首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of sodium bromide particles in the presence of ozone was studied in a flow system both under dark conditions and with 254 nm radiation. We found that there was significant formation of gaseous bromine (probably Br2) in the presence of ozone in the dark, and that bromide deposited to the walls of the Pyrex reaction flask was its source. The observed rate of gaseous bromine formation in these experiments was approximately 100–1000 times faster than expected based on the knownrate constant for aqueous reaction of bromide with ozone. While the mechanism responsible for this enhanced reactivity was not identified, based on previous reports we suggest that the glass surface converted ozone to more reactive species, such as hydroxyl radical, which in turn oxidized bromide. In the presence of 254 nm radiation, rates of gaseous bromine collection were further enhanced, likely as a result of increased radical production in the system, and wall-deposited bromide was also the source of the gaseous bromine. In these `light' experiments, there was a significant decline in ozone mixing ratios, consistent with bromine radical chemistry. These results suggest the possibility that ozone reacting with internally mixed silicate/sea-salt particles might be a significant mechanism for the oxidation of particulate halides, and subsequent release of photoactive halogen species, in the marine boundary layer.  相似文献   

2.
In a recent publication “Glory phenomenon informs of presence and phase state of liquid water in cold clouds” Nevzorov [Nevzorov, A., 2006. Glory phenomenon informs of presence and phase state of liquid water in cold clouds. Atmospheric Research 82, 367–378] claims that “the convincing evidence has been provided that this sort of glory forms as a first-order bow from spherical particles with a refractive index of 1.81–1.82 and diameter over 20 μm”. This is a highly unusual finding because the refractive index of liquid water and ice is between 1.30 and 1.35 in the visible spectral range. The author concludes that “once more corroboration is gained […] of droplets of liquid water in specific phase state referred to amorphous water, or A-water”. Here we show that the phenomena described by the author are easily explained assuming liquid water with a refractive index of 1.33 and a realistic droplet size distribution with an effective radius of around 10 μm. We conclude that this type of observations does not corroborate the existence of amorphous water in the atmosphere. In a recent publication we showed how to quantitatively derive cloud optical thickness, effective droplet radius, and even the width of the size distribution from observations of the glory [Mayer, B., Schröder, M., Preusker, R., Schüller, L., 2004. Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study. Atmospheric Chemistry and Physics 4, 1255–1263].  相似文献   

