首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The tropical Indian Ocean climate variability is investigated using an artificial neural network analysis called self-organizing map (SOM) for both observational data and coupled model outputs. The SOM successfully captures the dipole sea surface temperature anomaly (SSTA) pattern associated with the Indian Ocean Dipole (IOD) and basin-wide warming/cooling associated with ENSO. The dipole SSTA pattern appears only in boreal summer and fall, whereas the basin-wide warming/cooling appears mostly in boreal winter and spring owing to the phase-locking nature of these phenomena. Their occurrence also undergoes significant decadal variation. Composite diagrams constructed for nodes in the SOM array based on the simulated SSTA reveal interesting features. For the nodes with the basin-wide warming, a strong positive SSTA in the eastern equatorial Pacific, a negative Southern Oscillation, and a negative precipitation anomaly in East Africa are found. The nodes with the positive IOD are associated with a weak positive SSTA in the central equatorial Pacific or positive SSTA in the eastern equatorial Pacific, a positive (negative) sea level pressure anomaly in the eastern (western) tropical Indian Ocean, and a positive precipitation anomaly over East Africa. The warming in the central equatorial Pacific appears to correspond to El Niño Modoki discussed recently. These results suggest usefulness of SOM in studying large-scale ocean–atmosphere coupled phenomena.  相似文献   

2.
Decadal and interannual variability of the Indian Ocean Dipole   总被引:2,自引:1,他引:1  
This study investigates the decadal and interannual variability of the Indian Ocean Dipole (IOD). It is found that the long-term IOD index displays a decadal phase variation. Prior to 1920 negative phase dominates but after 1960 positive phase prevails. Under the warming background of the tropical ocean, a larger warming trend in the western Indian Ocean is responsible for the decadal phase variation of the IOD mode. Due to reduced latent heat loss from the local ocean, the western Indian Ocean warming may be caused by the weakened Indian Ocean westerly summer monsoon. The interannual air-sea coupled IOD mode varies on the background of its decadal variability. During the earlier period (1948-1969), IOD events are characterized by opposing SST anomaly (SSTA) in the western and eastern Indian Ocean, with a single vertical circulation above the equatorial Indian Ocean. But in the later period (1980-2003), with positive IOD dominating, most IOD events have a zonal gradient perturbation on a uniform positive SSTA. However, there are three exceptionally strong positive IOD events (1982, 1994, and 1997), with opposite SSTA in the western and eastern Indian Ocean, accompanied by an El Nifio event. Consequently, two anomalous reversed Walker cells are located separately over the Indian Ocean and western-eastern Pacific; the one over the Indian Ocean is much stronger than that during other positive IOD events.  相似文献   

3.
This study reveals that the interannual variability of the western edge of the western North Pacific (WNP) subtropical high (WNPSH) in early summer experienced an interdecadal decrease around 1990. Correspondingly, the zonal movement of the WNPSH and the zonal extension of the high-pressure anomaly over the WNP (WNPHA) in abnormal years possess smaller ranges after 1990. The different influences of the tropical SSTAs are important for this interdecadal change, which exhibit slow El Ni?o decaying pattern before 1990 while rapid transformation from El Ni?o to La Ni?a after 1990. The early summer tropical SSTAs and the relevant atmospheric circulation anomalies present obvious interdecadal differences. Before 1990, the warm SSTAs over the northern Indian Ocean and southern South China Sea favor the WNPHA through eastward-propagating Kelvin wave and meridional-vertical circulation, respectively. Meanwhile, the warm SSTA over the tropical central Pacific induces anomalous ascent to its northwest through the Gill response, which could strengthen the anomalous descent over the WNP through meridional-vertical circulation and further favor the eastward extension of the WNPHA to central Pacific. After 1990, the warm SSTAs over the Maritime Continent and northern Indian Ocean cause the WNPHA through meridional-vertical and zonal-vertical circulation, respectively. Overall, the anomalous warm SSTs and ascent and the resultant anomalous descent over the WNP are located more westward and southward after 1990 than before 1990. Consequently, the WNPHA features narrower zonal range and less eastward extension after 1990, corresponding to the interdecadal decease in the interannual variability of the western edge of the WNPSH. On the other hand, the dominant oscillation period of ENSO experienced an interdecadal reduction around 1990, contributing to the change of the El Ni?o SSTA associated with the anomalous WNPSH from slow decaying type to rapid transformation type.  相似文献   

