首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
青藏高原小嵩草高寒草甸返青期遥感识别方法筛选   总被引:3,自引:1,他引:2  
小嵩草高寒草甸是青藏高原的主要植被类型,研究其返青期识别方法对于模拟及预测青藏高原植被物候变化具有重要意义。常用的植被返青期遥感识别方法主要是先对遥感植被指数原始时序数据进行拟合去噪声再求取返青期,各种方法对研究区域、研究经验、参数设置、函数初值设置等有很强的依赖性。为避免返青期识别方法在曲线拟合时对参数初值的依赖性和陷入局部最优解,本文引入了模拟退火算法对双高斯和双逻辑斯蒂函数进行参数优化,并分别对基于以上两种函数及多项式拟合的植被指数时序曲线进行对比,从而选出最佳拟合方法,最后采用最大斜率阈值法、动态阈值法和曲率法识别返青期。利用青藏高原小嵩草高寒草甸34个样本点的返青期地面观测数据及相应的8 km分辨率的NOAA归一化差值植被指数(NDVI)时序数据对以上各种组合的返青期遥感识别方案进行了测试,并选取了153个遥感实验点求取了近30年(1982年—2011年)青藏高原小嵩草高寒草甸的返青期,结果表明:采用双高斯函数拟合的NDVI曲线与原始NDVI时序数据最为接近,在此基础上采用最大斜率阈值法识别的小嵩草高寒草甸返青期及其变化趋势与地面物候观测结果最为一致;同时发现近30年青藏高原小嵩草高寒草甸的平均返青期主要集中在每年的第120—140天,并且呈逐年提前趋势,30年来提前了7天。  相似文献   

2.
王欣  晋锐  杜培军  梁昊 《遥感学报》2018,22(3):508-520
青藏高原特殊的地理环境使其对全球气候变化十分敏感,所以研究其地表冻融循环和植被返青期的时空动态对于回顾和预测青藏高原对全球气候变化的响应具有重要意义。本文通过利用双指标地表冻融状态识别算法和被动微波亮温数据(SMMR、SSMI和SSMIS)来获取青藏高原长时间序列(1982年—2013年)逐日地表冻融状态,通过对GIMMS全球植被指数数据产品进行NDVI的滤波重建和返青期提取来获取青藏高原植被长时间序列(年份)的返青期;并且分析了地表冻融循环和植被返青期的变化趋势、相互关系及对青藏高原气候变化的响应特征。总体来看,在空间上,青藏高原的地表冻结集中发生在10月30日至次年4月2日,平均地表融化首日集中在5月12—27日,平均植被返青期集中在5月19—29日。植被返青期平均发生在地表融化首日后的3.94±5.58日,两者具有显著的相关关系(R=0.51,P=0.003)。青藏高原的地表融化首日和植被返青期在1982年—2013年间经历了推迟、提前再推迟的3个过程,融化时间和返青期在1982年—1987年分别以1.93±1.81 d/a和0.28±1.01 d/a的速度推迟;在1987年—2006年分别以0.67±0.20 d/a和0.13±0.16 d/a的速度提前;在2006年—2013年分别以0.97±0.84 d/a和1.04±0.52 d/a的速度推迟。中国气象局布设在青藏高原的CMA气象站的温度数据表明,高原的春季地表0 cm土壤温度呈持续上升的趋势,而植被返青期和地表融化首日并未持续提前,这可能是由几十年来高原不同地区降水等其他环境因素变化的差异造成。同时在气温持续升高期间,植被返青期的返青温度阈值也不断具有上升的趋势(R=0.72,P0.001),这可能与植被适应气候变化的自身调节能力有关。  相似文献   

3.
Snow cover monitoring in the Qinghai-Tibetan Plateau is very important to global climate change research. Because of the geographic distribution of ground meteorological stations in Qinghai-Tibetan Plateau is too sparse, satellite remote sensing became the only choice for snow cover monitoring in Qinghai-Tibetan Plateau. In this paper, multi-channel data from Visible and Infrared Radiometer (VIRR) on Chinese polar orbiting meteorological satellites Fengyun-3(FY-3) are utilized for snow cover monitoring, in this work, the distribution of snow cover is extracted from the normalized difference snow index(NDSI), and the multi-channel threshold from the brightness temperature difference in infrared channels. Then, the monitoring results of FY-3A and FY-3B are combined to generate the daily composited snow cover product. Finally, the snow cover products from MODIS and FY-3 are both verified by snow depth of meteorological station observations, result shows that the FY-3 products and MODIS products are basically consistent, the overall accuracy of FY-3 products is higher than MODIS products by nearly 1 %. And the cloud coverage rate of FY-3 products is less than MODIS by 2.64 %. This work indicates that FY-3/VIRR data can be reliable data sources for monitoring snow cover in the Qinghai-Tibetan Plateau.  相似文献   

