首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Substitution of natural gas for coal is one means of reducing carbon dioxide (CO2) emissions. However, natural gas and coal use also results in emissions of other radiatively active substances including methane (CH4), sulfur dioxide (SO2), a sulfate aerosolprecursor, and black carbon (BC) particles. Will switching from coal to gas reduce the net impact of fossil fuel use on global climate? Using the electric utility sector as an example, changes in emissions of CO2, CH4,SO2 and BC resulting from the replacement of coal by natural gas are evaluated, and their modeled net effect on global mean-annual temperature calculated. Coal-to-gas substitution initially produces higher temperatures relative to continued coal use. This warming is due to reduced SO2 emissionsand possible increases in CH4 emissions, and can last from 1 to 30years, depending on the sulfur controls assumed. This is followed by a net decrease in temperature relative to continued coal use, resulting from lower emissions of CO2 and BC. The length of this period and the extent of the warming or cooling expected from coal-to-gas substitution is found to depend on key uncertainties and characteristics of the substitutions, especially those related to: (1) SO2 emissions and consequentsulphate aerosol forcing; and (2) the relative efficiencies of the power plantsinvolved in the switch.  相似文献   

2.
Today's climate policy is based on the assumption that the location of emissions reductions has no impact on the overall climate effect. However, this may not be the case since reductions of greenhouse gases generally will lead to changes in emissions of short-lived gases and aerosols. Abatement measures may be primarily targeted at reducing CO2, but may also simultaneously reduce emissions of NOx, CO, CH4 and SO2 and aerosols. Emissions of these species may cause significant additional radiative forcing. We have used a global 3-D chemical transport model and a radiative transfer model to study the impact on climate in terms of radiative forcing for a realistic change in location of the emissions from large-scale sources. Based on an assumed 10% reduction in CO2 emissions, reductions in the emissions of other species have been estimated. Climate impact for the SRES A1B scenario is compared to two reduction cases, with the main focus on a case with emission reductions between 2010 and 2030, but also a case with sustained emission reductions. The emission reductions are applied to four different regions (Europe, China, South Asia, and South America). In terms of integrated radiative forcing (over 100 yr), the total effect (including only the direct effect of aerosols) is always smaller than for CO2 alone. Large variations between the regions are found (53–86% of the CO2 effect). Inclusion of the indirect effects of sulphate aerosols reduces the net effect of measures towards zero. The global temperature responses, calculated with a simple energy balance model, show an initial additional warming of different magnitude between the regions followed by a more uniform reduction in the warming later. A major part of the regional differences can be attributed to differences related to aerosols, while ozone and changes in methane lifetime make relatively small contributions. Emission reductions in a different sector (e.g. transportation instead of large-scale sources) might change this conclusion since the NOx to SO2 ratio in the emissions is significantly higher for transportation than for large-scale sources. The total climate effect of abatement measures thus depends on (i) which gases and aerosols are affected by the measure, (ii) the lifetime of the measure implemented, (iii) time horizon over which the effects are considered, and (iv) the chemical, physical and meteorological conditions in the region. There are important policy implications of the results. Equal effects of a measure cannot be assumed if the measure is implemented in a different region and if several gases are affected. Thus, the design of emission reduction measures should be considered thoroughly before implementation.  相似文献   