4.
西北太平洋副热带高压(西太副高)是影响东亚夏季气候的主要环流系统,其年际变率受热带多个海区的海-气相互作用过程的调控。为明确影响夏季西太副高的关键海区及其影响机制,在总结最近十余年来相关研究进展的基础上,归纳出影响夏季西太副高年际变率的5个关键海区,包括赤道中东太平洋、热带印度洋、副热带西北太平洋、海洋大陆附近海区以及热带大西洋。阐述了这5个关键海区的海温异常影响西太副高年际变率的机制,并探讨了5个关键海区海温异常的形成机制。围绕夏季西太副高的年际变率,回顾了当前气候模式的模拟和预测研究的现状。最后,提出了本领域亟待解决的关键科学问题,展望未来可能的研究热点。  相似文献   

5.
热带太平洋年代际平均气候态变化与ENSO循环   总被引:20,自引:0,他引:20  
张勤  丁一汇 《气象学报》2001,59(2):157-172
文中用观测的热带太平洋海表温度资料、风应力资料和OLR资料,通过多时间尺度分析,将与ENSO有关的变化分为3个主要的分量,一是2~7a的ENSO循环尺度,二是8~20a的年代际尺度,三是20a以上的平均气候态变化。讨论了热带太平洋这种平均气候态变化的主要特征以及与ENSO循环的关系,并用耦合模式的数值试验来研究平均气候态的变化对ENSO循环的影响。结果表明热带太平洋的平均气候态在20世纪70年代后期发生了一次由冷态向暖态的变化,主要增暖区是沿赤道以及热带东太平洋的,海表温度变化最大中心可以达到0.6℃。伴随着海表温度的变化,赤道西太平洋的西风距平加强,赤道东太平洋的东风距平也加强,在赤道中太平洋形成了一个加强的辐合中心。年代际平均气候冷暖态的变化对ENSO最直接的线性影响是使ElNio位相增加,而形成ENSO冷位相和暖位相的不对称。另一方面较暖的平均气候态可能引起海洋和大气之间的耦合加强,导致ENSO循环振荡有所加强。  相似文献   

6.
Xinyu LI  Riyu LU 《大气科学进展》2021,38(11):1823-1834
It is well known that on the interannual timescale, the westward extension of the western North Pacific subtropical high(WNPSH) results in enhanced rainfall over the Yangtze River basin(YRB) in summer, and vice versa. This study identifies that this correspondence experiences a decadal change in the late 1970 s. That is, the WNPSH significantly affects YRB precipitation(YRBP) after the late 1970 s(P2) but not before the late 1970 s(P1). It is found that enhanced interannual variability of the WNPSH favors its effect on YRB rainfall in P2. On the other hand, after removing the strong WNPSH cases in P2 and making the WNPSH variability equivalent to that in P1, the WNPSH can still significantly affect YRB rainfall, suggesting that the WNPSH variability is not the only factor that affects the WNPSH–YRBP relationship. Further results indicate that the change in basic state of thermal conditions in the tropical WNP provides a favorable background for the enhanced WNPSH–YRBP relationship. In P2, the lower-tropospheric atmosphere in the tropical WNP gets warmer and wetter, and thus the meridional gradient of climatological equivalent potential temperature over the YRB is enhanced. As a result, the WNPSH-related circulation anomalies can more effectively induce YRB rainfall anomalies through affecting the meridional gradient of equivalent potential temperature over the YRB.  相似文献   