3.
Electrical charges on aerosol particles and droplets modify the droplet–particle collision efficiencies involved in scavenging, and the droplet–droplet and particle–particle collision efficiencies involved in coalescence of droplets and particles, even in only weakly electrified clouds and aerosol layers. This work places electrically enhanced scavenging, and the electrical inhibition of scavenging in the context of the microphysics of weakly electrified clouds.Collision efficiencies are calculated by numerical integration to obtain particle trajectories, that are determined by the complex interplay of electrical, gravitational and phoretic forces together with inertia. These modify the trajectory of a particle as it is carried by flow around the falling droplet. Conversely, the flow around the particle also modifies the trajectory of the droplet. The flows are specified analytically, using a hybrid of the Proudman–Pearson stream function for that region close to the droplet or particle, where it is accurate, merging into the exact Oseen stream function for larger distances, where that becomes accurate. The effect of the flow around the particle on the motion of the droplet was simulated using Langmuir's superposition technique on the hybrid stream functions. The treatment of inertia in the present calculations allows an extension of the scope of our previous work by a factor of 10 larger in particle size (103 in mass). The coverage is extended to a wide range of atmospheric conditions and particle densities.The pressures and temperatures used in the models ranged from a representation of the lower troposphere at  1 km altitude (900 hPa, 10 °C) to that of the middle stratosphere at  30 km altitude (12 hPa, − 47 °C). The particles considered range from 0.1 μm to 10 μm radius; the droplet radii range from 4 μm to 50 μm; particle densities range from 300 kg m 3 to 2500 kg m 3; particle charges range from 2e to 100e with droplet charges of like sign of 100e; and relative humidities range from 10% to 100%.For the larger particles (radii greater than about 3 μm) interacting with the larger droplets (radii greater than about 15 μm) the effects of inertia increase with particle density and dominate at the larger densities. For particles with radii in the range 1–3 μm the ‘Greenfield Gap’ of very low collision efficiencies was found, and was determined to be due to the effects of the gravitational force causing a reduction of collisions of particles with the front of the droplet, and the effect of inertia overcoming the tendency for the weight to produce a collision in the slow velocity region in the rear. When the electrical or phoretic forces are sufficiently large the Greenfield Gap is closed.When the particles have radii < 3 μm inertial effects no longer dominate the collisions, although inertia modifies the weight effects for particles with radii down to about 0.5 μm. For charged aerosol particles with radii smaller than about 0.1 μm interacting with droplets or background aerosol particles smaller than a radius of about 15 μm, the long range electrical repulsive force is effective in opposing the phoretic forces and keeping the particle out of range of the short range attractive image force. Thus ‘electroscavenging’ gives way to ‘electroprotection’ against the scavenging or coagulation processes otherwise caused by Browninan diffusion or phoretic forces.In an atmosphere of temperature 10 °C and pressure 900 hPa the net phoretic force reduces to zero and becomes repulsive for particles with radii above about 2 μm (depending on particle conductivity). This enhances the development of the Greenfield Gap. However, the value of this radius (at which the net phoretic force is zero) increases strongly with decreasing temperature and pressure (increasing altitude) as expected from theory, and is about 5 μm in the middle troposphere and more than 10 μm in the stratosphere. Thus a net attractive phoretic force on particles extends into the 1–3 μm radius range in the upper troposphere; however, the weight and inertial effects can ensure the presence of the Greenfield Gap in that range for 2000 kg m 3 particles up to the middle stratosphere.  相似文献   

4.
In November 1993 an airborne field study was performed in order to investigate the microphysical and radiative properties of cooling tower water clouds initiated by water vapour emissions and polluted by the exhaust from coal-fired power plants. The number-median diameter of the droplet size distributions of these artificial clouds was in the range of 13 μm. The concentration of smaller droplets (diameters dD < 10 μm) increased with height and horizontal distance from the cooling towers. Close to the cooling towers, bimodal spectra were found with a second mode at 19 μm. The liquid water content (LWC) ranged between 2 and 5 g/m3 and effective droplet radii (Re) between 6 and 9 μm were measured. LWC and Re decreased with altitude, whereas the droplet concentration (ND) remained approximately constant (about 2000 cm−3 ). An enrichment of interstitial aerosol particles with particle diameters (dp) smaller 0.2 μm compared to the power plant plume in the vicinity of the clouds was observed. Particle activation for dm > 0.3 μm. was evident, especially in cooling tower clouds further apart and separated from their sources. Furthermore, radiation measurements were performed, which revealed differences in the vertical profiles of downwelling solar and UV radiation flux densities inside the clouds.The effective droplet radius Re was parameterized in terms of LWC and ND using equations known from literature. The close agreement between measured and parameterized Re indicates a similar coupling of Re, LWC and ND as in natural clouds.By means of Mie calculations, volume scattering coefficients and asymmetry factors are derived for both the cloud droplets and the aerosol particles. For the cloud droplets, the optical parameters were described by parameterizations from the literature. The results show, that the link between radiative and microphysical properties of natural clouds is not changed by the extreme pollution of the artificial clouds.  相似文献   