4.
Four up-to-date daily cloud-free snow products – IMS (Interactive Multisensor Snow products), MOD-SSM/I (combination of the MODIS and SSM/I snow products), MOD-B (Blending method basing on the MODIS snow cover products) and TAI (Terra–Aqua–IMS) – with high-resolutions over the Qinghai-Tibetan Plateau (QTP) were comprehensively assessed. Comparisons of the IMS, MOD-SSM/I, MOD-B and TAI cloud-free snow products against meteorological stations observations over 10 snow seasons (2004–2013) over the QTP indicated overall accuracies of 76.0%, 89.3%, 92.0% and 92.0%, respectively. The Khat values of the IMS, MOD-SSM/I, MOD-B and TAI products were 0.084, 0.463, 0.428 and 0.526, respectively. The TAI products appear to have the best cloud-removal ability among the four snow products over the QTP. Based on the assessment, an I-TAI (Improvement of Terra–Aqua–IMS) snow product was proposed, which can improve the accuracy to some extent. However, the algorithms of the MODIS series products show instability when identifying wet snow and snow under forest cover over the QTP. The snow misclassification is an important limitation of MODIS snow cover products and requires additional improvements.  相似文献   

5.
The Qinghai-Tibetan Plateau plays an important role in global climate and environmental change and holds the largest lake area in China, with a total surface area of 36,900 km2. The expansion and shrinkage of these lakes are critical to the water cycle and ecological and environmental systems across the plateau. In this paper, surface areas of major lakes within the plateau were extracted based on a topographic map from 1970, and Landsat MSS, TM and ETM+ satellite images from the 1970s to 2008. Then, a multivariate correlation analysis was conducted to examine the relationship between the changes in lake surface areas and the changes in climatic variables including temperature, precipitation, evaporation, and sunshine duration. Initial results suggest that the variations in lake surface areas within the plateau are closely related to the warming, humidified climate transition in recent years such as the rise of air temperature and the increase in precipitation. In particular, the rising temperature accelerates melting of glaciers and perennial snow cover and triggers permafrost degradation, and leads to the expansion of most lakes across the plateau. In addition, different distributions and types of permafrost may cause different lake variations in the southern Tibetan Plateau.  相似文献   

6.
基于NOAA时间序列数据分析的中国西部荒漠化监测   总被引:2,自引:0,他引:2  
利用1982~2000年的NOAAAVHRR10日合成时间序列数据,对中国西部干旱半干旱区的沙漠边缘及荒漠化多年动态变化进行了分析。  相似文献   

7.
The Qinghai-Tibetan Plateau (QTP) snow cover information acquisition of the high precision spatial and temporal characteristics is of great significance for the research on its land surface atmosphere coupled system and global climate change effects. The Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow cover products (MOD10A1 and MYD10A1) have been widely used in long time series of spatial and temporal variation analysis, but they are limited to be used because of high cloud cover ratio. In this paper, a 7-day rolling combination algorithm was presented to eliminate cloud obscuration, and the whole cloud amount falls below 7 %. The ground station in situ measurements verify that the overall precision is more than 90 %. The presented algorithm guaranteed the same spatial resolution and temporal resolution, and has higher precision than products MOD10A1 and MYD10A1. The MODIS 7-day rolling combination snow cover datasets products were obtained between 2003 and 2014 in the QTP, and the snow cover area of spatial and temporal variation was analyzed. The change characteristics of snow cover duration was also studied combining with the Digital Elevation Model data. Results show that the snow cover area of the whole QTP has a slowly decreased trend, but increases in autumn. Thus, the snow cover proportion of annual periodic and unstable in different elevations has the highest correlation with area of the elevation.  相似文献   

