of the lake and according to the flooding process itself. Later, a component separation was attempted following mixing of the whole lake, which first occurred in spring 2002. A very heterogeneous groundwater environment with respect to highly variable SO4 concentrations and δ34S values and changing interaction with the forming lakes proved to be one of the most important limitations in the calculations of the mixing.  相似文献   

3.
Groundwater dominated lakes are an important feature of many landscapes. Their sediments are a particularly valuable source of paleoenvironmental information in semiarid regions where perennial lakes may otherwise be scarce. Where groundwater and lake composition are favorable, carbonate mineral precipitation, evaporative concentration of lake water, and microbial processes can combine to strongly deplete dissolved Ca relative to influent groundwaters. The authigenic carbonate flux (ACF) can then become limited by water column cation availability and thereby be coupled to groundwater inflow rates and aquifer recharge. Here we analyze sedimentary records from two marl-producing, groundwater-controlled lakes and demonstrate a link between one-dimensional ACF and the Palmer Drought Severity Index (PDSI), a measure of land surface wetness. In a restricted outflow lake with high-carbonate alkalinity, ACF is enhanced during historically wet climatic periods in response to increased aquifer recharge rates. ACF in this lake declines during droughts. A neighboring dilute lake with a high rate of groundwater outflow shows comparatively weak coupling between ACF and PDSI history. Ionic chemistry, carbonate mineral equilibria, and δ13C patterns of dissolved inorganic carbon show that the sensitivity of the ACF signal depends on the degree of evaporative evolution of lake water and the mineral saturation state of the water column under conditions of stratification and ice cover.  相似文献   

4.
A strong He-U anomaly, discovered in the Thelon basin of the N.W.T. during a regional U exploration program in 1981, was studied in detail in 1982. The anomaly is confined to a 3-km2 lake situated 160 km northwest of Baker Lake. Lake bottom water and sediment samples taken in June through the ice on a 50 m × 50 m grid, were analyzed for a number of trace and minor elements.In the lake sediments He and U were highly anomalous and parallel the strong anomaly patterns of He observed in the water. Median and maximum values in the sediments were 57 ppm and 396 ppm U, and 296 nL/L and 13870 nL/L He. Regional medians were 4.3 ppm U and 50 nL/L He. Se and V in sediments gave weak but similar anomaly patterns to those observed for U and He.The anomaly is somewhat of an enigma. The unusually high U content indicates an oxidizing, hence, near surface, water regime, and the highly anomalous He flux into the lake and a thick cover of permafrost in the region indicate a very deep source where conditions are normally reducing, rendering U immobile.Coincident anomaly patterns and increasing concentrations with depth of minor and trace elements and gases in the lake water prove that groundwater is the source of the anomalies. Contoured element maps indicate that this groundwater enters the lake in at least four places.The fact that up to 35 ppb U, 6 ppm dissolved O2 and virtually no Fe and Mn, were detected in lake waters above groundwater entry points indicates that the groundwaters were oxidizing with respect to these elements. This is indeed surprising because permafrost is believed to be about 300 m thick in the region; at such depths groundwaters are usually rich in Fe and void of U.The highly anomalous He in this lake indicates deep fractures which serve as conduits for mineralized water entering the lake from depth and creating a frost-free window in the permafrost. The fractures probably penetrate well into the basement for only major deep fractures are known to produce such strong He anomalies. The additional presence of anomalous U suggests U mineralization at depth.  相似文献   

5.
Roughly 200 tonnes of arsenic are produced annually with the base metal ores at Sudbury about 125 tonnes of which are released to the ambient environment via the atmosphere. The dispersion of this highly toxic element in lakes around the smelters is described. The total As concentrations in unfiltered lake waters vary from 0.2 to 0.6 ug 1?1. The suspended particulates in the water column (with As contents of 2–6 ug g?1) play a major role in the flux of arsenic to the lake sediments. The present-day rates of As accumulation in the sediments are found to be 1.5–6.4 mg m?2 yr?1; these rates exceed those of precolonial times by factors of 5–47. The changes in the rates of As flux to the sediments are shown to parallel the history of Cu and Ni production in the district.  相似文献   

