首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In the context of the EU-Project BALANCE () the regional climate model REMO was used for extensive calculations of the Barents Sea climate to investigate the vulnerability of this region to climate change. The regional climate model REMO simulated the climate change of the Barents Sea Region between 1961 and 2100 (Control and Climate Change run, CCC-Run). REMO on ~50 km horizontal resolution was driven by the transient ECHAM4/OPYC3 IPCC SRES B2 scenario. The output of the CCC-Run was applied to drive the dynamic vegetation model LPJ-GUESS. The results of the vegetation model were used to repeat the CCC-Run with dynamic vegetation fields. The feedback effect of the modified vegetation on the climate change signal is investigated and discussed with focus on precipitation, temperature and snow cover. The effect of the offline coupled vegetation feedback run is much lower than the greenhouse gas effect.  相似文献   

2.
There is considerable interest in the potential impact of climate change on the feasibility and predictability of renewable energy sources including wind energy. This paper presents dynamically downscaled near-surface wind fields and examines the impact of climate change on near-surface flow and hence wind energy density across northern Europe. It is shown that: Simulated wind fields from the Rossby Centre coupled Regional Climate Model (RCM) (RCAO) with boundary conditions derived from ECHAM4/OPYC3 AOGCM and the HadAM3H atmosphere-only GCM exhibit reasonable and realistic features as documented in reanalysis data products during the control period (1961–1990). The near-surface wind speeds calculated for a climate change projection period of 2071–2100 are higher than during the control run for two IPCC emission scenarios (A2, B2) for simulations conducted using boundary conditions from ECHAM4/OPYC3. The RCAO simulations conducted using boundary conditions from ECHAM4/OPYC3 indicate evidence for a small increase in the annual wind energy resource over northern Europe between the control run and climate change projection period and for more substantial increases in energy density during the winter season. However, the differences between the RCAO simulations for the climate projection period and the control run are of similar magnitude to differences between the RCAO fields in the control period and the NCEP/NCAR reanalysis data. Additionally, the simulations show a high degree of sensitivity to the boundary conditions, and simulations conducted using boundary conditions from HadAM3H exhibit evidence of slight declines or no change in wind speed and energy density between 1961–1990 and 2071–2100. Hence, the uncertainty of the projected wind changes is relatively high.  相似文献   

3.
Cyclone activity and life cycle are analysed in the coupled GCMs ECHAM5/OM and ECHAM4/OPYC3. First, the results for the present climate (1978–1999) are compared with ERA-40 and NCEP/NCAR reanalyses, showing a drastic improvement in the representation of cyclone activity in ECHAM5/OM compared to ECHAM4/OPYC3. The total number of cyclones, cyclone intensity, propagation velocity and deepening rates are found to be much more realistic in ECHAM5/OM relative to ECHAM4/OPYC3. Then, changes in extra tropical cyclone characteristics are compared between present day climate and future climate under the emission-scenario A1B using ECHAM5/OM. This comparison is performed using the 20-year time slices 1978–1999, 2070–2090 and 2170–2190, which were considered to be representative for the various climate conditions. The total number of cyclones does not undergo significant changes in a warmer climate. However, regional changes in cyclone numbers and frequencies are evident. One example is the Mediterranean region where the number of cyclones in summer increases almost by factor 2. Some noticeable changes are also found in cyclone life cycle characteristics (deepening rate and propagation velocity). Cyclones in the future climate scenario tend to move slower and their deepening rate becomes stronger, while cyclone intensity does not undergo significant change in a warmer climate. Generally, our results do not support the hypothesis of enhanced storminess under future climate conditions.  相似文献   