8.
阚希  张永宏  曹庭  王剑庚  田伟 《测绘学报》2016,45(10):1210-1221
青藏高原积雪对全球气候变化十分重要,针对已有积雪遥感判识方法中普遍采用的可见光与红外光谱数据易受复杂地形与高海拔影响,导致青藏高原地区积雪判识精度较低的问题,提出了一种基于多光谱遥感与地理信息数据特征级融合的积雪遥感判识方法:以风云三号卫星可见光与红外多光谱遥感资料与多要素地理信息作为数据源,由地面实测雪深数据与现有积雪产品交叉筛选出样本标签,构建并训练基于层叠去噪自编码器(SDAE)的特征融合与分类网络,从而有效辨识青藏高原遥感图像中的云、积雪以及无雪地表。经地面实测雪深数据验证,该方法分类精度显著高于使用相同数据源的FY-3A/MULSS积雪产品,略高于国际主流积雪产品MOD10A1与MYD10A1,并且年均云覆盖率最低。试验结果表明该方法可有效地减少云层对积雪判识的干扰,提升分类精度。  相似文献   

9.
Snow cover mapping is important for snow and glacier-related research. The spatial and temporal distribution of snow cover area is a fundamental input to the atmospheric models, snowmelt runoff models and climate models, as well as other applications. Daily snow cover maps from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite were retrieved for the period between 2004 and 2007, and pixels in these images were classified as cloud, snow or snow-free. These images have then been compared with ground snow depth (SD) measurements from the four observatories located at different parts of Himalayas. Comparison of snow maps with in situ data showed good agreement with overall accuracies in between 78.15 and 95.60%. When snow cover was less, MODIS data were found to be less accurate in mapping snow cover region. As the SD increases, the accuracy of MODIS snow cover maps also increases.  相似文献   

10.
This paper investigated spatiotemporal dynamic pattern of vegetation, climate factor, and their complex relationships from seasonal to inter-annual scale in China during the period 1982–1998 through wavelet transform method based on GIMMS data-sets. First, most vegetation canopies demonstrated obvious seasonality, increasing with latitudinal gradient. Second, obvious dynamic trends were observed in both vegetation and climate change, especially the positive trends. Over 70% areas were observed with obvious vegetation greening up, with vegetation degradation principally in the Pearl River Delta, Yangtze River Delta, and desert. Overall warming trend was observed across the whole country (>98% area), stronger in Northern China. Although over half of area (58.2%) obtained increasing rainfall trend, around a quarter of area (24.5%), especially the Central China and most northern portion of China, exhibited significantly negative rainfall trend. Third, significantly positive normalized difference vegetation index (NDVI)–climate relationship was generally observed on the de-noised time series in most vegetated regions, corresponding to their synchronous stronger seasonal pattern. Finally, at inter-annual level, the NDVI–climate relationship differed with climatic regions and their long-term trends: in humid regions, positive coefficients were observed except in regions with vegetation degradation; in arid, semiarid, and semihumid regions, positive relationships would be examined on the condition that increasing rainfall could compensate the increasing water requirement along with increasing temperature. This study provided valuable insights into the long-term vegetation–climate relationship in China with consideration of their spatiotemporal variability and overall trend in the global change process.  相似文献   

11.
This work analysed the spatio-temporal variation of snow cover on the Kraków Ice Field, located in the King George Island, Antarctica. High spatial resolution images of COSMO-SkyMed were used in this study. These X-band images are vertically and horizontally co-polarized and their intensity data were converted to amplitude (dB). The COSMO-SkyMed images were classified by a minimum distance algorithm and post-classified based on knowledge of adjacency relationships of snow zones. Hypsometric, slope, aspect and solar radiation maps to support the interpretation of backscatter patterns in the COSMO-SkyMed images. Three radar zones were classified in these images: percolation, slush and wet snow radar zone. Positive surface air temperatures and rainfall events, registered from a meteorological station, lead to increase in wet snow and slush zones. The COSMO-SkyMed images and minimum distance algorithm were adequate to discriminate the snow cover and to assess the supraglacial melting pattern during the ablation season in the study area.  相似文献   

12.
利用MTSAT-2静止气象卫星数据开展了中国区域的雪盖监测研究,结合MODIS雪盖产品及站点雪深观测数据对判识结果进行对比分析和验证。首先,根据MTSAT-2静止气象卫星数据特点,进行角度效应校正及多时相数据合成,以减少云对图像的影响;其次,根据多个雪盖判识因子建立中国区域雪盖判识算法;最后,对比分析2011年1月份MTSAT-2和MODIS雪盖判识结果,并使用站点观测数据进行精度验证。研究表明:(1)MTSAT-2雪盖判识受云影响比例约30%,MODIS雪盖产品受云影响比例约60%,MTSAT-2去云效果明显。(2)无云情况下,MTSAT-2雪盖判识和MODIS雪盖产品判识精度均高于92%;有云覆盖时,MTSAT-2判识精度约65%,优于MODIS雪盖产品35%的判识精度。(3)MTSAT-2静止气象卫星在保持高积雪判识精度的前提下,可以更有效减少云对雪盖判识影响,实时获取更多地表真实信息。该研究对中国区域雪盖信息准确监测、气候变化研究以及防灾减灾等具有重要意义。  相似文献   