5.
Absolutely calibrated in-situ measurements of tropospheric hydroxyl radicals, formaldehyde, sulfur dioxide, and naphthalene (C10H8) were performed by long-path laser absorption spectroscopy during the field campaign POPCORN. The absorption light path was folded into an open optical multiple reflection cell with a mirror separation of 38.5 m. Using a light path length of 1848 m and an integration time of 200 s, the average 1-detection limits of OH, HCHO, SO2 and C10H8 during POPCORN were 8.7 · 105 cm–3, 8.3 · 109 cm–3, 2.4 · 109 cm–3, 1.5 · 108 cm–3, respectively. In total, 392 identifications of OH in air spectra were made in a rural environment between August 5 and August 23, 1994. We present and discuss OH absorption spectra and diurnal OH concentration profiles of three days which are representative for measurements under different pollution conditions during POPCORN. The observed maximum and median OH radical concentrations are 1.3 · 107 OH/cm3 and 4.0 · 106 OH/cm3, respectively. The measured diurnal variation of the OH concentration shows a good correlation with the primary formation reaction of OH radicals which is the photolysis of ambient ozone. Deviations from this correlation in the morning and evening hours, when the OH concentration is higher than expected from the ozone photolysis, demonstrate the importance of other photochemical HOx production pathways during POPCORN.  相似文献   

6.
To better understand the role of terpenic compounds in atmospheric chemistry the influence of sobrerol, a water-soluble product of photochemical autoxidation or ozonolysis of -pinene, on the rate of S(IV) autoxidation was studied. Laboratory experiments were performed under heterogeneous conditions, at constant supply with S(IV) by dissolution of CaSO3.1/2 H2O fine particles and with air oxygen by diffusion through a planar gas-liquid interface. The progress of S(IV) autoxidation, uncatalysed or catalysed by Fe2(SO4)3 or CoSO4, was followed conductometrically. The inhibiting effect of sobrerol was discussed in terms of the chain reaction terminated in a step linear with respect to sulphoxy radicals. A method was proposed for quantification of the inhibiting effect and the rate constant (2.0–3.8)108 M–1s–1 was given for the step eliminating sulphate radicals. Further consequences of the inhibition: shifting the reaction locus from the gas-liquid (droplet) interface to the liquid (droplet) bulk and strong oscillations in the rate of S(IV) autoxidation resulting of the activity of sobrerol-derived radicals were also shown.  相似文献   

7.
Flux measurements of ozone and water vapour employing the eddy correlation technique were used to determine the surface conductance and canopy conductance to ozone. In the surface conductance to ozone, all surfaces at which ozone is destroyed and the transport process to these surfaces are included. The canopy conductance to ozone represents the ozone uptake of transpiring plant parts. The surface conductance to ozone of the maize crop and the underlying soil was generally larger than the canopy conductance to ozone. This means that beside the uptake by stomata, there was another important ozone sink. Under wet soil surface conditions, the surface conductance and the canopy conductance to ozone coincided. This indicates that the resistance of wet soil and the remaining plant parts (cuticle) to ozone was much larger than the stomatal or soil resistance. On the other hand, under dry soil conditions the conductances differ, largely caused by a variation in the transport process to the soil. The transport of ozone to soil increased with increasing friction velocity (u *) and decreased with increasing atmospheric stability, leaf area index (LAI) or crop height (h). These effects for midday (unstable) conditions were parameterized with an in-crop aerodynamic resistance,r inc in a very straightforward way;r inc=13.9 LAIh/u *+67 (cc.=0.77). If the ozone flux in air pollution models is described with a simple resistance model (Big Leaf model), the extra destruction at the soil should be modelled using an in-crop aerodynamic resistance. For these measurements the ozone flux to the soil was 0–65% of the total ozone flux measured above the crop. Under wet soil conditions, this was less than 20%; under dry soil conditions, this was 30–65%.  相似文献   

8.
Summary Non-uniform mixing of gas-phase trace species may limit the accuracy of the predictions of Eulerian transport/transformation models if the chemical reactions are rapid enough to be diffusion limited. If a reaction is diffusion limited, its average reaction rate might not be accurately represented by those models that assume instantaneous uniform mixing. One possible consequence of this artificial dilution is the overprediction of ozone and hydroxyl radicals. We have determined which reactions in the Regional Acid Deposition Model Gas-Phase Chemical Mechanism (Stockwell et al., 1990) are diffusion limited for a typical atmospheric condition through the calculation of Damköhler numbers. Damköhler numbers are defined to be the ratio of the diffusion mixing time to the chemical reaction time for a given chemical reaction (McRae et al., 1982; Hill, 1976). The reactions of hydroxyl radicals and the reactions of peroxy radicals with NO are diffusion limited under typical atmospheric conditions. Both sets of reactions are especially significant because NOx and organic species strongly affect ozone and hydroxyl radical concentrations. It is suggested that Damköhler numbers could be used to help determine the placement of Eulerian model boundaries and to determine model grid structure.With 2 Figures  相似文献   

