首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于RS和GIS的黑龙江省积雪时空变化研究   总被引:1,自引:0,他引:1  
以黑龙江省为研究区域,以风云三号气象卫星遥感数据资料为基础,通过对FY-3 A和FY-3 B的VIRR波段特性的深入分析,对2013~2015年多期FY-3A和FY-3B的VIRR遥感影像提取出黑龙江省多期积雪数据,进行黑龙江省积雪时空变化监测研究,结合RS和GIS技术对其进行了分析并得出结论,对了解其时空分布特征及变化规律,对于促进该区的工农业生产和生态环境保护都具有十分重要的意义。  相似文献   

2.
阚希  张永宏  曹庭  王剑庚  田伟 《测绘学报》2016,45(10):1210-1221
青藏高原积雪对全球气候变化十分重要,针对已有积雪遥感判识方法中普遍采用的可见光与红外光谱数据易受复杂地形与高海拔影响,导致青藏高原地区积雪判识精度较低的问题,提出了一种基于多光谱遥感与地理信息数据特征级融合的积雪遥感判识方法:以风云三号卫星可见光与红外多光谱遥感资料与多要素地理信息作为数据源,由地面实测雪深数据与现有积雪产品交叉筛选出样本标签,构建并训练基于层叠去噪自编码器(SDAE)的特征融合与分类网络,从而有效辨识青藏高原遥感图像中的云、积雪以及无雪地表。经地面实测雪深数据验证,该方法分类精度显著高于使用相同数据源的FY-3A/MULSS积雪产品,略高于国际主流积雪产品MOD10A1与MYD10A1,并且年均云覆盖率最低。试验结果表明该方法可有效地减少云层对积雪判识的干扰,提升分类精度。  相似文献   

3.
风云三号C星(FY-3C)可见光红外扫描辐射计(VIRR)两个红外分裂窗通道数据生成的晴空大气可降水(TPW)产品已投入业务使用。本文介绍了该产品的生成方法,并从产品精度和稳定性两个方面评价产品质量。与MODIS Terra TPW的月平均数据对比,FY-3C VIRR TPW能正确反应大气可降水的全球分布。与2015年3月—4月的全球探空数据对比,FY-3C VIRR TPW均方根误差为5.36 mm,相对误差在水汽值大于30 mm时在20%以内,并且夜间产品精度优于白天。相比于MODIS红外TPW产品与探空数据的误差,FY-3C TPW精度略好。计算2015年1月至2016年7月FY-3C VIRR TPW产品相对探空数据的月均方根误差,19个月均方根误差的标准差是0.54 mm,小于同期MODIS Terra TPW均方根误差的标准差,说明FY-3C VIRR TPW产品在检验时期内更稳定。FY-3C VIRR TPW产品精度较高且质量稳定,具备广泛应用能力。  相似文献   

4.
Four up-to-date daily cloud-free snow products – IMS (Interactive Multisensor Snow products), MOD-SSM/I (combination of the MODIS and SSM/I snow products), MOD-B (Blending method basing on the MODIS snow cover products) and TAI (Terra–Aqua–IMS) – with high-resolutions over the Qinghai-Tibetan Plateau (QTP) were comprehensively assessed. Comparisons of the IMS, MOD-SSM/I, MOD-B and TAI cloud-free snow products against meteorological stations observations over 10 snow seasons (2004–2013) over the QTP indicated overall accuracies of 76.0%, 89.3%, 92.0% and 92.0%, respectively. The Khat values of the IMS, MOD-SSM/I, MOD-B and TAI products were 0.084, 0.463, 0.428 and 0.526, respectively. The TAI products appear to have the best cloud-removal ability among the four snow products over the QTP. Based on the assessment, an I-TAI (Improvement of Terra–Aqua–IMS) snow product was proposed, which can improve the accuracy to some extent. However, the algorithms of the MODIS series products show instability when identifying wet snow and snow under forest cover over the QTP. The snow misclassification is an important limitation of MODIS snow cover products and requires additional improvements.  相似文献   

5.
The Qinghai-Tibetan Plateau (QTP) snow cover information acquisition of the high precision spatial and temporal characteristics is of great significance for the research on its land surface atmosphere coupled system and global climate change effects. The Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow cover products (MOD10A1 and MYD10A1) have been widely used in long time series of spatial and temporal variation analysis, but they are limited to be used because of high cloud cover ratio. In this paper, a 7-day rolling combination algorithm was presented to eliminate cloud obscuration, and the whole cloud amount falls below 7 %. The ground station in situ measurements verify that the overall precision is more than 90 %. The presented algorithm guaranteed the same spatial resolution and temporal resolution, and has higher precision than products MOD10A1 and MYD10A1. The MODIS 7-day rolling combination snow cover datasets products were obtained between 2003 and 2014 in the QTP, and the snow cover area of spatial and temporal variation was analyzed. The change characteristics of snow cover duration was also studied combining with the Digital Elevation Model data. Results show that the snow cover area of the whole QTP has a slowly decreased trend, but increases in autumn. Thus, the snow cover proportion of annual periodic and unstable in different elevations has the highest correlation with area of the elevation.  相似文献   