13.
Using satellite-observed Normalized Difference Vegetation Index (NDVI) data and Rotated Empirical Orthogonal Function (REOF) method, we analyzed the spatio-temporal variation of vegetation during growing seasons from May to September in the Three-River Source Region, alpine meadow in the Qinghai-Tibetan Plateau from 1982 to 2006. We found that NDVI in the centre and east of the region, where the vegetation cover is low, showed a consistent but slight increase before 2003 and remarkable increase in 2004 and 2005. Impact factors analysis indicted that among air temperature, precipitation, humid index, soil surface temperature, and soil temperature at 10 cm and 20 cm depth, annual variation of NDVI was highly positive correlated with the soil surface temperature of the period from March to July. Further analysis revealed that the correlation between the vegetation and temperature was insignificant before 1995, but statistically significant from 1995. The study indicates that temperature is the major controlling factor of vegetation change in the Three-River Source Region, and the currently increase of temperature may increase vegetation coverage and/or density in the area. In addition, ecological restoration project started from 2005 in Three-River Source Region has a certain role in promoting the recovery of vegetation.  相似文献   

14.
This study maps the geographic extent of intermittent and seasonal snow cover in the western United States using thresholds of 2000–2010 average snow persistence derived from moderate resolution imaging spectroradiometer snow cover area data from 1 January to 3 July. Results show seasonal snow covers 13% of the region, and intermittent snow covers 25%. The lower elevation boundaries of intermittent and seasonal snow zones increase from north-west to south-east. Intermittent snow is primarily found where average winter land surface temperatures are above freezing, whereas seasonal snow is primarily where winter temperatures are below freezing. However, temperatures at the boundary between intermittent and seasonal snow exhibit high regional variability, with average winter seasonal snow zone temperatures above freezing in west coast mountain ranges. Snow cover extent at peak accumulation is most variable at the upper elevations of the intermittent snow zone, highlighting the sensitivity of this snow zone boundary to climate conditions.  相似文献   

15.
The alpine lakes on the Tibetan Plateau (TP) are highly sensitive to variations in climate changes, and the lake ice phenology and water level are considered to be direct indicators of regional climate variability. In this study, we first used 14 years of moderate resolution imaging spectroradiometer snow cover products to analyse the freeze dates, ablation dates, and ice coverage durations. The lake level changes during 2002–2015 were estimated, derived from satellite altimetry and Hydroweb data. Unexpectedly, the freeze dates of lake ice greatly advanced, and the ablation dates were markedly delayed. The complete freezing duration lengthened by approximately 77 days. As a result of the warm-wet climate in the northern TP, the lake area expanded from 770 to 995 km2 during 2002–2015, and the water levels rose by 4.2 m in total, at a rate of 0.3 m/year. The progressive expansion of Ayakekumu Lake profoundly affected the ice phenology. Larger water volume with larger thermal capacity likely led to the delaying of ablation dates, with the freezing point depression caused by decreasing salinity. Some new narrow and shallow bays located in southern and eastern Ayakekumu Lake were conducive to early freezing of ice. Additionally, the changes in air temperature, precipitation, potential evaporation, and sunshine duration may be related to the prolonged ice cover duration since 2002. In sum, accurate measurements of lake ice and water levels are critical for understanding the water resource balance and hydrologic cycle in arid or semi-arid regions of China.  相似文献   

16.
利用NOAA AVHRR数据研究北半球雪盖气候学特征   总被引:2,自引:0,他引:2  
利用NOAA卫星图像,研究了北半球、欧亚、北美和青藏高原雪盖气候学特征及其变化趋势.指出北半球、欧亚和北美雪盖气候变化趋势基本一致,年均雪盖面积在1987年前后明显下降; 而青藏高原雪盖面积在1984年后明显下降,说明青藏高原雪盖的年际变化与北半球及欧亚、北美不完全一致.  相似文献   