9.
The effect of temperature (296–238 K) on the reaction of combustion soot (n-hexane) with ozone at low concentration (6–8 ppm) has been measured. Long optical path FTIR spectroscopy has revealed the rate law for ozone loss beyond initial stages, second order in O3, to be the same over this range of conditions. The reaction rate is 3.5 times lower at 238 K than at 296 K, and reveals an activation energy of 12.9 ± 0.5 kJ mol–1. The effect of humidity on the reaction has been estimated using its recently determined rate law dependence (p0.2). These data, differing from O3 reaction kinetics obtained from other types of carbonaceous particles used as surrogates for atmospheric soot, have implications for the role of combustion soot in atmospheric chemistry. Any involvement of aircraft soot in ozone depletion near the tropopause, for example, should be estimated using these temperature and humidity dependences.  相似文献   

10.
Surface erythemal UV radiation is mainly affected by total column ozone, aerosols, clouds, and solar zenith angle. The effect of ozone on the surface UV radiation has been explored many times in the previous studies due to the decrease of ozone layer. In this study, we calculated the effect of aerosols on the surface UV radiation as well as that of ozone using data acquired from Ozone Monitoring Instrument (OMI). First, ozone, aerosol optical depth (AOD), and surface erythemal UVB radiation measured from satellite are compared with those from ground measurements. The results showed that the comparison for ozone was good with r 2 of 0.92. For aerosol, there was difference between satellite measurements and surface measurements due to the insufficient information on aerosol in the retrieval algorithm. The r 2 for surface erythemal UV radiation was high (~0.94) but satellite measurements showed about 30% larger values than surface measurements on average by not considering the effect of absorbing aerosols in the retrieval process from satellite measurements. Radiative amplification factor (RAF) is used to access the effect of ozone and aerosol quantitatively. RAF for ozone was 0.97~1.49 with solar zenith angle. To evaluate the effect of aerosol on the surface UV radiation, only clear-sky pixel data were used and solar zenith angle and total column amount of ozone were fixed. Also, RAF for aerosol was assessed according to the single scattering albedo (SSA) of aerosols. The results showed that RAF for aerosol with smaller SSA (< 0.90) was larger than that for with larger SSA (> 0.90). The RAF for aerosol was 0.09~0.22 for the given conditions which was relatively small compared to that for ozone. However, considering the fact that aerosol optical depth can change largely in time and space while the total column amount of ozone does not change very much, it needs to include the effect of aerosol to predict the variations of surface UV radiation more correctly.  相似文献   

11.
Transport safety is a major goal in the European Union. Low visibility conditions, especially due to fog, increase the risk of major accidents (chain collision). Innovative products have been developed by the automotive industry, including equipment manufacturers, to increase the level of safety of car passengers and drivers. Testing of these products requires the simulation or artificial reproduction of low visibility (fog) conditions with good stability and reproducibility characteristics. We report on the results of the European Union funded “FOG” project to improve road transport safety through fog production in an experimental test chamber located at the Clermont-Ferrand laboratory for research on road safety and visibility. The project developed a prototype of a small-scale climatic chamber, an improved fog production spraying device, a laser-based visibility measurement device, a reduced scale transmissometer, and a combined indoor climate-fog production simulation software. The ability of the fog chamber to test for driver reaction was also investigated. Recent developments include a device able to produce stable visibility levels and homogeneous fog, representative of various types of natural water droplet distribution. The fog characteristics were determined and compared to natural fog. Results are presented for a selection of conditions including stabilized visibility levels for dense fog and two kinds of droplet distributions.  相似文献   