4.
Evaluation of East Asian climatology as simulated by seven coupled models   总被引:27,自引:0,他引:27  
Using observation and reanaiysis data throughout 1961-1990, the East Asian surface air temperature, precipitation and sea level pressure climatology as simulated by seven fully coupled atmosphere-ocean models, namely CCSR/NIES, CGCM2, CSIRO-Mk2, ECHAM4/OPYC3, GFDL-R30, HadCM3, and NCARPCM, axe systematically evaluated in this study. It is indicated that the above models can successfully reproduce the annual and seasonal surface air temperature and precipitation climatology in East Asia, with relatively good performance for boreal autumn and annual mean. The models‘ ability to simulate surface air temperature is more reliable than precipitation. In addition, the models can dependably capture the geographical distribution pattern of annual, boreal winter, spring and autumn sea level pressure in East Asia. In contrast, relatively large simulation errors axe displayed when simulated boreal summer sea level pressure is compaxed with reanalysis data in East Asia. It is revealed that the simulation errors for surface air temperature, precipitation and sea level pressure axe generally large over and around the Tibetan Plateau. No individual model is best in every aspect. As a whole, the ECHAM4/OPYC3 and HadCM3 performances axe much better, whereas the CGCM2 is relatively poorer in East Asia. Additionally, the seven-model ensemble mean usually shows a relatively high reliability.  相似文献   

5.
Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI für Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations.  相似文献   

6.
A basic analysis is presented for a series of regional climate change simulations that were conducted by the Swedish Rossby Centre and contribute to the PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects) project. For each of the two driving global models HadAM3H and ECHAM4/OPYC3, a 30-year control run and two 30-year scenario runs (based on the SRES A2 and B2 emission scenarios) were made with the regional model. In this way, four realizations of climate change from 1961–1990 to 2071–2100 were obtained. The simulated changes are larger for the A2 than the B2 scenario (although with few qualitative differences) and in most cases in the ECHAM4/OPYC3-driven (RE) than in the HadAM3H-driven (RH) regional simulations. In all the scenario runs, the warming in northern Europe is largest in winter or late autumn. In central and southern Europe, the warming peaks in summer when it locally reaches 10 °C in the RE-A2 simulation and 6–7 °C in the RH-A2 and RE-B2 simulations. The four simulations agree on a general increase in precipitation in northern Europe especially in winter and on a general decrease in precipitation in southern and central Europe in summer, but the magnitude and the geographical patterns of the change differ markedly between RH and RE. This reflects very different changes in the atmospheric circulation during the winter half-year, which also lead to quite different simulated changes in windiness. All four simulations show a large increase in the lowest minimum temperatures in northern, central and eastern Europe, most likely due to reduced snow cover. Extreme daily precipitation increases even in most of those areas where the mean annual precipitation decreases.  相似文献   

7.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式的结果,对中国地区实际温室气体浓度下当代气候(1981—2000年)及IPCC A1B情景下21世纪中期气候(2041—2060年)分别进行了水平分辨率为50 km的模拟试验。首先检验全球和区域模式对当代气候的模拟情况,结果表明:区域模式对中国地区地面温度和降水空间分布的模拟能力优于全球模式;与实际观测相比,区域模式模拟的地面温度在中国大部分地区偏低,模拟的降水量偏多,降水位置偏北。IPCCA1B情景下中国地区21世纪中期气候变化的模式结果显示:各季节地面温度在全国范围内都将比当代升高1.2~3.9℃,且升温幅度具有北方大于南方、冬季大于夏季的时空分布特征;降水变化具有一定的区域性和季节性,秋季和冬季降水在全国大部分地区都将增加10%~30%,春季和夏季降水则呈现"北方减少、南方增多"的趋势,变化幅度在-10%~10%之间。21世纪中期地面温度和降水变化还具有一定的年际特征:地面温度在中国地区各子区域均表现为上升趋势,升温速率在0.7~0.9℃/10a之间,温度变率也比当代有所增大;降水在西北地区略呈下降趋势,在其它子区域均为上升,降水变率的变化具有区域性特征。  相似文献   