3.
The global three-dimensional Lagrangian chemistry-transport model STOCHEM has been used to follow changes in the tropospheric distributions of methane CH4 and ozone O3 following the emission of pulses of the oxides of nitrogen NO x . Month-long emission pulses of NO x produce deficits in CH4 mixing ratios that bring about negative radiative forcing (climate cooling) and decay away with e-folding times of 10–15 years. They also produce short-term excesses in O3 mixing ratios that bring about positive radiative forcing (climate warming) that decay over several months to produce deficits, with their attendant negative radiative forcing (climate cooling) that decays away in step with the CH4 deficits. Total time-integrated net radiative forcing is markedly influenced by cancellation between the negative CH4 and long-term O3 contributions and the positive short-term O3 contribution to leave a small negative residual. Consequently, total net radiative forcing from NO x emission pulses and the global warming potentials derived from them, show a strong dependence on the magnitudes, locations and seasons of the emissions. These dependences are illustrated using the Asian continent as an example and demonstrate that there is no simple robust relationship between continental-scale NO x emissions and globally-integrated radiative forcing. We find that the magnitude of the time-integrated radiative forcing from NO x -driven CH4 depletion tends to approach and outweigh that from ozone enhancement, leaving net time-integrated radiative forcings and global warming potentials negative (climate cooling) in contrast to the situation for aircraft NO x (climate warming). Control of man-made surface NO x emissions alone may lead to positive radiative forcing (climate warming).  相似文献   

4.
A global two-dimensional (altitude-latitude) chemistry transport model is used to follow the changes in the tropospheric distribution of the two major radiatively active trace gases, methane and ozone, following step changes to the sustained emissions of the short-lived trace gases methane, carbon monoxide and non-methane hydrocarbons. The radiative impacts were dependent on the latitude chosen for the applied change in emissions. Step change global warming potentials (GWPs) were derived for a range of short-lived trace gases to describe their time-integrated radiative forcing impacts for unit emissions relative to that of carbon dioxide. The GWPs show that the tropospheric chemistry of the hydrocarbons can produce significant indirect radiative impacts through changing the tropospheric distributions of hydroxyl radicals, methane and ozone. For aircraft, the indirect radiative forcing impact of the NO x emissions appears to be greater than that from their carbon dioxide emissions. Quantitative results from this two-dimensional model study must, however, be viewed against the known inadequacies of zonally-averaged models and their poor representation of many important tropospheric processes.  相似文献   

5.
Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions   总被引:2,自引:1,他引:2  
This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion.The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed.  相似文献   

6.
We use recent advances in time series econometrics to estimate the relation among emissions of CO2 and CH4, the concentration of these gases, and global surface temperature. These models are estimated and specified to answer two questions; (1) does human activity affect global surface temperature and; (2) does global surface temperature affect the atmospheric concentration of carbon dioxide and/or methane. Regression results provide direct evidence for a statistically meaningful relation between radiative forcing and global surface temperature. A simple model based on these results indicates that greenhouse gases and anthropogenic sulfur emissions are largely responsible for the change in temperature over the last 130 years. The regression results also indicate that increases in surface temperature since 1870 have changed the flow of carbon dioxide to and from the atmosphere in a way that increases its atmospheric concentration. Finally, the regression results for methane hint that higher temperatures may increase its atmospheric concentration, but this effect is not estimated precisely.  相似文献   

7.
Minimizing the future impacts of climate change requires reducing the greenhouse gas (GHG) load in the atmosphere. Anthropogenic emissions include many types of GHG’s as well as particulates such as black carbon and sulfate aerosols, each of which has a different effect on the atmosphere, and a different atmospheric lifetime. Several recent studies have advocated for the importance of short timescales when comparing the climate impact of different climate pollutants, placing a high relative value on short-lived pollutants, such as methane (CH4) and black carbon (BC) versus carbon dioxide (CO2). These studies have generated confusion over how to value changes in temperature that occur over short versus long timescales. We show the temperature changes that result from exchanging CO2 for CH4 using a variety of commonly suggested metrics to illustrate the trade-offs involved in potential carbon trading mechanisms that place a high value on CH4 emissions. Reducing CH4 emissions today would lead to a climate cooling of approximately ~0.5 °C, but this value will not change greatly if we delay reducing CH4 emissions by years or decades. This is not true for CO2, for which the climate is influenced by cumulative emissions. Any delay in reducing CO2 emissions is likely to lead to higher cumulative emissions, and more warming. The exact warming resulting from this delay depends on the trajectory of future CO2 emissions but using one business-as usual-projection we estimate an increase of 3/4 °C for every 15-year delay in CO2 mitigation. Overvaluing the influence of CH4 emissions on climate could easily result in our “locking” the earth into a warmer temperature trajectory, one that is temporarily masked by the short-term cooling effects of the CH4 reductions, but then persists for many generations.  相似文献   