12.
A small, lightweight (1.5 kg) and fast-response ozone sensor for direct eddy flux measurements has been built. The basis for detection is the chemiluminescence of an organic dye adsorbed on dry silica gel in the reaction with ozone. The chemiluminescence is monitored with a cheap and small blue-sensitive photomultiplier. At a flow rate of 100 l min-1 the ozone sensor has a 90% response time of significantly better than 0.1 s with a detection limit lower than 50 ppt at S/N=3. There are no interferences from other atmospheric trace gases like NOx, H2O2 and PAN. Water vapour and SO2 enhance the chemiluminescence efficiency of the ozone sensor. Since their response times are 22 seconds and 30 minutes, respectively, no correlation between rapid ozone fluctuations and those of these two trace gases is noticed by the ozone sensor when operating at a frequency of 10 Hz.The ozone sensor was tested for several weeks in continuous measurements of ozone fluxes and deposition velocities over different croplands using the eddy correlation technique. Good agreement was found between ozone dry deposition velocities derived from profile measurements and by eddy correlation.  相似文献   

13.
Estimates of the Chemical Budget for Ozone at Waliguan Observatory   总被引:6,自引:0,他引:6  
Waliguan Observatory (WO) is an in-land Global Atmosphere Watch (GAW) baseline station on the Tibetan plateau. In addition to the routine GAW measurement program at WO, measurements of trace gases, especially ozone precursors, were made for some periods from 1994 to 1996. The ozone chemical budget at WO was estimated using a box model constrained by these measured trace gas concentrations and meteorological variables. Air masses at WO are usually affected by the boundary layer (BL) in the daytime associated with an upslope flow, while it is affected by the free troposphere (FT) at night associated with a downslope flow. An anti-relationship between ozone and water vapor concentrations at WO is found by investigating the average diurnal cycle pattern of ozone and water vapor under clear sky conditions. This relationship implies that air masses at WO have both the FT and BL characteristics. Model simulations were carried out for clear sky conditions in January and July of 1996, respectively. The chemical characteristics of mixed air masses (MC) and of free tropospheric air masses (FT) at WO were investigated. The effects of the variation in NOx and water vapor concentrations on the chemical budget of ozone at WO were evaluated for the considered periods of time. It was shown that ozone was net produced in January and net destroyed in July for both FT and MC conditions at WO. The estimated net ozone production rate at WO was –0.1 to 0.4 ppbv day–1 in FT air of January, 0.0 to 1.0 ppbv day–1 in MC air of January, –4.9 to –0.2 ppbv day–1 in FT air of July, and –5.1 to 2.1 ppbv day–1 in MC air of July.  相似文献   

14.
A novel method has been examined for monitoring tropospheric hydroxyl radicals (OH), the most important oxidant in tropospheric chemistry. Aqueous phase salicylic acid reacts with atmospheric OH to produce 2,5-dihydroxy benzoic acid (2,5-DHBA) and other products. High Performance Liquid Chromatography (HPLC) is used to separate the post-reaction solution and the products are quantified using fluorescence detection. Unlike other methods, it has been reported to be inexpensive, portable and relatively simple. Although the sensitivity was sufficient to measure typical daytime OH concentrations of 0.04–0.4 ppt., the method was hindered by numerous interferences. Successive identification and elimination of these still resulted in a signal that was much larger than expected. Tests showed that this was not likely to be due to ozone, HO2, NOx, H2O2, aerosols, light or bacteria. Experimental and numerical studies suggest that the interference could be due to methyl peroxy radicals. The effect of many other components in the atmosphere, both individual and combined, must also be tested before the method can be used reliably in the field. The validity of previous reports of ambient hydroxyl measurements using this technique is therefore brought into question.  相似文献   