8.
德国马普研究所海气耦合摸式ECHAM4/OPYC3对东亚地区2 m温度年循环的模拟尽管有一些偏差,但还是相当成功的.其模拟的东亚夏季风偏弱,而冬季风偏强,此偏差可能与2 m温度以及西太平洋副热带高压模拟偏差有关.该模式模拟的东亚季风区夏季降水量偏弱,这与上述夏季风环流的模拟结果是一致的.该模式较好地抓住了华北地区经向环流和降水量的年循环特征.利用最新的温室气体和SO2排放方案,即政府间气候变化委员会(IPCC)排放方案特别报告(SRES)的A2和B2方案,通过该模式111年的积分结果讨论了东亚季风气候在21世纪后30年中的变化,其主要结果为:全球变暖导致夏季海陆温差增大和冬季海陆温差减弱,进而使东亚季风环流在夏季加强,冬季减弱.长江流域和华北地区的夏季降水量显著增强,而后者的增强更为显著,使得东亚季风区的夏季多雨区向北延伸;东亚季风区9月份的降水量在两个方案中都显著增加,说明在全球变暖条件下东亚季风区的多雨季节将延迟一个月.  相似文献   

9.
A method for adjusting dynamically downscaled precipitation and temperature scenarios representing specific sites is presented. The method reproduces mean monthly values and standard deviations based on daily observations. The trend obtained in the regional climate model both for temperature and precipitation is maintained, and the frequency of modelled and observed rainy days shows better agreement. Thus, the method is appropriate for tailoring dynamically downscaled temperature and precipitation values for climate change impact studies. One precipitation and temperature scenario dynamically downscaled with HIRHAM from the Atmospheric-Ocean General Circulation Model at the Max-Planck Institute in Hamburg, ECHAM4/OPYC4 GSDIO with emission scenario IS92a, is chosen to illustrate the adjustment method.  相似文献   

10.
In this study the global coupled atmosphere-ocean general circulation model ECHAM2/OPYC and its performance in simulating the present-day climate is presented. The model consists of the T21-spectral atmosphere general circulation model ECHAM2 and the ocean general circulation model OPYC with a resolution corresponding to a T42 Gaussian grid, with increasing resolution towards the equator. The sea-ice is represented by a dynamic thermodynamic sea-ice model with rheology. Both models are coupled using the flux correction technique. With the coupled model ECHAM2/OPYC a 210-year integration under present-day greenhouse gas conditions has been performed. The coupled model simulates a realistic mean climate state, which is close to the observations. The model generates several ENSO events without external forcing. Using traditional and advanced (POP-technique) methods these ENSO events have been analyzed. The results are consistent with the delayed action oscillator theory. The model simulates both a tropical and an extra-tropical response to ENSO, which are in good agreement with observations.  相似文献   

11.
Summary ?Monthly precipitation data from the Global Historical Climatology Network for 42 stations in Morocco and its vicinity are investigated with respect to baroclinicity, storm track and cyclone activity, moisture transports, North Atlantic Oscillation (NAO) variations, and different circulation types by means of correlation and composite studies. The results are related to a climate change scenario from an ECHAM4/OPYC3 transient greenhouse gas only (GHG) simulation. Precipitation in northwestern Morocco shows a clear link to the baroclinic activity over the North Atlantic during boreal winter (DJF). In large precipitation months the North Atlantic storm track is shifted southward, more westerly and northwesterly circulation situations occur and moisture transports from the Atlantic are enhanced. The occurrence of local cyclones and upper-level troughs is more frequent than in low precipitation months. The negative correlation to the NAO is relatively strong, especially with Gibraltar as a southern pole (−0.71). The northward shift of the storm track and eastward shift of the Azores High predicted by the ECHAM model for increasing GHG concentrations would therefore be associated with decreasing precipitation and potentially serious impacts for the future water supply for parts of Morocco. In the region south of the Atlas mountains, moisture transports from the Atlantic along the southern flank of the Atlas Mountains associated with cyclones west of Morocco and the Iberian Peninsula can be identified as a decisive factor for precipitation. Northeastern Morocco and Northwestern Algeria, however, is rather dominated by the influence of cyclones over the Western Mediterranean that are associated with a strong northwesterly moisture transport. As both regions appear to be less dependent on the North Atlantic storm track and more on local processes, a straight forward interpretation of the large-scale changes predicted by the ECHAM4/OPYC3 cannot be done without the application of down-scaling methods in the future. Received July 19, 2001; revised May 31, 2002  相似文献   