8.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   

9.
The MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) model simulation has been carried out for the 2000–2100 period to investigate the impacts of future Indian greenhouse gas emission scenarios on the atmospheric concentrations of carbon dioxide, methane and nitrous oxide besides other parameters like radiative forcing and temperature. For this purpose, the default global GHG (Greenhouse Gases) inventory was modified by incorporation of Indian GHG emission inventories which have been developed using three different approaches namely (a) Business-As-Usual (BAU) approach, (b) Best Case Scenario (BCS) approach and (c) Economy approach (involving the country’s GDP). The model outputs obtained using these modified GHG inventories are compared with various default model scenarios such as A1B, A2, B1, B2 scenarios of AIM (Asia-Pacific Integrated Model) and P50 scenario (median of 35 scenarios given in MAGICC). The differences in the range of output values for the default case scenarios (i.e., using the GHG inventories built into the model) vis-à-vis modified approach which incorporated India-specific emission inventories for AIM and P50 are quite appreciable for most of the modeled parameters. A reduction of 7% and 9% in global carbon dioxide (CO2) emissions has been observed respectively for the years 2050 and 2100. Global methane (CH4) and global nitrous oxide (N2O) emissions indicate a reduction of 13% and 15% respectively for 2100. Correspondingly, global concentrations of CO2, CH4 and N2O are estimated to reduce by about 4%, 4% and 1% respectively. Radiative forcing of CO2, CH4 and N2O indicate reductions of 6%, 14% and 4% respectively for the year 2100. Global annual mean temperature change (incorporating aerosol effects) gets reduced by 4% in 2100. Global annual mean temperature change reduces by 5% in 2100 when aerosol effects have been excluded. In addition to the above, the Indian contributions in global CO2, CH4 and N2O emissions have also been assessed by India Excluded (IE) scenario. Indian contribution in global CO2 emissions was observed in the range of 10%–26%, 6%–36% and 10%–38% respectively for BCS, Economy and BAU approaches, for the years 2020, 2050 and 2100 for P50, A1B-AIM, A2-AIM, B1-AIM & B2-AIM scenarios. CH4 and N2O emissions indicate about 4%–10% and 2%–3% contributions respectively in the global CH4 and N2O emissions for the years 2020, 2050 and 2100. These Indian GHG emissions have significant influence on global GHG concentrations and consequently on climate parameters like RF and ∆T. The study reflects not only the importance of Indian emissions in the global context but also underlines the need of incorporation of country specific GHG emissions in modeling to reduce uncertainties in simulation of climate change parameters.  相似文献   

10.
A model of the U.S. automobile market is used to test the role that natural gas vehicles (NGVs) might play in reducing greenhouse-gas emissions. Since natural gas (primarily methane) emits less CO2 per unit of energy than petroleum products, NGVs are an obvious pathway to lower CO2 emissions. High-and low-demand scenarios are used to forecast the emissions from unrestricted growth and a modest program of conservation, respectively. Based on these scenarios, a reference scenario is developed that projects a possible future path of automobile use and efficiency. It is found that without a dramatic increase in automobile use, fuel consumption and greenhouse-gas emissions from automobiles in the United States will probably decrease in the future, provided that efficiency continues to improve at modest rates. In theory, NGVs can help shift emissions even further down.A second objective is to quantify the role that leaking methane might play in offsetting some of the greenhouse advantages of NGVs. To do this, a simple atmospheric chemistry model is applied to the reference scenario; several leak rates and feedback factors are used to test the sensitivity of the projected green-house forcing from now until 2050. Committed warming beyond 2050 is not included, and the results should be interpreted with that in mind.It is highly unlikely that switching automobiles from gasoline to natural gas will appreciably lower future greenhouse forcing. Constraints on vehicle miles travelled as well as continued improvements in vehicle efficiency will make a much larger contribution towards controlling global warming.  相似文献   