15.
In a first attempt to assess a proposed climatic change feedback process involving cloud condensation nuclei (CCN) and cloud albedo, CCN concentrations N as a function of supersaturation S were measured on a voyage from latitude 43 to 65°S in October–November 1988. The usual relationship N=CSk, with k=0.5 and C a constant was a fair apprraximation for S in the range 0.3–0.7% implying that CCN concentrations should largely determine cloud drop concentrations and hence albedo for clouds with S in that range. South of latitude 50°S and at smaller S,k was 1 or larger on average, which would lead to reduced dependence of albedo on CCN for the relevant clouds. N varied very widely for separations of the order of 100 km or 6 hours in time, particularly when the sea was partly ice-covered, suggesting strong local influences. During a large increase in N 60°S, unaccompanied by an increase in condensation nuclei (CN), cloud drops grew more rapidly than usual. In a subsidiary experiment particles were collected and examined by transmission electron microscopy. For particles less than 0.2 μm diameter, 80–90% appeared to consist of ammonium sulfate, the remainder being sea salt or an unknown substance which was more liquid and heat-resistant. Dialysis showed that the sulfate particles contained a few percent of insoluble material. Particles which formed cloud drops in vapours other water, were also studied. Comparison of these and water CCN and the rates of droplet suggested that the water insoluble portion of the particles was ethanol-soluble and surface-active. CN concentrations decreased by a factor of about 2 between 43 and 65°S, a change closely paralleled by ethanol CCN concentrations.  相似文献   

16.
Carbonyl products have been identified and their formation yields measured in the gas phase reaction of ozone with unsaturated oxygenates in experiments carried out at ambient T, p = 1 atm. of purified humid air (RH = 50%) and with sufficient cyclohexane added to scavenge the hydroxyl radical. The compounds studied are the esters methyl acrylate, vinyl acetate and cis-3-hexenyl acetate, the carbonyl crotonaldehyde, the hydroxy-substituted diene linalool, the ether ethylvinyl ether and the keto-ether trans-4-methoxy-3-buten-2-one. The alkene 1-pentene was included for comparison. The nature and formation yields of the carbonyl products from this study and those measured in earlier work under the same conditions are compared to those of alkenes and are supportive of a reaction mechanism that is similar to that for the reaction of ozone with alkenes, i.e. O3 + R1R2C=CR3X (R1COR2 + R3XCOO) + (1 – )(R3COX + R1R2COO), where Ri are the alkyl substituents, X is the oxygen-containing substituent (–CHO for aldehydes; –C(O)R for ketones; –C(O)OR and –OC(O)R for esters; –OH and hydroxyalkyl for alcohols; and –OR for ethers), R1COR2 is the primary carbonyl, R3COX is the other primary product and R1R2COO and R3XCOO are the carbonyl oxide biradicals. The biradicals lead to carbonyls in reactions that are also analogous to those involved in carbonyl formation from biradicals in the ozone-alkene reaction. These features make it possible to predict the nature and formation yields of the major carbonyl products of the reaction of ozone with unsaturated oxygenates that may be components of biogenic emissions.  相似文献   

17.
We use the global mercury model published by Bergan et al. (1999) to evaluate the potential role of ozone and the hydroxyl radical as gas phase oxidants for the oxidation of elemental mercury in the atmosphere. The magnitude of natural and man-made mercury emissions are taken from recent literature estimates. We consider only two mercury reservoirs, elemental mercury, Hg0, and the more soluble divalent form, HgII. Wet and dry deposition of HgII is explicitly treated.Applying monthly mean fields of ozone for the oxidation of gas phase Hg0 and using the reaction rate by Hall (1995) yields a global transformation of Hg0 to HgII which is too slow to keep the simulated concentration of Hg0 near observed values. This shows that there must be additional important removal processes for Hg0 or that the reaction rate proposed by Hall (1995) is too slow. A simulation in which the oxidation rate was artificially increased, so that the global turn-over time of Hg0 is one year and the simulated average concentration of Hg0 realistic, produces latitudinal and seasonal variations in Hg0 that do not support the hypothesis that gas phase reaction with O3 is the major oxidation process for Hg0.Recent studies indicate that OH may be an important gas phase oxidant for Hg0 (Sommar et al., 2001). Using OH as the sole oxidantand applying the oxidation rate by Sommar et al., we calculate aconcentration of Hg0 well below (about a factor of three) the observations. By prescribing a slower rate, corresponding to a turn-over time of Hg0 of one year, we calculate concentrations of both Hg0 in surface air and HgII in precipitation which correspond reasonably well, both in magnitude and temporal variation, with seasonal observations in Europe and North America. This result supports the suggestion that the oxidation by OH is an important pathway for the removal of Hg0. In view of the uncertainties associated with our calculations, this conclusion should still be regarded as tentative.  相似文献   