12.
B. Yu  G. J. Boer 《Climate Dynamics》2006,26(7-8):801-821
Based on the surface energy budget, the sea surface temperature (SST) variance is related to the product of three factors: the sum of the variances of surface radiative and turbulent energy fluxes and of ocean heat transport, an efficiency factor depending on the covariances among them, and a transfer factor involving the persistence of surface temperature via its lagged autocorrelation. These quantities are analyzed for current climate conditions based on results from the NCEP/NCAR reanalyses and a simulation with the CCCma coupled climate model. Potential changes with climate change are considered based on two quasi-equilibrium climate change integrations for which the forcing has been stabilized at years 2050 and 2100 values of the IS92a forcing scenario. The surface energy fluxes, which contribute to the variance of SST, are similar in the modelled and reanalyzed atmosphere but modelled temperature variance is conditioned on the thickness of the upper ocean model layer. Changes of SST variance with global warming show broad scale patterns with decreases in the tropical central-eastern Pacific and the northern extra-tropical Pacific, and increases in both the sub-tropical Pacific and mid-latitudes of the North Atlantic. The changes in SST variance are not associated only with changes in the variances of surface energy fluxes/transports but also with changes in the covariances among them and by changes in the temperature autocorrelation structure.  相似文献   

13.
An ensemble of six 22-year numerical experiments was conducted to quantify the response of soil moisture to multiple climate change scenarios over the American Midwest. Regional Climate Model version 3 (RegCM3) was run using two surface physics schemes: Integrated Biosphere Simulator (IBIS) and Biosphere-Atmosphere Transfer Scheme 1e (BATS1e); and two convective closure assumptions: Fritsch and Chappell and Arakawa and Schubert. Experiments were forced with a surrogate climate change scenario constructed using the National Centers for Environmental Prediction-Department of Energy Reanalysis 2 dataset and the ECHAM5 A1B climate change scenario. RegCM3-IBIS and RegCM3-BATS1e simulate increased two-meter air temperature and downward longwave radiation throughout the year under both climate change scenarios. While differences in shortwave radiation are relatively small; some model configurations and climate change scenarios produce additional precipitation, evapotranspiration, and total runoff during the spring and summer. Soil moisture is unchanged or increased throughout the growing season as enhanced rainfall offsets greater evaporative demand. Negligible drying in root zone soil moisture is found in all climate change experiments conducted, regardless of surface physics scheme, boundary conditions, or convective closure assumption.  相似文献   

14.
This paper reviews recent progress in climate change attribution studies. The focus is on the attribution of observed long-term changes in surface temperature, precipitation, circulation, and extremes, as well as that of specific extreme weather and climate events. Based on new methods and better models and observations, the latest studies further verify the conclusions on climate change attribution in the IPCC AR5, and enrich the evidence for anthropogenic influences on weather and climate variables and extremes. The uncertainty of global temperature change attributable to anthropogenic forcings lies in the considerable uncertainty of estimated total radiative forcing due to aerosols, while the uncertainty of precipitation change attribution arises from the limitations of observation and model simulations along with influences from large internal variability. In terms of extreme weather and climate events, it is clear that attribution studies have provided important new insights into the changes in the intensity or frequency of some of these events caused by anthropogenic climate change. The framing of the research question, the methods selected, and the model and statistical methods used all have influences on the results and conclusions drawn in an event attribution study. Overall, attribution studies in China remain inadequate because of limited research focus and the complexity of the monsoon climate in East Asia. Attribution research in China has focused mainly on changes or events related to temperature, such as the attribution of changes in mean and extreme temperature and individual heat wave events. Some progress has also been made regarding the pattern of changes in precipitation and individual extreme rainfall events in China. Nonetheless, gaps remain with respect to the attribution of changes in extreme precipitation, circulation, and drought, as well as to the event attribution such as those related to drought and tropical cyclones. It can be expected that, with the continual development of climate models, ongoing improvements to data, and the introduction of new methods in the future, climate change attribution research will develop accordingly. Additionally, further improvement in climate change attribution will facilitate the development of operational attribution systems for extreme events, as well as attribution studies of climate change impacts.  相似文献   