11.
CH4和N2O作为主要温室气体,自工业革命以来排放量急剧增加,已经被列入《京都议定书》要求控制它们的排放。本文利用高光谱分辨率的辐射传输模式,计算了CH4、N2O在晴空大气和有云大气条件下的瞬时辐射效率和平流层调整的辐射效率,以及它们的全球增温潜能(GWP)和全球温变潜能(GTP),并根据模式结果拟合了CH4和N2O的辐射强迫的简单计算公式。本文的研究表明:CH4和N2O在有云大气下的平流层调整的辐射效率分别为4.142×10-4 W m-2 ppb-1和3.125×10-3 W m-2 ppb-1 (1ppb=10-9),经大气寿命调整后的辐射效率分别为3.732×10-4 W m-2 ppb-1和2.987×10-3 W m-2 ppb-1,与IPCC(2007)的相应结果高度一致。CH4和N2O 100年的全球增温潜能GWP分别为16和266;100年的脉冲排放的全球温变潜能GTPP分别为0.24和233;持续排放的全球温变潜能GTPS分别为18和268。它们在未来全球变暖和气候变化中,影响仅次于CO2,仍然起着非常关键的作用。  相似文献   

12.
The global three-dimensional Lagrangian chemistry-transport model STOCHEM has been used to follow the changes in the tropospheric distributions of the two major radiatively-active trace gases, methane and tropospheric ozone, following the emission of pulses of the short-lived tropospheric ozone precursor species, methane, carbon monoxide, NOx and hydrogen. The radiative impacts of NOx emissionswere dependent on the location chosen for the emission pulse, whether at the surface or in the upper troposphere or whether in the northern or southern hemispheres. Global warming potentials were derived for each of the short-lived tropospheric ozone precursor species by integrating the methane and tropospheric ozone responses over a 100 year time horizon. Indirect radiative forcing due to methane and tropospheric ozone changes appear to be significant for all of the tropospheric ozone precursor species studied. Whereas the radiative forcing from methane changes is likely to be dominated by methane emissions, that from tropospheric ozone changes is controlled by all the tropospheric ozone precursor gases, particularly NOxemissions. The indirect radiative forcing impacts of tropospheric ozone changes may be large enough such that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.  相似文献   

13.
This paper identifies a critical systematic error in greenhouse gas accounting in renewable biomass systems. While CO2 emissions from renewable biomass energy systems are generally considered to have a net impact of 0, no similar adjustment is made for carbon-based products of incomplete combustion, such as methane, in renewable systems. This results in an under- or overestimation of the impact of CH4 by 12.3% and CO by ∼478% in renewable systems. This error is propagated both in scientific studies and in carbon accounting policies. We advocate first for full-carbon accounting of biomass-derived emissions, but also provide adjusted global warming impacts for emissions from proven renewable systems.  相似文献   