17.
高光谱遥感积雪制图算法及验证   总被引:8,自引:0,他引:8  
李震  施建成 《测绘学报》2001,30(1):67-73
雪盖面积是高山地区和季节雪盖区水文和气象模型的重要输入因子。机载和星载遥感数据提取的雪盖面积是融雪径流模型的重要组成部分。对应不同传感器件的光谱特征,多种分类方法被相继提出。但是,缺乏相对独立的验证手段来评价各种分类方法,其主要原因是缺乏地面真实状态。针对该现状,本研究利用高光谱图像的细分光谱特征,建立高光谱影像及其对应“地面真相”的像对数据库来发展和验证积雪制图算法,并展示MODIS积雪制图算法验证和ASTER混合像元分解雪盖制图算法研究的应用实例。  相似文献   

18.
基于被动微波遥感的青藏高原雪深反演及其结果评价   总被引:21,自引:0,他引:21  
采用修正的张氏雪深反演算法,用SSM/I37GHz和19GHz水平极化亮温值计算了青藏高原及其毗邻地区的积雪深度,对其精度进行了评价,并对误差来源进行了分析,结果显示,此算法能够较好地反映研究区的雪深分布,但局部地区误差较大,总体上雪深被高估,其误差主要来源于冻土,深霜层,植被以及雪层中液态水含量,雪粒的形状和粒径的变化带来的影响,SSM/I数据较低的分辨率和研究区复杂的地形使反演的雪深与观测的雪深缺少可比性,给精度的评价带来影响。  相似文献   

19.
We aim a better understanding of the effect of spring-time snow melt on the remotely sensed scene reflectance by using an extensive amount of optical spectral data obtained from an airborne hyperspectral campaign in Northern Finland. We investigate the behaviour of thin snow reflectance for different land cover types, such as open areas, boreal forests and treeless fells. Our results not only confirm the generally known fact that the reflectance of a melting thin snow layer is considerably lower than that of a thick snow layer, but we also present analyses of the reflectance variation over different land covers and in boreal forests as a function of canopy coverage. According to common knowledge, the highly variating reflectance spectra of partially transparent, most likely also contaminated thin snow pack weakens the performance of snow detection algorithms, in particular in the mapping of Fractional Snow Cover (FSC) during the end of the melting period. The obtained results directly support further development of the SCAmod algorithm for FSC retrieval, and can be likewise applied to develop other algorithms for optical satellite data (e.g. spectral unmixing methods), and to perform accuracy assessments for snow detection algorithms.A useful part of this work is the investigation of the competence of Normalized Difference Snow Index (NDSI) in snow detection in late spring, since it is widely used in snow mapping. We conclude, based on the spectral data analysis, that the NDSI -based snow mapping is more accurate in open areas than in forests. However, at the very end of the snow melting period the behavior of the NDSI becomes more unstable and unpredictable in non-forests with shallow snow, increasing the inaccuracy also in non-forested areas. For instance in peatbogs covered by melting snow layer (snow depth < 30 cm) the mean NDSI -0.6 was observed, having coefficient of variation as high as 70%, whereas for deeper snow packs the mean NDSI shows positive values.  相似文献   

20.
全球MODIS冰雪反照率产品在定量遥感中有着广泛应用,但由于该产品的业务化算法是建立在表征植被—土壤系统基础上的罗斯表层(RT)李氏稀疏互易核(LSR)的二向性反射分布函数(BRDF)模型(简称为RTLSR),因此该模型对冰雪的二向性反射及反照率的反演能力有待评估。本文基于地球反射极化和方向测量仪(POLDER)的多角度冰雪反射率数据,综合评估了RTLSR模型在表征冰雪二向反射及反演反照率等方面的能力。为量化评估结果,本研究基于渐进辐射传输(ART)模型,从POLDER冰雪数据中筛选出高质量数据,使用ART模型拟合的高质量结果作为参考,比较结果表明:(1)在表征冰雪方向性散射方面,RTLSR模型整体拟合精度较低。在1020 nm波段,其均方根误差(RMSE)最大可达到0.0498,相较于ART模型的拟合结果偏高了约53.70%;(2)在反演冰雪反照率方面,RTLSR模型与ART模型反演结果也存在差别,其决定系数为0.529,均方根误差为0.0333,偏差为-0.0274,基于RTLSR模型的反演结果低估了ART模型的反演结果。为了使核驱动模型能更准确地表征冰雪BRDF特征和反演反照率,该模型需要针对冰雪散射特点进行进一步的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号