6.
利用MTSAT-2静止气象卫星数据开展了中国区域的雪盖监测研究,结合MODIS雪盖产品及站点雪深观测数据对判识结果进行对比分析和验证。首先,根据MTSAT-2静止气象卫星数据特点,进行角度效应校正及多时相数据合成,以减少云对图像的影响;其次,根据多个雪盖判识因子建立中国区域雪盖判识算法;最后,对比分析2011年1月份MTSAT-2和MODIS雪盖判识结果,并使用站点观测数据进行精度验证。研究表明:(1)MTSAT-2雪盖判识受云影响比例约30%,MODIS雪盖产品受云影响比例约60%,MTSAT-2去云效果明显。(2)无云情况下,MTSAT-2雪盖判识和MODIS雪盖产品判识精度均高于92%;有云覆盖时,MTSAT-2判识精度约65%,优于MODIS雪盖产品35%的判识精度。(3)MTSAT-2静止气象卫星在保持高积雪判识精度的前提下,可以更有效减少云对雪盖判识影响,实时获取更多地表真实信息。该研究对中国区域雪盖信息准确监测、气候变化研究以及防灾减灾等具有重要意义。  相似文献   

7.
Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau   总被引:1,自引:0,他引:1  
Understanding the relationships between snow and vegetation is important for interpretation of the responses of alpine ecosystems to climate changes. The Qinghai-Tibetan Plateau is regarded as an ideal area due to its undisturbed features with low population and relatively high snow cover. We used 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) datasets during 2001–2010 to examine the snow–vegetation relationships, specifically, (1) the influence of snow melting date on vegetation green-up date and (2) the effects of snow cover duration on vegetation greenness. The results showed that the alpine vegetation responded strongly to snow phenology (i.e., snow melting date and snow cover duration) over large areas of the Qinghai-Tibetan Plateau. Snow melting date and vegetation green-up date were significantly correlated (p < 0.1) in 39.9% of meadow areas (accounting for 26.2% of vegetated areas) and 36.7% of steppe areas (28.1% of vegetated areas). Vegetation growth was influenced by different seasonal snow cover durations (SCDs) in different regions. Generally, the December–February and March–May SCDs played a significantly role in vegetation growth, both positively and negatively, depending on different water source regions. Snow's positive impact on vegetation was larger than the negative impact.  相似文献   

8.
FY-3A MERSI数据干旱监测能力评价   总被引:3,自引:0,他引:3  
对FY-3A MERSI数据进行辐射定标、几何定位预处理,与同期MODIS数据预处理结果进行对比;选用温度植被干旱指数法对两种数据进行监测,分析了监测结果的相对精度。实验结果表明,FY-3A MERSI数据的干旱监测结果精度与MODIS数据基本一致,且在空间分辨率及光谱分辨率方面有较大的提高。  相似文献   

9.
马新园  马刚  王云峰  郭杨  黄静  佟华  钟波 《遥感学报》2017,21(5):679-688
T639-GSI全球系统同化AMSU-A资料的过程中,目前使用的月平均积雪产品并不能反映中高纬度大陆上快速地降雪/融雪过程,而FY-3C日积雪产品在时间精度上要高于GSI月平均积雪覆盖数据。由于同化系统对AMSU-A较低通道辐射率资料的质量控制需要依据更准确的地表积雪信息,所以本文结合冬春季节的FY-3C日积雪产品和NCEP再分析资料,研究了北半球中高纬度地区不同积雪覆盖率初值对分析场不同高度层温度场的影响,以及在同化过程中对预报结果的影响。结果表明,在对AMSU-A辐射率资料的质量控制中,月平均积雪数据和日积雪产品对温度场影响较大的区域与两者积雪覆盖差异区域有明显的对应;冬春季节,使用FY-3C日积雪产品代替GSI月平均积雪数据作为背景场中积雪下垫面数据,对进入同化系统的AMSU-A辐射率资料质量控制时,120 h之内1000—600 h Pa的中低层温度场的预报效果得到改善。  相似文献   