14.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   

15.
Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of greenhouse gas (GHG) concentrations at levels that prevent dangerous anthropogenic interference (DAI) in the climate system. However, some of the recent policy literature has focused on dangerous climatic change (DCC) rather than on DAI. DAI is a set of increases in GHGs concentrations that has a non-negligible possibility of provoking changes in climate that in turn have a non-negligible possibility of causing unacceptable harm, including harm to one or more of ecosystems, food production systems, and sustainable socio-economic systems, whereas DCC is a change of climate that has actually occurred or is assumed to occur and that has a non-negligible possibility of causing unacceptable harm. If the goal of climate policy is to prevent DAI, then the determination of allowable GHG concentrations requires three inputs: the probability distribution function (pdf) for climate sensitivity, the pdf for the temperature change at which significant harm occurs, and the allowed probability (“risk”) of incurring harm previously deemed to be unacceptable. If the goal of climate policy is to prevent DCC, then one must know what the correct climate sensitivity is (along with the harm pdf and risk tolerance) in order to determine allowable GHG concentrations. DAI from elevated atmospheric CO2 also arises through its impact on ocean chemistry as the ocean absorbs CO2. The primary chemical impact is a reduction in the degree of supersaturation of ocean water with respect to calcium carbonate, the structural building material for coral and for calcareous phytoplankton at the base of the marine food chain. Here, the probability of significant harm (in particular, impacts violating the subsidiary conditions in Article 2 of the UNFCCC) is computed as a function of the ratio of total GHG radiative forcing to the radiative forcing for a CO2 doubling, using two alternative pdfs for climate sensitivity and three alternative pdfs for the harm temperature threshold. The allowable radiative forcing ratio depends on the probability of significant harm that is tolerated, and can be translated into allowable CO2 concentrations given some assumption concerning the future change in total non-CO2 GHG radiative forcing. If future non-CO2 GHG forcing is reduced to half of the present non-CO2 GHG forcing, then the allowable CO2 concentration is 290–430 ppmv for a 10% risk tolerance (depending on the chosen pdfs) and 300–500 ppmv for a 25% risk tolerance (assuming a pre-industrial CO2 concentration of 280 ppmv). For future non-CO2 GHG forcing frozen at the present value, and for a 10% risk threshold, the allowable CO2 concentration is 257–384 ppmv. The implications of these results are that (1) emissions of GHGs need to be reduced as quickly as possible, not in order to comply with the UNFCCC, but in order to minimize the extent and duration of non-compliance; (2) we do not have the luxury of trading off reductions in emissions of non-CO2 GHGs against smaller reductions in CO2 emissions, and (3) preparations should begin soon for the creation of negative CO2 emissions through the sequestration of biomass carbon.  相似文献   

16.
A combination of linear response models is used to estimate the transient changes in the global means of carbon dioxide (CO2) concentration, surface temperature, and sea level due to aviation. Apart from CO2, the forcing caused by ozone (O3) changes due to nitrogen oxide (NOx) emissions from aircraft is also considered. The model is applied to aviation using several CO2 emissions scenarios, based on reported fuel consumption in the past and scenarios for the future, and corresponding NOx emissions. Aviation CO2 emissions from the past until 1995 enlarged the atmospheric CO2 concentration by 1.4 ppmv (1.7% of the anthropogenic CO2 increase since 1800). By 1995, the global mean surface temperature had increased by about 0.004 K, and the sea level had risen by 0.045 cm. In one scenario (Fa1), which assumes a threefold increase in aviation fuel consumption until 2050 and an annual increase rate of 1% thereafter until 2100, the model predicts a CO2 concentration change of 13 ppmv by 2100, causing temperature increases of 0.01, 0.025, 0.05 K and sea level increases of 0.1, 0.3, and 0.5 cm in the years 2015, 2050, and 2100, respectively. For other recently published scenarios, the results range from 5 to 17 ppmv for CO2 concentration increase in the year 2050, and 0.02 to 0.05 K for temperature increase. Under the assumption that present-day aircraft-induced O3 changes cause an equilibrium surface warming of 0.05 K, the transient responses amount to 0.03 K in surface temperature for scenario Fa1 in 1995. The radiative forcing due to an aircraft-induced O3 increase causes a larger temperature change than aircraft CO2 forcing. Also, climate reacts more promptly to changes in O3 than to changes in CO2 emissions from aviation. Finally, even under the assumption of a rather small equilibrium temperature change from aircraft-induced O3 (0.01 K for the 1992 NOx emissions), a proposed new combustor technology which reduces specific NOx emissions will cause a smaller temperature change during the next century than the standard technology does, despite a slightly enhanced fuel consumption. Regional effects are not considered here, but may be larger than the global mean responses.  相似文献   