15.
使用维多利亚大学的地球系统模式进行模拟,选取1800-2500年间较高的CO2浓度情景(RCP8.5),分析由于CO2增加引起的气候变化对海洋碳循环的影响。当气候敏感度为3.0 K时,相对于无气候变化,到2100年,由于大气CO2增加造成的气候变化导致海表面温度升高2.7 K,北大西洋深水流量减少4.5 Sv,海洋对人为碳的年吸收减少0.8 Pg C;比较人为溶解无机碳在海洋中的垂直累积分布,发现气候变化对海洋吸收大气CO2的影响在北大西洋区域最明显。1800-2500年,相对于不考虑气候变化的情景,模式模拟的气候变化导致整个海洋对人为碳的累积吸收总量减少23.1%,其中北大西洋减少32.0%。此外,比较不同气候敏感度(0~4.5 K,间隔为0.5 K)的模拟结果发现,气候敏感度越高,气候变化对海洋吸收CO2能力的抑制作用越明显。  相似文献   

16.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

17.
Deep-ocean heat uptake and equilibrium climate response   总被引:2,自引:0,他引:2  
We integrate the coupled climate model ECHAM5/MPIOM to equilibrium under atmospheric CO2 quadrupling. The equilibrium global-mean surface-temperature change is 10.8 K. The surface equilibrates within about 1,200 years, the deep ocean within 5,000 years. The impact of the deep ocean on the equilibrium surface-temperature response is illustrated by the difference between ECHAM5/MPIOM and ECHAM5 coupled with slab ocean model (ECHAM5/SOM). The equilibrium global-mean surface temperature response is 11.1 K in ECHAM5/SOM and is thus 0.3 K higher than in ECHAM5/MPIOM. ECHAM5/MPIOM shows less warming over the northern-hemisphere mid and high latitudes, but larger warming over the tropical ocean and especially over the southern-hemisphere high latitudes. ECHAM5/MPIOM shows similar polar amplification in both the Arctic and the Antarctic, in contrast to ECHAM5/SOM, which shows stronger polar amplification in the northern hemisphere. The southern polar warming in ECHAM5/MPIOM is greatly delayed by Antarctic deep-ocean warming due to convective and isopycnal mixing. The equilibrium ocean temperature warming under CO2 quadrupling is around 8.0 K and is near-uniform with depth. The global-mean steric sea-level rise is 5.8 m in equilibrium; of this, 2.3 m are due to the deep-ocean warming after the surface temperature has almost equilibrated. This result suggests that the surface temperature change is a poor predictor for steric sea-level change in the long term. The effective climate response method described in Gregory et al. (2004) is evaluated with our simulation, which shows that their method to estimate the equilibrium climate response is accurate to within 10 %.  相似文献   