10.
Data from the first operational Chinese geostationary satellite Fengyun-2C (FY-2C) satellite are applied in combination with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products for the assessment of regional evapotranspiration over the North China Plain. The approach is based on the improved triangle method, where the temperature–vegetation index space includes thermal inertia. Two thermal infrared channels from FY-2C are used to estimate surface temperature (Ts) based on a split window algorithm originally proposed for the MSG-SEVIRI sensor. Subsequently the high temporal resolution of FY-2C data is exploited to give the morning rise in Ts. Combined with the 16 days composite MODIS vegetation indices product (MOD13) at a spatial resolution of 5 km, evaporative fraction (EF) is estimated by interpolation in the ΔTs–NDVI triangular-shaped scatter space. Finally, regional actual evapotranspiration (ET) is derived from the evaporative fraction and available energy estimated from MODIS surface albedo products MCD43. Spatial variations of estimated surface variables (Ts, EF and ET) corresponded well to land cover patterns and farmland management practices. Estimated ET and EF also compared well to lysimeter data collected for the period June 2005–September 2007. The improved triangle method was also applied to MODIS products for comparison. Estimates based on FY-2C products proved to provide slightly better results than those based on MODIS products. The consistency of the estimated spatial variation with other spatial data supports the use of FY-2C data for ET estimation using the improved triangle method. Of particular value is the high temporal frequency of image acquisitions from FY-2C which improves the likelihood of obtaining cloud free image acquisitions as compared to polar orbiting sensors like MODIS.  相似文献   

11.
本文简要叙述了利用气象卫星资料进行积雪监测的可行性和复杂性;以改进的甚高分辨率扫描辐射仪(AVHRR)资料为例综述了遥感监测积雪的原理、方法和资料处理过程;分析了计算结果,并探讨了未来积雪监测的发展。  相似文献   

12.
为了满足水文和气象模型对长时段积雪面积数据的需求,基于第二代甚高分辨率辐射计(second series of advanced very high resolution radiometer,AVHRR/2)的10 d合成数据提出了一种青藏高原地区AVHRR/2数据亚像元雪填图算法,将中分辨率遥感数据亚像元级积雪面积数据集延伸至30 a时间跨度。本文算法以多端元线性光谱混合分析模型为基础,以归一化植被指数、第一波段、第二波段等作为选取端元的指标,直接从AVHRR/2图像中自动选取所需雪端元与非雪端元。基于TM数据对该算法的AVHRR/2数据亚像元雪填图结果进行验证,其均方根误差接近0.1,在青藏高原山区具有较高的精度。  相似文献   

13.
基于MODIS影像的内蒙古草原积雪监测   总被引:2,自引:0,他引:2  
光学遥感源MODIS具有高光谱分辨率、高时间分辨率、高空间分辨率、全球范围内免费接收等优势,被广泛应用于洪涝、干旱、森林草原火灾、雪灾等自然灾害的动态监测领域。MODIS数据用于内蒙古草原积雪监测,提取积雪信息在国内尚属空白。本文利用MODIS L1B 500m分辨率数据,经过几何校正、去"双眼皮"预处理,根据归一化差分积雪指数(NDSI)算法和综合阈值判别法对内蒙古自治区2008年1月下旬大范围降雪进行积雪信息提取,制作积雪覆盖图。利用内蒙古生态与农业气象中心发布的雪情遥感监测信息验证积雪覆盖图的准确度。验证结果表明,MODIS数据用于大范围积雪监测非常有效。  相似文献   

14.
Snow cover mapping is important for snow and glacier-related research. The spatial and temporal distribution of snow cover area is a fundamental input to the atmospheric models, snowmelt runoff models and climate models, as well as other applications. Daily snow cover maps from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite were retrieved for the period between 2004 and 2007, and pixels in these images were classified as cloud, snow or snow-free. These images have then been compared with ground snow depth (SD) measurements from the four observatories located at different parts of Himalayas. Comparison of snow maps with in situ data showed good agreement with overall accuracies in between 78.15 and 95.60%. When snow cover was less, MODIS data were found to be less accurate in mapping snow cover region. As the SD increases, the accuracy of MODIS snow cover maps also increases.  相似文献   

15.
Integration of the MODIS Snow Cover Produced Into Snowmelt Runoff Modeling   总被引:1,自引:0,他引:1  
Because of the difficulty of monitoring and measuring snow cover in mountainous watersheds, satellite images are used as an alternative to mapping snow cover to replace the ground operations in the watershed. Snow cover is one of the most important data in simulation snowmelt runoff. The daily snow cover maps are received from Moderate Resolution Imaging Spectroradiometer (MODIS), and are used in deriving the snow depletion curve, which is one of the input parameters of the snowmelt runoff model (SRM). Simulating Snowmelt runoff is presented using SRM model as one of the major applications of satellite images processing and extracting snow cover in the Ghara - Chay watershed. The first results of modeling process show that MODIS snow covered area product can be used for simulation and forecast of snowmelt runoff in Ghara - Chay watershed. The studies found that the SCA results were more reliable in the study area.  相似文献   