6.
Lakes and wetlands are dynamic geomorphic units of a landscape that hold geochemical signatures of sediment provenance and paleo-environmental shifts and are major sinks for organic matter accumulation. The source of organic matter is diverse in lake sediments and varies widely with the type and size of the lake and hence it is important to understand the source of organic carbon (terrestrial or in situ) in lake systems in order to monitor the health of the lake. Wular lake, located in north Kashmir, is one of the largest fresh water lake in India, situated at an average elevation of 1580m ASL. The lake is fed by a number of watersheds that bring a diverse type of sediments and organic matter and thus deposit them into the Wular lake basin. In order to understand sediment distribution pattern, content and source of organic matter, sediment provenance and the persisting environment in the Wular lake, 32 lake floor sediment samples covering the entire lake were collected and analyzed for organic element analysis, CaCO3, organic matter, sediment texture and diatom analysis. The results indicated that sediments in the lake are dominated by silt and silty clay. The organic carbon in the lake ranged from 0.83%-4.52% and nitrogen varied from 0.06%-0.5%. The Carbon to Nitrogen (C/N) ratios (9.04 to 22.03) indicate a mixed source of organic carbon but dominated by in situ lake sources from the vascular and lake biota accumulation. The diatom analysis revealed the occurrence of a diverse type of species along the sampling sites present within the lake. The wide distribution of the diatom species such as Cymbella, Cyclotella and Tabularia etc. in the lake indicate high organic pollution and alkaline fresh water environment prevailing in the lake.  相似文献   

7.
A 2-year (October 2003–October 2005) high-resolution sediment trap study was conducted in Sacrower See, a dimictic hardwater lake in northeastern Germany. Geochemical and diatom data from sediment trap samples were compared with a broad range of limnological and meteorological parameters to quantify the impact of single parameters on biochemical calcite precipitation and organic matter production. Our goals were to disentangle how carbonaceous varves and their sublaminae form during the annual cycle to better understand the palaeorecords and to detect influences of dissolution, resuspension as well as of global radiation and stratification on lake internal particle formation. Total particle fluxes in both investigated years were highest during spring and summer. Sedimentation was dominated by autochthonous organic matter and biochemically precipitated calcite. Main calcite precipitation occurred between April and July and was preceded and followed by smaller flux peaks caused by resuspension during winter and blooms of the calcified green algae Phacotus lenticularis during summer. In some of the trap intervals during summer up to 100% of the precipitated calcite was dissolved in the hypolimnion. High primary production due to stable insolation conditions in epilimnic waters began with stratification of the water column. Start and development of stratification is closely related to air and water surface temperatures. It is assumed that global radiation influences the onset and stability of water column stratification and thereby determining the intensity of primary production and consequently of timing and amount of calcite precipitation which is triggered by phytoplanktonic CO2 consumption. Sediment fluxes of organic matter and calcite are also related to the winter NAO-Index. Therefore these fluxes will be used as a proxy for ongoing reconstruction of Holocene climate conditions.  相似文献   

8.
We studied the dissolved silica cycle in the water column of the North basin of Lake Lugano, Switzerland/Italy. Lake Lugano is a meromictic, eutrophic lake, permanently stratified below 100-m depth. A one-box model was used to calculate a silica mass-balance over 1993, based on various lake measurements, such as sediment traps, sediment cores, water analysis and biota countings. We found that the North basin of Lake Lugano is at steady state as far as dissolved silica is concerned. The primary source of dissolved silica in the lake is river input (about 80%), with diffusion from bottom sediments and groundwater input also playing a role. Atmospheric input is negligible. The main export of dissolved silica occurs via biogenic uptake by diatoms and final burial of their frustules in the bottom sediment. Loss of dissolved silica through the lake outflow only represents 15% of the total output. Of the total amount of Si exported to the lake bottom through diatom sinking, less than 20% is re-supplied to the surface water by diffusion. Thus, the lake acts as an important permanent sink for silica. The long residence time of dissolved silica in the lake (7 years) is related to the strong physical stratification of the lake. Only about 10% of the standing stock are available to phytoplankton uptake.  相似文献   