17.
Strategies for mitigating the increasing concentration of carbon dioxide (CO2) in the atmosphere include sequestering carbon (C) in soils and vegetation of terrestrial ecosystems. Carbon and nitrogen (N) move through terrestrial ecosystems in coupled biogeochemical cycles, and increasing C stocks in soils and vegetation will have an impact on the N cycle. We conducted simulations with a biogeochemical model to evaluate the impact of different cropland management strategies on the coupled cycles of C and N, with special emphasis on C-sequestration and emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O). Reduced tillage, enhanced crop residue incorporation, and farmyard manure application each increased soil C-sequestration, increased N2O emissions, and had little effect on CH4 uptake. Over 20 years, increases in N2O emissions, which were converted into CO2-equivalent emissions with 100-year global warming potential multipliers, offset 75–310% of the carbon sequestered, depending on the scenario. Quantification of these types of biogeochemical interactions must be incorporated into assessment frameworks and trading mechanisms to accurately evaluate the value of agricultural systems in strategies for climate protection.  相似文献   

18.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   

19.
Sergio Pacca 《Climatic change》2007,84(3-4):281-294
Greenhouse gas (GHG) emissions from hydroelectric dams are often portrayed as nonexistent by the hydropower industry and have been largely ignored in global comparisons of different sources of electricity. However, the life cycle assessment (LCA) of any hydroelectric plant shows that GHG emissions occur at different phases of the power plant’s life. This work examines the role of decommissioning hydroelectric dams in greenhouse gas emissions. Accumulated sediments in reservoirs contain noticeable levels of carbon, which may be released to the atmosphere upon decommissioning of the dam. The rate of sediment accumulation and the sediment volume for six of the ten largest United States hydroelectric power plants is surveyed. The amount of sediments and the respective carbon content at the moment of dam decommissioning (100 years after construction) was estimated. The released carbon is partitioned into CO2 and CH4 emissions and converted to CO2 equivalent emissions using the global warming potential (GWP) method. The global warming effect (GWE) due to dam decommissioning is normalized to the total electricity produced over the lifetime of each power plant. The estimated GWE of the power plants range from 128–380 g of CO2eq./kWh when 11% of the total available sediment organic carbon (SOC) is mineralized and between 35 and 104 g of CO2eq./kWh when 3% of the total SOC is mineralized. Though these values are below emission factors for coal power plants (890 g of CO2eq./kWh), the amount of greenhouse gases emitted by the sediments upon dam decommissioning is a notable amount that should not be ignored and must be taken into account when considering construction and relicensing of hydroelectric dams.  相似文献   

20.
Emissions may affect climate indirectly through chemical interactions in the atmosphere, but quantifications of such effects are difficult and uncertain due to incomplete knowledge and inadequate methods. A preliminary assessment of the climatic impact of changes in tropospheric O3 and CH4 in response to various emissions is given. For a 10% increase in the CH4 emissions the relative increase in concentration has been estimated to be 37% larger. The radiative forcing from enhanced levels of tropospheric O3 is estimated to 37% of the forcing from changes in CH4. Inclusion of indirect effects approximately doubles the climatic impact of CH4 emissions. Emissions of NOx increase tropospheric O3, while the levels of CH4 are reduced. For emissions of NOx from aircraft, the positive effects via O3 changes are significantly larger than the negative through changes in CH4. For NOx emitted from surface sources, the effects through changes in O3 and CH4 are estimated to be of similar magnitude and large uncertainty is connected to the sign of the net effect. Emissions of CO have positive indirect effects on climate through enhanced levels of tropospheric o3 and increased lifetime of CH4. These results form the basis for estimates of global warming potentials for sustained step increases in emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号