18.
The spray content in the surface boundary layer above an air—water interface was determined by a series of measurements at various feteches and wind speeds in a laboratory facility. The droplet flux density N(z) can be described in terms of the scaling flux density N* and von Karman constant K throguh the equation, N(z)/N* = −(1/K) ln(z/z0d) where z is height above the mean water level and z0d is the droplet boundary layer thickness. N* is given by a unique relationship in terms of the roughness Reynolds number u*σ/ν where σ is the root-mean-square surface displacement. Spray inception occurred for u* 0.3. The dominant mode of spray generation in the present and most other laboratory tests, as well as in available field data, appears to be bubble bursting.  相似文献   

19.
Ozone mixing ratios observed by the Bordeaux microwave radiometer between 1995 and 2002 in an altitude range 25–75 km show diurnal variations in the mesosphere and seasonal variations in terms of annual and semi-annual oscillations (SAO) in the stratosphere and in the mesosphere. The observations with 10–15 km altitude resolution are presented and compared to photochemical and transport model results.Diurnal ozone variations are analyzed by averaging the years 1995–1997 for four representative months and six altitude levels. The photochemical models show a good agreement with the observations for altitudes higher than 50 km. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the mesosphere with amplitude and phase depending on altitude. Higher resolution (2 km) HALOE (halogen occultation experiment) ozone observations show a phase reversal of the SAO between 44 and 64 km. In HALOE data, a tendancy for an opposite water vapour cycle can be identified in the altitude range 40–60 km.Generally, the relative variations at all altitudes are well explained by the transport model (up to 54 km) and the photochemical models. Only a newly developed photochemical model (1-D) with improved time-dependent treatment of water vapour profiles and solar flux manages to reproduce fairly well the absolute values.  相似文献   

20.
Observational study of surface ozone at an urban site in East China   总被引:4,自引:1,他引:3  
In this study, we present the observational data of near surface ozone and some meteorological parameters during 2004, at an urban site (36°42′ N, 117°08′ E, 34.5 m a.s.l.) of Jinan, China. Hourly ozone concentrations exceeding the standard value of China, 100 ppbv, were observed for 65 h (in 23 days) from April to October, and values exceeding US NAAQS (National Ambient Air Quality Standard) for 1 h ozone, 120 ppbv, were observed for 15 h (in 7 days) from late May to early July. Ozone formation presented the phenomenon of “weekend effect”, especially in summer. Monthly variation of ozone coincided with temperature except for July and August. The low ozone levels in July and August may be due to the short sunshine duration and much rainfall during this period. Among these meteorological parameters, daily averaged ozone shows a significant correlation with temperature (r = 0.66) in the year and with relative humidity (r = − 0.75) in summer. Throughout the year, high ozone concentrations were mainly associated with the wind from 180 to 247.5°, while high ozone concentration seemed to have no obvious correlation with a given wind direction in summer. An anomalous nocturnal high ozone episode during 23–25 May 2004 was investigated. Growth fractions of ozone during the nighttime episode were 62.2% and 71.1% for 23 and 24 May, respectively. Synoptic analysis shows that favorable synoptic condition had presumably elevated the background ozone level in this region. Backward trajectory analysis shows that the increase of ozone concentration and the relatively constant high ozone concentrations during the night of May 23 might originate from the transport of ozone rich air mass above boundary layer. Transport of ozone from Yangtze Delta and East Central China might be a significant process for the high ozone level during night May 24 at Jinan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号