7.
俞永强  宋毅 《大气科学》2013,37(2):395-410
在工业革命以来全球长期增暖趋势背景下,全球平均表面气温还同时表现出年代际变化特征,二者叠加在一起使得全球平均气温在某些年份增暖相对停滞(如1999~2008年)或者增暖相对较快(如1980~1998年).利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG)发展的耦合气候模式FGOALS-s2历史气候和典型路径浓度(RCPs)模拟试验结果研究了可能造成全球增暖的年代际停滞及加速现象的原因,特别是海洋环流对全球变暖趋势的调制作用.该模式模拟的全球平均气温与观测类似,即在长期增暖趋势之上,还叠加了显著的年代际变化.对全球平均能量收支分析表明,模拟的气温年代际变化与大气顶净辐射通量无关,意味着年代际表面气温变化可能与能量在气候系统内部的重新分配有关.通过对全球增暖加速和停滞时期大气和海洋环流变化的合成分析及回归分析,发现全球表面气温与大部分海区海表温度(SST)均表现出几乎一致的变化特征.在增暖停滞时期,SST降低,更多热量进入海洋次表层和深层,使其温度增加;而在增暖加速时期,更多热量停留在表层,使得大部分海区SST显著增加,次表层海水和深海相对冷却.进一步分析表明,热带太平洋表层和次表层海温年代际变化主要是由于副热带—热带经圈环流(STC)的年代际变化所致,然后热带太平洋海温异常可以通过风应力和热通量强迫作用引起印度洋、大西洋海温的年代际变化.在此过程中,海洋环流变化起到了重要作用,例如印度尼西亚贯穿流(ITF)年代际异常对南印度洋次表层海温变化起到关键作用,而大西洋经圈翻转环流(AMOC)则能直接影响到北大西洋深层海温变化.  相似文献   

8.
Heat content anomalies are analyzed to understand subsurface variability on both aparticular focus on the evolving basinwide patterns and oceanic connections between the extratropics and tropics. Various analyses indicate two distinct modes, one interannual and the other decadal, that involve the tropics and the North Pacific subtropical gyre, respectively. Interannual variability is associated with El Niño in the tropics, with a prominent “see-saw” pattern alternately on and off the equator, and in the east and west, respectively. The interannual cycle features a coherent propagation of subsurface signals around the tropical Pacific, eastward along the equator but westward off the equator at 10–15?°N. Decadal signals are dominant in the subtropics and midlatitudes but also have a tropical component that appears to be independent of interannual variations. An oceanic connection can be seen between subsurface anomalies in the midlatitudes, in the subtropics and tropics on decadal time scales. Subsurface thermal anomalies associated with midlatitude decadal variability can propagate through the subtropics into the tropics, which may modulate the intensity of interannual variability in the tropics. For example, in the middle and late 1970s, a significant warm temperature anomaly appeared to penetrate into the western and central tropics at depth, warming the tropical upper ocean and depressing the thermocline. During the development of El Niño, therefore, an extratropically preconditioned subsurface state (e.g., an enhanced positive heat content anomaly) in the western and central tropical Pacific would favor a warmer sea surface temperature anomaly in the eastern equatorial Pacific, potentially increasing the intensity of ocean-atmosphere coupling. These changes in the thermocline structure and possibly in the coupling strength can further alter the very character of tropical air-sea interactions. This may help to explain decadal variability of El Niño evolution in the tropical Pacific as observed in the 1980s. Our subsurface variability analysis presents observational evidence for the detailed space-time structure of decadal oceanic links between the extratropics and the tropics.  相似文献   

9.
East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May–June, MJ) and late summer (July–August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979–1994) to a tripole-like pattern in post-95 epoch (1995–2010); the prevailing period of the corresponding principal component has also changed from 3–5 to 2–3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.  相似文献   