9.
研究了美国绿河盆地的23个未成熟的露头油页岩样品,其中 13个样品取自Laney组,为半温湿半干燥气候下沉积于较浅的封闭水体的盐湖中心,含有丰富的有机质;另外 10个样品取自LumanTongue组,为潮湿气候下沉积于近岸的水体开放的淡水环境,其有机质含量较低。所有样品均富含从C11至C20 的同分异构体丰富的饱和类异戊二烯醇类化合物。此外还检出了一整套直链一元仲醇同系物,其碳数从 10至 33,而羟基可在任何理论上可能的碳位上。伯醇含量较低。研究结果表明,绿河油页岩中的有机质分别在沉积过程中和被抬升之后遭受了两次微生物降解。除伯醇的分布有生物来源特征外,其余的开链醇化合物是在绿河层系抬升至地表后微生物对其中烃类化合物降解的产物。文中将绿河油页岩有机质中异常高的氧指数归因于微生物降解,并探讨了其开链醇化合物的分布与物源、沉积环境及微生物降解程度的相关性。盐湖相Laney组的直链醇以低碳数组分为主,反映其有机质以菌藻为主的物源,与干燥的古气候相一致;淡水相LumanTongue组则以高碳数组分为主,有着明显优势的高等植物来源,与其潮湿的古气候相吻合。在沉积过程中,淡水相的LumanTongue组中的有机质遭受了比盐湖相的Laney组中的有机质更强的微生物降解,这意味着盐湖环境。  相似文献   

10.
Freefight Lake, Canada's deepest salt lake, is a meromictic, hypersaline lake located in the most arid part of the northern Great Plains. The lake has a distinctive basin morphology, with a large expanse of seasonally flooded mud flats and sand flats adjacent to a deep, flat bottomed perennial waterbody. The mixolimnion, dominated by magnesium, sodium and sulphate ions, has an average salinity of 110 ppt and overlies a monimolimnion of 180 ppt total dissolved salts. The entire water column is strongly supersaturated with respect to a variety of calcium and magnesium carbonate minerals; the lower water mass is also saturated or supersaturated with respect to a number of very soluble sodium, magnesium and sodium + magnesium salts. The modern sedimentary processes operating in Freefight Lake give rise to six main sedimentary facies: (i) colluvium, (ii) mud flats and sand flats, (iii) algal flats, (iv) delta, (v) slope and debris apron, and (vi) deep basin. The colluvium, mud flats and sand flats, and delta facies are dominated by physical processes and consist mainly of detrital siliciclastic sediment. The algal flats, slope and debris apron, and deep basin facies are dominated by endogenic and authigenic sediments derived mainly by physicochemical and biologically mediated carbonate and evaporite mineral precipitation. As one of very few deep water lakes in the world in which soluble evaporite minerals are forming and being preserved, Freefight Lake occupies an important position within the realm of lacustrine sedimentology. Although many of the sedimentological and geochemical processes taking place in the basin today are unusual, the delineation and evaluation of these processes is essential in order to decipher properly the stratigraphic records of Quaternary lake sediments in this large area of North America, as well as lacustrine sequences from other arid and semi-arid regions of the world.  相似文献   

11.
Redox processes during bank filtration were evaluated in Berlin, where bank filtered water is abstracted for drinking water production. The investigations included the mapping of the infiltration zone, a column study and hydrochemical analyses of the groundwater sampled between lake and production well. The organic carbon content increased and the permeability of the lake sediments decreased with distance from the shoreline. The most important changes with regard to the redox state of the infiltrate occurred within the first metre of flow. Infiltration was mostly anoxic, as oxygen was rapidly consumed within the organic rich sediments. The infiltration zone revealed a vertical redox stratification with hydrochemical conditions becoming more reducing with depth rather than with distance from the lake. The redox zones were found to be very narrow below the lake and wider towards the production wells, suggesting that other than differing flow paths, reaeration after infiltration may also occur and possible mechanisms are presented. Redox conditions were influenced by strong annual temperature variations of the surface water affecting the microbial activity. Aerobic infiltration only took place close to the shore in winter.  相似文献   

12.
Todhunter  P. E. 《Natural Hazards》2021,106(3):2797-2824

Devils Lake, a terminal lake in northeast North Dakota (USA), has experienced catastrophic flooding since 1993. From January 31, 1993, to December 31, 2014, lake level rose from 433.62 to 442.44 m, lake area expanded from 179.9 to 653.5 km2, and lake volume increased from 0.70 to 3.80 km3. More than $1 billion ($USD) has been spent in government payments to mitigate direct, primary, tangible flood damages. This paper provides a case study of the hydrological basis of the Devils Lake flood disaster. The unique geomorphic setting, paleoclimatic record, and hydroclimatic conditions of the region are summarized, and a wide range of hydroclimatic data is examined to provide a broad understanding of the physical basis of the flood disaster. The primary cause of the disaster was a transition to a sustained wetter climate that resulted in a dramatic response in basin hydrological variables in 1993. The transition from a long-term dry period to a long-term wet period caused the lake water budget to begin to change from an atmosphere-controlled water budget dominated by precipitation input to an amplifier lake water budget dominated by surface runoff input to the lake. Other important hydrological factors include a nonlinear precipitation–runoff relationship following the long-term drought, fill-spill and fill-merge hydrological behavior that is characteristic of wetland complexes, an increase in the lake area-to-basin area ratio, and the critical role of frozen soils in controlling infiltration and runoff production of spring snowmelt. Engineering works to manage lake volume through two outlets have reduced, but not entirely eliminated, future flood risk.