18.
We examine the simulated future change of the North Atlantic winter climate influenced by anthropogenic greenhouses gases and sulfate aerosol. Two simulations performed with the climate model ECHAM4/OPYC3 are investigated: a simulation forced by greenhouse gases and a simulation forced by greenhouse gases and sulfate aerosol. Only the direct aerosol effect on the clear-sky radiative fluxes is considered. The sulfate aerosol has a significant impact on temperature, radiative quantities, precipitation and atmospheric dynamics. Generally, we find a similar, but weaker future climate response if sulfate aerosol is considered additionally. Due to the induced negative top-of-the-atmosphere radiative forcing, the future warming is attenuated. We find no significant future trends in North Atlantic Oscillation (NAO) index in both simulations. However, the aerosol seems to have a balancing effect on the occurence of extreme NAO events. The simulated correlation patterns of the NAO index with temperature and precipitation, respectively, agree well with observations up to the present. The extent of the regions influenced by the NAO tends to be reduced under strong greenhouse gas forcing. If sulfate is included and the warming is smaller, this tendency is reversed. Also, the future decrease in baroclinicity is smaller due to the aerosols’ cooling effect and the poleward shift in track density is partly offset. Our findings imply that in simulations where aerosol cooling is neglected, the magnitude of the future warming over the North Atlantic region is overestimated, and correlation patterns differ from those based on the future simulation including aerosols.  相似文献   

19.
Previous studies have shown that there are several indices of global-scale temperature variations, in addition to global-mean surface air temperature, that are useful for distinguishing natural internal climate variations from anthropogenic climate change. Appropriately defined, such indices have the ability to capture spatio-temporal information in a similar manner to optimal fingerprints of climate change. These indices include the contrast between the average temperatures over land and over oceans, the Northern Hemisphere meridional temperature gradient, the temperature contrast between the Northern and Southern Hemisphere and the magnitude of the annual cycle of average temperatures over land. They contain information independent of the global-mean temperature for internal climate variations at decadal time scales and represent different aspects of the climate system, yet they show common responses to anthropogenic climate change. In addition, the ratio of average temperature changes over land to those over the oceans should be nearly constant for transient climate change. Hence, supplementing analysis of global-mean surface temperature with analyses of these indices can strengthen results of attribution studies of causes of observed climate variations. In this study, we extend the previous work by including the last 10 years of observational data and the CMIP3 climate model simulations analysed for the IPCC AR4. We show that observed changes in these indices over the last 10 years provide increased evidence of an anthropogenic influence on climate. We also show the usefulness of these indices for evaluating the performance of climate models in simulating large-scale variability of surface temperature.  相似文献   

20.
Regional climate models(RCMs) can provide far more precise information than general circulation models(GCMs).However,RCMs depend on GCM results or re-analysis products providing boundary conditions,especially for future climate scenarios.Meanwhile,the capacity of RCMs to reproduce precipitation is strongly connected to its performance on circulation and moisture transport simulations in the low troposphere,which is the key problem with RCMs at present.In the Regional Climate Model Inter-comparison Project for East Asia(RMIP III),the results of ECHAM5/MPI-OM(the European Centre-Hamburg model version 5/Max Planck Institute Ocean Model,simplified as E5OM here) are used to drive RCMs for the past(1978?2000) climate simulation and future(2038?70) climate scenarios.Therefore,it is necessary to test E5OM’s ability to represent atmospheric circulation,which defines the large-scale circulation for RCMs.Here,comparisons between the E5OM results and NCEP/NCAR(simplified as NCEP) re-analysis data in the low troposphere for the years 1978 to 2000 are performed.The results show that E5OM results can generally reproduce atmospheric circulations in the low troposphere.However,differences can be detected in East Asian summer and winter monsoon simulations.For summer,there is an anti-cyclone circulation for the difference of wind vector at 850 hPa in Southeast China,the Indo-China Peninsula,the South China Sea,and the northwestern Pacific.For winter,due to the weaker northwesterly wind in Northeast Asia,the northeasterly wind from the Indo-China Peninsula to Taiwan in E5OM extends northward with greater intensity than that in NCEP.These differences will have a considerable influence on the low level atmospheric circulation and water vapor transport as well as the location and intensity of the precipitation.Therefore,when E5OM results are to be used as initial and boundary conditions to drive RCMs,the differences between NCEP and E5OM should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号