10.
Record-breaking heavy and persistent precipitation occurred over the Yangtze River Valley (YRV) in June-July (JJ) 2020. An observational data analysis has indicated that the strong and persistent rainfall arose from the confluence of southerly wind anomalies to the south associated with an extremely strong anomalous anticyclone over the western North Pacific (WNPAC) and northeasterly anomalies to the north associated with a high-pressure anomaly over Northeast Asia. A further observational and modeling study has shown that the extremely strong WNPAC was caused by both La Ni?a-like SST anomaly (SSTA) forcing in the equatorial Pacific and warm SSTA forcing in the tropical Indian Ocean (IO). Different from conventional central Pacific (CP) El Ni?os that decay slowly, a CP El Ni?o in early 2020 decayed quickly and became a La Ni?a by early summer. This quick transition had a critical impact on the WNPAC. Meanwhile, an unusually large area of SST warming occurred in the tropical IO because a moderate interannual SSTA over the IO associated with the CP El Ni?o was superposed by an interdecadal/long-term trend component. Numerical sensitivity experiments have demonstrated that both the heating anomaly in the IO and the heating anomaly in the tropical Pacific contributed to the formation and maintenance of the WNPAC. The persistent high-pressure anomaly in Northeast Asia was part of a stationary Rossby wave train in the midlatitudes, driven by combined heating anomalies over India, the tropical eastern Pacific, and the tropical Atlantic.  相似文献   

11.
热带西太平洋海温异常对东北亚阻塞形势影响的数值模拟   总被引:6,自引:0,他引:6  
本文利用IAP-AGCM模拟研究了实测海温异常和热带西太平洋假想海温异常对夏季东亚地区环流异常的影响,并与观测结果进行了比较,籍此间接地研究了海温异常对东北亚阻塞形势的影响。首先,利用1980年实测海温异常,分三种试验(全球海温异常试验、热带海温异常试验、热带外海温异常试验)模拟了该年7月和8月的大气环流异常,指出海温异常是致使东北亚阻塞形势得以形成和维持的一个重要原因,同时也表明在对东亚大气环流异常型的影响方面,热带海温异常比热带经温异常更为重要。此外,我们还模拟研究了热带西太平洋的假想海温异常对东亚大气环流异常的影响,表明了热带西太平浃海温负异常对东北亚阻塞形势形成和维持有着重要作用  相似文献   

12.
The mechanism of the South Pacific Ocean Dipole (SPOD) mode is examined, using a 50-year simulation of the Climate Forecast System, version 2 (CFSv2) and 50-year observation-based ocean–atmosphere analyses (1961–2010). It is shown that the SPOD, a sea surface temperatures (SST) seesaw between the subtropics and extratropics, is the dominant mode of the interannual variability in the South Pacific in both observations and CFSv2 simulation. CFSv2 also reproduces the seasonal phase-locking of the observed SPOD, with the anomaly pattern developing in austral spring, peaking in summer, and decaying in autumn. Composite analyses based on both observational and model data suggest that in the warm phase of SPOD, positive SST anomaly (SSTA) is initiated by weakened westerly winds over the central South Pacific in austral spring, which suppress the surface evaporative heat loss and reduce the oceanic mixed layer depth, both contributing to the SST warming. The wind-SST-mixed layer anomalies then evolve coherently over the next two seasons while the cold SSTA develops to the north. The wind perturbations are in turn a response to El Niño-Southern Oscillation (ENSO), which forces an atmospheric planetary wave train, the Pacific-South American pattern, emanating from an anomalous heat source in the tropical western Pacific. Moreover, SPOD is significantly correlated with the southern annular mode (SAM) while the latter is also significantly correlated with the ENSO index. This suggests that ENSO’s influence on the SPOD may be partially conveyed through SAM.  相似文献   

13.
利用改进的NCAR CCM3气候模式, 研究了1992年西北太平洋持续冷海温对东亚初夏季节大气环流的影响。西北太平洋冷海温不利于初夏东亚南支西风急流季节性北移, 引起亚洲东部沿海低槽明显加深, 东亚大槽平均高度场降低了4.66 dagpm, 从而也不利于西太平洋副热带高压的西伸加强。西北太平洋冷海温还不利于我国大陆初夏温度场回升, 特别是引起我国东北地区近地面温度下降2~5 ℃, 是影响东北冷夏现象的重要原因之一。模拟结果表明, 1992年初夏江淮入梅期较常年偏晚, 降水异常偏少, 与紧邻东亚大陆的西北太平洋持续冷海温有关。  相似文献   