  相似文献   

13.
Saline, 450-m-deep Lake Van (Eastern Anatolia, Turkey) is, with 576 km3, the third largest closed lake on Earth and its largest soda lake. In 1989 and 1990, we investigated the hydrochemistry of the lake’s water column and of the tributary rivers. We also cored the Postglacial sediment column at various water depths. The sediment is varved throughout, allowing precise dating back to ca. 15 ka BP. Furthermore, lake terrace sediments provided a 606-year-long floating chronology of the Glacial high-stand of the lake dating to 21 cal. ka BP. The sediments were investigated for their general mineralogical composition, important geochemical parameters, and pore water chemistry as well. These data allow reconstructing the history of the lake level that has seen several regressions and transgressions since the high-stand at the end of the Last Glacial Maximum. Today, the lake is very alkaline, highly supersaturated with Ca-carbonate and has a salt content of about 22 g kg?1. In summer, the warmer epilimnion is diluted with river water and forms a stable surface layer. Depth of winter mixing differs from year to year but during time of investigation the lake was oxygenated down to its bottom. In general, the lake is characterized by an Na–CO3–Cl–(SO4)-chemistry that evolved from the continuous loss of calcium as carbonate and magnesium in the form of Mg-silica-rich mineral phases. The Mg cycle is closely related to that of silica which in turn is governed by the production and dissolution of diatoms as the dominant phytoplankton species in Lake Van. In addition to Ca and Mg, a mass balance approach based on the recent lake chemistry and river influx suggests a fractional loss of potassium, sodium, sulfur, and carbon in comparison to chloride in the compositional history of Lake Van. Within the last 3 ka, minor lake level changes seem to control the frequency of deep water renewal, the depth of stratification, and the redox state of the hypolimnion. Former major regressions are marked by Mg-carbonate occurrences in the otherwise Ca-carbonate dominated sediment record. Pore water data suggest that, subsequent to the major regression culminating at 10.7 ka BP, a brine layer formed in the deep basin that existed for about 7 ka. Final overturn of the lake, triggered by the last major regression starting at about 3.5 ka BP, may partly account for the relative depletion in sulfur and carbon due to rapid loss of accumulated gases. An even stronger desiccation phase is proposed for the time span between about 20 and 15 ka BP following the LGM, during which major salts could have been lost by precipitation of Na-carbonates and Na-sulfates.  相似文献   

14.
获取合适的气候变化代用指标,检验其在更长时间尺度内应用的有效性对于利用我国西部内陆湖盆沉积反映新生代以来大陆气候变化具有重要意义。易溶盐含量作为一种反映环境变化的代用指标,在沉积相稳定的内陆湖泊沉积物研究中已获得广泛应用。对于存在沉积相变迁的古湖盆沉积物,其适用性需要进行考虑。本文对西宁盆地谢家剖面的一套年代为始新世到中新世的内陆湖相泥岩/石膏沉积进行研究发现,石膏层和泥岩层分别对应于Ca2+、SO2-4和Sr2+的高值和低值变化。石膏层广泛分布的剖面下部 Ca2+、SO2-4和Sr2+含量较高,Na+和Cl-含量较低,而石膏层逐渐消失的剖面上部Ca2+、SO2-4和Sr2+整体含量降低,Na+和Cl-含量略有升高。沉积相分析表明红色泥岩层和石膏层分别对应于冲积扇远端和干盐湖化学沉积,剖面下部石膏层和红色泥岩层交替到上部以红色泥岩层为主的岩相变化反映了区域范围上的干旱化进程。谢家剖面易溶盐含量强烈受控于上述沉积相变迁所决定的岩性变化,并清晰揭示出发生在约33 Ma的巨大干旱化事件。因此对于存在沉积相变迁的古湖盆沉积物,易溶盐含量分析不但要考虑内陆湖泊浓缩演化过程中溶解度控制的碳酸盐-硫酸盐-卤化物相继发生的沉淀序列,还需考虑易溶盐在不同沉积相中的赋存迁移规律以及研究时段内的溶质补给类型是否存在差异。  相似文献   