16.
Detection, monitoring and precise assessment of the snow covered regions is an important issue. Snow cover area and consequently the amount of runoff generated from snowmelt have a significant effect on water supply management. To precisely detect and monitor the snow covered area we need satellite images with suitable spatial and temporal resolutions where we usually lose one for the other. In this study, products of two sensors MODIS and ASTER both on board of TERRA platform having low and high spatial resolution respectively were used. The objective of the study was to modify the snow products of MODIS by using simultaneous images of ASTER. For this, MODIS snow index image with high temporal resolution were compared with that of ASTER, using regression and correlation analysis. To improve NDSI index two methods were developed. The first method generated from direct comparison of ASTER averaged NDSI with those of MODIS (MODISI). The second method generated by dividing MODIS NDSI index into 10 codes according to their percentage of surface cover and then compared the results with the difference between ASTER averaged and MODIS snow indices (SCMOD). Both methods were tested against some 16 MODIS pixels. It is found that the precision of the MODISI method was more than 96%. This for SCMOD was about 98%. The RMSE of both methods were as good as 0.02.  相似文献   

17.
The MODIS snowcover product is one of many geophysical products derived from MODIS data. A cross‐validation of the MODIS snowcover daily products with data obtained from the meteorological network stations was conducted for the entire territory of Romania. The validation time interval covered the period between 29 October, 2004 and 1 May, 2005. The overall accuracy for the whole set of cloud‐free useful data proved to be 95%. The validation time interval included the three common snow situations: (1) late autumn months where 37.1% of the initial set of the data was used, and the overall accuracy was 98.6%; (2) the “winter” months where the clouds reduced the set of useful data – 31.75%– and the overall accuracy was 93.7%; and (3) the months of February and March which returned the highest accuracy (> 95%). Additionally, a cross‐validation using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) high‐resolution imagery was carried out. Furthermore, the MODIS, meteorological data and ASTER data were integrated into a Geographic Information System (GIS) environment to perform flexible and comprehensive cross‐checking followed by a thematic analysis based on additional sets of data such as digital elevation models (DEMs) and land‐cover datasets.  相似文献   

18.
近10年新疆积雪面积时空变化研究   总被引:1,自引:0,他引:1  
区域尺度积雪信息的时空监测对确定雪灾的影响范围及灾情等级划分具有重要意义。本文利用近10年的MODIS积雪产品,按月最大面积的规则合成;分析了新疆积雪覆盖面积的时空变化特征,结果表明:时间上,新疆积雪面积有减少的趋势。空间上,近10年新疆积雪季节内永久性积雪覆盖区域主要分布在阿勒泰山脉、天山北麓及沿昆仑山脉西南部。其中天山及阿尔泰山之间的河谷及盆地的草原积雪面积波动主导了新疆整体积雪总面积的波动。  相似文献   

19.
针对不同的数据源及时间和空间尺度会使植被覆盖度及其与气象因子影响的结果有所差别这一情况,该文基于青藏高原1982-2012年GIMMS NDVI和2001-2013年MODIS NDVI遥感数据集,结合研究区内12个典型的气象站点数据,进行了青藏高原地区植被覆盖时空动态变化规律及其与气象因子响应的时序分析,并利用重合时间段的数据对比分析了两种传感器在青藏高原地区对植被动态变化监测方面的差异.结果表明:近30年来,青藏高原地区植被呈整体改善趋势,尤其是高海拔地区;不同阶段植被的变化趋势有所不同;两种传感器在反映植被动态变化趋势上差异显著,但两者与气候因子的响应规律相同.  相似文献   

20.
精确的水汽信息对于短临天气预警和长期气候监测具有重要意义。本文针对搭载在我国第2代极轨卫星风云三号A星(FY-3A)上中分辨率光谱成像仪(medium-resolution spectral imager,MERSI)获取水汽精度较低的现状,提出一种GNSS约束的MERSI/FY-3A PWV校准方法。首先,对MERSI/FY-3A的PWV段产品进行处理得到水汽日产品,并利用GNSS和无线电探空(radiosonde,RS)数据对其进行评估;然后,根据PWV的季节分布特性,构建GNSS约束的MERSI/FY-3A PWV季节自适应校准模型;最后,分别利用GNSS、RS和再分析资料对校准后的MERSI/FY-3A水汽进行对比,验证提出方法的有效性。研究表明:本文提出的PWV校准方法,能够有效改善MERSI/FY-3A水汽日产品和旬产品的精度,改善率分别为58.63%和68.72%。该方法可为遥感水汽快速校准研究提供重要的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号