14.
长江梅雨的长期变率与海洋的关系及其可预报性研究   总被引:4,自引:0,他引:4  
采用最新发布的梅雨国家标准资料,以长江区域梅雨为代表,在分析区域梅雨的多时间尺度变化特征的基础上,从海洋外强迫影响因子角度探讨了梅雨的可预报性来源,进一步综合海洋背景变率和预测模型回报试验讨论梅雨异常的可预报性。结果表明:(1)长江梅雨呈现周期为3-4、6-8、12-16、32、64 a的多时间尺度变化分量和长期减少趋势。其中,3-4 a准周期变化是梅雨异常变化的主要分量。梅雨的干湿位相转变受12-16 a的准周期变化调制,极端涝年易出现在12-16 a准周期变化湿位相和3-4 a变化分量峰值位相叠加的情况。(2)长江梅雨的各准周期变化分量有不同的海洋外强迫背景,是梅雨可预报性的重要来源。与时间尺度较短的年际变化分量相关联的海温关键区主要分布于热带,而与时间尺度较长的年代际或多年代际变化分量相联系的海温关键区则来自中高纬度。3-4 a准周期变化分量的海洋外强迫强信号随季节变化由前冬的ENSO(厄尔尼诺-南方涛动)转为春末夏初的印度洋偶极子(IOD)。6-8和12-16 a年准周期变化分量的海洋强迫关键区主要位于太平洋。准32和准64 a周期振荡则受北太平洋多年代际变化(PDO)和北大西洋多年代际变化(AMO)的共同影响。梅雨的长期变化趋势则与全球变暖背景及以PDO为代表的年代际海洋外强迫因子相联系。(3)尽管梅雨异常与ENSO的正相关关系呈现减弱趋势,但20世纪70年代以后的梅雨异常年际变化分量的可预报性有所增大。(4)将梅雨各变化分量作为预测对象分别建模,进一步构建梅雨异常预测统计模型。采用该模型对近5年梅雨预测进行独立样本检验,有较好的回报效果,验证了梅雨异常年际分量可预报性的稳定性以及基于多时间尺度分离建立梅雨预测模型的优越性。   相似文献   

15.
Prediction of the Pacific sea surface temperature (SST) anomaly in the coming decades is a challenge as the SST anomaly changes over time due to natural and anthropogenic climate forcing. The climate changes in the mid-1970s and late-1990s were related to the decadal Pacific SST variability. The changes in the mid-1970s were associated with the positive phase of decadal El Niño-Southern Oscillation (ENSO)-like SST variation, and the changes in the late-1990s were related to its negative phase. However, it is not clear whether this decadal SST variability is related to any external forcing. Here, we show that the effective solar radiation (ESR), which includes the net solar radiation and the effects of volcanic eruption, has modulated this decadal ENSO-like oscillation. The eastern Pacific warming (cooling) associated with this decadal ENSO-like oscillation over the past 139 years is significantly related to weak (strong) ESR. The weak ESR with strong volcanic eruption is found to strengthen the El Niño, resulting in an El Niño-like SST anomaly on the decadal time scale. The strong eruptions of the El Chicho’n (1982) and Pinatubo (1991) volcanoes reduced the ESR during the 1980s and 1990s, respectively. The radiation reduction weakened the Walker circulation due to the “ocean thermostat” mechanism that generates eastern Pacific warming associated with a decadal El Niño-like SST anomaly. This mechanism has been confirmed by the millennium run of ECHO-G model, in which the positive eastward gradient of SST over the equatorial Pacific was simulated under the weak ESR forcing on the decadal time scale. We now experience a reversal of the trend in the ESR. The strong solar radiation and lack of strong volcanic eruptions over the past 15 years have resulted in strong ESR, which should enhance the Walker circulation, leading to a La Niña-like SST anomaly.  相似文献   