15.
Rates of sulfate reduction, oxygen uptake and carbon dioxide production in sediments from a short Spartina alterniflora zone of Great Sippewissett Marsh were measured simultaneously during late summer. Surface sediments (0–2 cm) were dominated by aerobic metabolism which accounted for about 45% of the total carbon dioxide production over 0–15 cm. Rates of sulfate reduction agreed well with rates of total carbon dioxide production below 2 cm depth indicating that sulfate reduction was the primary pathway for sub-surface carbon metabolism. Sulfate reduction rates were determined using a radiotracer technique coupled with a chromous chloride digestion and carbon disulfide extraction of the sediment to determine the extent of formation of radiolabelled elemental sulfur and pyrite during shortterm (48 hr) incubations. In the surface 10 cm of the marsh sediments investigated, about 50% of the reduced radiosulfur was recovered as dissolved or acid volatile sulfides, 37% as carbon disulfide extractable sulfur, and only about 13% was recovered in a fraction operationally defined as pyrite. Correlations between the extent of sulfate depletion in the marsh sediments and the concentrations of dissolved and acid volatile sulfides supported the results of the radiotracer work. Our data suggest that sulfides and elemental sulfur may be major short-term end-products of sulfate reduction in salt marshes.  相似文献   

16.
The shallow Kastoria lake supports an important fishery but the effluent discharges from the local town renders the lake polluted and eutrophic. From a limnological point of view, its water exhibits unstable thermal stratification, dimictic as well as meromictic situations, low concentrations of dissolved oxygen close to its bottom sediments and rather high nutrient concentrations. The internationally important wetland of Mikri Prespa lake belongs to the dimictic lacustrine type. The lake is directly influenced by runoff from nearby agricultural land as well as by the organic matter produced mainly in the luxuriant bank vegetation of reeds.  相似文献   

17.
Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation.Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite.Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl? and SO42? are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input.  相似文献   

18.
The quantification of carbon burial in lake sediments, and carbon fluxes derived from different origins are crucial to understand modern lacustrine carbon budgets, and to assess the role of lakes in the global carbon cycle. In this study, we estimated carbon burial in the sediment of Lake Qinghai, the largest inland lake in China, and the carbon fluxes derived from different origins. We find that: (1) The organic carbon burial rate in lake sediment is approximately 7.23 g m−2 a−1, which is comparable to rates documented in many large lakes worldwide. We determined that the flux of riverine particulate organic carbon (POC) is approximately 10 times higher than that of dissolved organic carbon (DOC). Organic matter in lake sediments is primarily derived from POC in lake water, of which approximately 80% is of terrestrial origin. (2) The inorganic carbon burial rate in lake sediment is slightly higher than that of organic carbon. The flux of riverine dissolved inorganic carbon (DIC) is approximately 20 times that of DOC, and more than 70% of the riverine DIC is drawn directly and/or indirectly from atmospheric CO2. (3) Both DIC and DOC are concentrated in lake water, suggesting that the lake serves as a sink for both organic and inorganic carbon over long term timescales. (4) Our analysis suggests that the carbon burial rates in Lake Qinghai would be much higher in warmer climatic periods than in cold ones, implying a growing role in the global carbon cycle under a continued global warming scenario.  相似文献   

19.
大汶口凹陷下第三系含盐段杂卤石的成因及其找钾意义   总被引:2,自引:0,他引:2  
大汶口凹陷成盐时代为早第三纪始新—渐新世。含盐段的中上部有大量薄层状杂卤石岩和含杂卤石的石盐岩等产出。本区的杂卤石有原生沉积和同生交代两种成因类型,是内陆盐湖在持续蒸发浓缩条件下,由周边含钙补给水掺杂而形成的。标志着卤水已接近饱和钾镁盐的程度,具有重要的找钾意义。钾盐层应位于杂卤石分布区内受补给水影响较小的凹陷中心地带。  相似文献   

20.
湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望   总被引:4,自引:1,他引:3  
Rb和Sr在赋存矿物和表生地球化学行为等方面存在显著差异,因而各种记录体中的Rb/Sr比值被广泛应用于古气候/古环境研究。湖泊沉积物中的Rb、Sr主要包括2部分来源:一是流域物理侵蚀直接带来的陆源碎屑组分,在沉积物中多以残渣态(碎屑矿物)形式存在;二是流域化学风化带来的溶解态物质,在湖泊水体中通过物理吸附、化学沉淀和生...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号