16.
山东省夏季极端高温异常气候变化特征分析   总被引:5,自引:0,他引:5  
运用REOF、9点二项式平滑滤波、累计距平、合成分析等方法,对山东省夏季极端高温的年代际变化、异常空间分布、时间演变特征、与赤道东太平洋海温异常的关系进行了较为详细的诊断分析,结果表明:从20世纪50年代到90年代,山东省夏季极端高温大部分地区是降低的,80年代降到最低,90年代有所回升,且在60年代末70年代初,大部分地区发生了一次由高向低的转折性变化;容易出现异常的区域为鲁西北、鲁西南、鲁南的临沂地区和山东半岛地区中部;与赤道东太平洋海温主要为负相关关系,前期为暖(冷)水期时,极端高温偏低(偏高),高温日数减少(增多)。  相似文献   

17.
利用Hadley中心的海表温度资料、全国160站降水资料以及NCEP-DOE AMIP-Ⅱ再分析等资料,运用多种统计分析方法,分析了春季(3—5月)热带大西洋北部海温异常变化特征及其对我国盛夏(7、8月)降水异常的影响。结果表明:春季热带大西洋北部模态是热带大西洋海温异常REOF分解的第一模态,方差贡献率为34.5%。热带大西洋北部海温异常年际变率具有明显的季节差异,其中春季最为显著。春季热带大西洋北部海温异常与我国盛夏华中地区降水异常有显著的正相关关系。进一步分析表明,春季热带大西洋北部的海温正异常可以激发出Rossby波,在热带大西洋西北部和热带东太平洋北部产生异常的气旋式环流,引起上述区域的对流层低层(上层)大气出现异常辐合(辐散),并通过热带大西洋北部地区和太平洋之间的垂直环流异常,在中太平洋地区对流层低层大气出现异常辐散,有利于西北太平洋地区产生异常反气旋式环流,异常反气旋西北侧的西南气流有利于水汽输送至我国华中地区,使该地区降水偏多。且这种影响可以通过热带大西洋北部海温异常的持续性,从春季一直持续到盛夏。   相似文献   

18.
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH) and the East Asian westerly jet(EAJ) in summer on interannual timescales. The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward) extension of the WNPSH and the southward(northward) shift of the EAJ, which is consistent with the general correspondence between their variations. The out-of-phase configuration includes the residual cases. We find that the in-phase configuration manifests itself as a typical meridional teleconnection. For instance, there is an anticyclonic(cyclonic) anomaly over the tropical western North Pacific and a cyclonic(anticyclonic) anomaly over the mid-latitudes of East Asia in the lower troposphere. These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ. By contrast, for the out-of-phase configuration, the mid-latitude cyclonic(anticyclonic) anomaly is absent, and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension. Correspondingly, significant rainfall anomalies move northward to North China and the northern Korean Peninsula. Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO, with strong and significant sea surface temperature(SST) anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter. This is sharply different from the in-phase configuration, for which the tropical SSTs are not a necessity.  相似文献   

19.
A climate regime shift (CRS) in the Pacific sea surface temperature (SST) pattern was identified in 1996/1997. This decadal SST change is characterized by a warming over the equatorial western Pacific (EWP) and mid-latitude North and South Pacific and a cooling in the equatorial central Pacific (ECP). The large-scale atmospheric circulation change associated with this CRS exhibits a pair of low-level anticyclonic (cyclonic) gyres off the EWP (ECP) and a zonal-vertical overturning circulation anomaly along the equator. Both the empirical orthogonal function and singular vector decomposition analyses indicate that the CRS signal in 1996/1997 is robust. A mixed layer heat budget analysis suggests that the abrupt change of SST in the EWP and ECP is attributed to different physical processes. The abrupt warming over the EWP was initiated by a short wave radiation (SWR) anomaly in association with a preceding warming in the ECP. The cooling in the ECP happened about 6 months later than that of the EWP and was primarily attributed to anomalous oceanic zonal and vertical temperature advections.  相似文献   

20.
Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land–sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号